Tải bản đầy đủ (.pdf) (22 trang)

DSpace at VNU: Observation of Lambda(0)(b) - psi (2S)pK(-) and Lambda(0)(b) - J psi pi(+)pi(-)pK(-) decays and a measurement of the A(b)(0) baryon mass

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (574.63 KB, 22 trang )

Published for SISSA by

Springer

Received: March 24, 2016
Accepted: May 9, 2016
Published: May 23, 2016

The LHCb collaboration
E-mail:
Abstract: The decays Λ0b → ψ(2S)pK− and Λ0b → J/ψπ+ π− pK− are observed in a data
sample corresponding to an integrated luminosity of 3 fb−1 , collected in proton-proton
collisions at 7 and 8 TeV centre-of-mass energies by the LHCb detector. The ψ(2S) mesons
are reconstructed through the decay modes ψ(2S) → µ+ µ− and ψ(2S) → J/ψπ+ π− .
The branching fractions relative to that of Λ0b → J/ψ pK− are measured to be
B(Λ0b → ψ(2S)pK− )
= (20.70 ± 0.76 ± 0.46 ± 0.37) × 10−2 ,
B(Λ0b → J/ψ pK− )
B(Λ0b → J/ψπ+ π− pK− )
= (20.86 ± 0.96 ± 1.34) × 10−2 ,
B(Λ0b → J/ψ pK− )
where the first uncertainties are statistical, the second are systematic and the third is
related to the knowledge of J/ψ and ψ(2S) branching fractions. The mass of the Λ0b baryon
is measured to be
M (Λ0b ) = 5619.65 ± 0.17 ± 0.17 MeV/c2 ,
where the uncertainties are statistical and systematic.
Keywords: B physics, Flavor physics, Hadron-Hadron scattering (experiments), Particle
and resonance production, Spectroscopy
ArXiv ePrint: 1603.06961

Open Access, Copyright CERN,


for the benefit of the LHCb Collaboration.
Article funded by SCOAP3 .

doi:10.1007/JHEP05(2016)132

JHEP05(2016)132

Observation of Λ0b → ψ(2S)pK− and
Λ0b → J/ψπ+π−pK− decays and a measurement of
the Λ0b baryon mass


Contents
1

2 Detector and simulation

2

3 Event selection

3

4 Measurement of branching fractions
4.1 Signal yields and efficiencies
4.2 Systematic uncertainties
4.3 Results

4
4

6
8

5 Measurement of Λ0b baryon mass

9

6 Results and summary

12

The LHCb collaboration

17

1

Introduction

The Λ0b baryon is the isospin singlet ground state of a bottom quark and two light quarks.
The rich phenomenology associated with decays of bottom baryons allows many measurements of masses, lifetimes and branching fractions, which test the theoretical understanding of weak decays of heavy hadrons in the framework of heavy quark effective
theory (HQET) and the underlying QCD physics [1, 2]. At the Tevatron, properties of
the Λ0b baryon, such as mass and lifetime, have been measured using two-body modes,
− decays [3–5].1 The high production rate of
specifically Λ0b → J/ψ Λ0 and Λ0b → Λ+
c π
b quarks at the Large Hadron Collider (LHC), along with the excellent momentum and
mass resolution and the hadron identification capabilities of the LHCb detector, open up
a host of multibody and Cabibbo-suppressed decay channels of Λ0b baryons, e.g. the de−
0

+ −
0
+ −
0

cays Λ0b → D0 pK− , Λ0b → Λ+
c K [6], Λb → Λc D , Λb → Λc Ds [7] and Λb → J/ψ pπ [8].
The high signal yield of the Λ0b → J/ψ pK− decay [9] allowed the precise measurement of
the Λ0b lifetime [10, 11]. The recent analysis of this decay mode uncovered a double resonant structure in the J/ψ p system consistent with two pentaquark states [12]. LHCb has
also measured several B meson decays into final states with charmonia [13–18]. The first
observation of Λ0b decays to excited charmonium, the Λ0b → ψ(2S)Λ0 decay, has been presented by the ATLAS collaboration [19]. An experimental investigation of other similar
multibody decays of the Λ0b baryon should lead to deeper insights into QCD.
1

The inclusion of charge-conjugate modes is implied throughout this paper.

–1–

JHEP05(2016)132

1 Introduction


In this paper, the first observations of the decays Λ0b → ψ(2S)pK− and
Λ0b → J/ψ π+ π− pK− are reported, where ψ(2S) mesons are reconstructed in the final states
µ+ µ− and J/ψ π+ π− . The ratios of the branching fractions of these decays to that of the
normalization decay Λ0b → J/ψ pK− ,
Rψ(2S) ≡
RJ/ψ π


+ π−



B(Λ0b → ψ(2S)pK− )
,
B(Λ0b → J/ψ pK− )

(1.1)

B(Λ0b → J/ψ π+ π− pK− )
,
B(Λ0b → J/ψ pK− )

(1.2)

2

Detector and simulation

The LHCb detector [20, 21] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The polarity of the dipole magnet is reversed periodically throughout data-taking. The tracking
system provides a measurement of the momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum
distance of a track to a primary vertex (PV), the impact parameter, is measured with
a resolution of (15 + 29/pT ) µm, where pT is the component of the momentum transverse
to the beam, in GeV/c [22]. Large samples of B+ → J/ψ K+ and J/ψ → µ+ µ− decays,

collected concurrently with the data set, were used to calibrate the momentum scale of the
spectrometer to a precision of 0.03 % [23].
Different types of charged hadrons are distinguished using information from two ringimaging Cherenkov detectors (RICH). Photons, electrons and hadrons are identified by
a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers.
The trigger [24] comprises two stages. Events are first required to pass the hardware
trigger, which selects muon candidates with pT > 1.48 (1.76) GeV/c or pairs of opposite-sign
muon candidates with a requirement that the product of the muon transverse momenta is

larger than 1.7 (2.6) GeV2 /c2 for data collected at s = 7 (8)TeV. The subsequent software
trigger is composed of two stages, the first of which performs a partial event reconstruction,

–2–

JHEP05(2016)132

are measured. In measuring the branching fraction of Λ0b → J/ψ π+ π− pK− decays, contributions via intermediate resonances, such as Λ0b → ψ(2S)pK− , are implicitly included.
The low energy release in these decays allows a precise determination of the Λ 0b mass with
a small systematic uncertainty.
This study is based on a data sample corresponding to an integrated luminosity
of 3 fb−1 , collected with the LHCb detector in pp collisions at centre-of-mass energies

s = 7 and 8TeV.


3

Event selection

The decays Λ0b → ψ(2S)pK− , Λ0b → J/ψ π+ π− pK− and Λ0b → J/ψ pK− are reconstructed

using decay modes ψ(2S) → µ+ µ− , ψ(2S) → J/ψ π+ π− and J/ψ → µ+ µ− . Common selection criteria, based on those used in refs. [17, 33], are used for all channels, except
for those related to the selection of two additional pions in the Λ0b → J/ψ π+ π− pK− and
Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK− channels.
Muon, proton, kaon and pion candidates are selected from well-reconstructed tracks
within the acceptance of the spectrometer that are identified using information from
the RICH, calorimeter and muon detectors [34, 35]. Muons, protons, kaons and pions
are required to have a transverse momentum larger than 550, 800, 500 and 200 MeV/c,
respectively. To allow good particle identification, kaons and pions are required to have
a momentum between 3.2 GeV/c and 150 GeV/c whilst protons must have a momentum between 10 GeV/c and 150 GeV/c. To reduce combinatorial background involving tracks from
the primary pp interaction vertices, only tracks that exceed a minimum impact parameter
χ2 with respect to every PV are used. The impact parameter χ2 is defined as the difference
between the χ2 of the PV reconstructed with and without the considered particle.
Pairs of oppositely-charged muons originating from a common vertex are combined to
form J/ψ → µ+ µ− or ψ(2S) → µ+ µ− candidates. The resulting dimuon candidates are
required to have an invariant mass between −5σ and +3σ around the known J/ψ or
ψ(2S) masses [36], where σ is the mass resolution. An asymmetric mass interval is chosen
to include part of the low-mass tail due to final-state radiation.
Candidate Λ0b baryons are formed from J/ψ pK− , ψ(2S)pK− and J/ψ π+ π− pK− combinations. Each candidate is associated with the PV with respect to which it has the smallest
impact parameter significance. The Λ0b mass resolution is improved by employing a kinematic fit [37] that constrains the mass of the J/ψ candidate to its known value and requires the momentum of the Λ0b candidate to point back to the PV. A requirement on
the quality of this fit is applied to further suppress combinatorial background. Finally,
the measured decay time of the Λ0b candidate, calculated with respect to the associated
primary vertex, is required to be between 0.5 and 6.7 ps. The lower limit is used to suppress background from particles coming from the PV while the upper limit removes poorly
reconstructed candidates.

–3–

JHEP05(2016)132

while full event reconstruction is done at the second stage. At the first stage of the software
trigger the invariant mass of well-reconstructed pairs of oppositely charged muons forming

a good-quality two-track vertex is required to exceed 2.7 GeV/c2 , and the two-track vertex
is required to be significantly displaced from all PVs.
The analysis technique reported below has been validated using simulated events.
The pp collisions are generated using Pythia [25, 26] with a specific LHCb configuration [27]. Decays of hadronic particles are described by EvtGen [28], in which final-state
radiation is generated using Photos [29]. The interaction of the generated particles with
the detector, and its response, are implemented using the Geant4 toolkit [30, 31] as described in ref. [32].


Candidates/(1 MeV/c2 )

Candidates/(2 MeV/c2 )

150

LHCb
100

50

m(ψ(2S)[→

5.6

5.65

µ+ µ− ]pK− )

GeV/c2

3000


2000

1000

0

5.6

m(J/ψ pK− )

5.65

GeV/c2

Figure 1. Mass distributions of selected (left) Λ0b → ψ(2S)[→ µ+ µ− ]pK− and (right) Λ0b → J/ψ pK−
candidates. The total fit function (solid red), the Λ0b signal contribution (dotted magenta) and
the combinatorial background (dashed blue) are shown. The error bars show 68% Poissonian confidence intervals.

To suppress cross-feed from decays of the B0s meson into J/ψ K− K+ , ψ(2S)K− K+ and
J/ψ π+ π− K− K+ final states, with the positively-charged kaon misidentified as a proton,
a veto on the Λ0b candidate mass, recalculated with a kaon mass hypothesis for the proton,
is applied. Any candidate with a recalculated mass consistent with the nominal B 0s mass
is rejected. A similar veto is applied to suppress cross-feed from decays of B 0 mesons
into J/ψ K− π+ , ψ(2S)K− π+ and J/ψ π− π+ π+ K− decays with the positively-charged pion
misidentified as a proton.

4
4.1


Measurement of branching fractions
Signal yields and efficiencies

The mass distributions for selected Λ0b → ψ(2S)[→ µ+ µ− ]pK− candidates and candidates
for the normalization channel Λ0b → J/ψ pK− are shown in figure 1. Signal yields are determined using unbinned extended maximum likelihood fits to these distributions. The signal
is modelled with a modified Gaussian function with power-law tails on both sides [38, 39],
where the tail parameters are fixed from simulation and the mass resolution parameter is
allowed to vary. The background is modelled with an exponential function multiplied by
a first-order polynomial. The resolution parameters obtained from the fits are found to be
3.82 ± 0.17 MeV/c2 for the channel Λ0b → ψ(2S)[→ µ+ µ− ]pK− and 6.12 ± 0.05 MeV/c2 for
Λ0b → J/ψ pK− , in good agreement with expectations from simulation.
The mass distribution for selected Λ0b → J/ψ π+ π− pK− candidates is shown in
figure 2(left), along with the result of an unbinned extended maximum likelihood
fit using the model described above.
The mass resolution parameter obtained
2
from the fit is 4.72 ± 0.23 MeV/c . The mass distribution of the J/ψ π+ π− system
from signal Λ0b → J/ψ π+ π− pK− decays is presented in figure 2(right) in the region
3.67 < m(J/ψ π+ π− ) < 3.7 GeV/c2 .

–4–

JHEP05(2016)132

0

LHCb


Candidates/(1 MeV/c2 )


Candidates/(2 MeV/c2 )

LHCb

150

100

50

LHCb
40

20

5.6

5.65

m(J/ψ π+ π− pK− )

3.67

3.68

3.69

m(J/ψ π+ π− )


GeV/c2

3.7

GeV/c2

Figure 2. Left: mass distribution of selected Λ0b → J/ψ π+ π− pK− candidates. Right: backgroundsubtracted J/ψ π+ π− mass distribution for that mode. The total fit function and the signal contributions are shown by solid red and dotted magenta lines, respectively. The combinatorial background
in the left plot and nonresonant contribution in the right plot are shown by dashed blue lines.

N (Λ0b )

Channel
Λ0b → J/ψ pK−

28 834 ± 204

Λ0b → ψ(2S)[→ µ+ µ− ]pK−
Λ0b →
Λ0b →

ψ(2S)[→

665 ± 28

J/ψ π+ π− ]pK−

231 ± 17

J/ψ π+ π− pK−


793 ± 36

Table 1. Signal yields of Λ0b decay channels. Uncertainties are statistical only.

The background subtraction is performed with the sPlot technique [40] using the J/ψ π+ π− pK− mass as the discriminating variable.
The signal yield of
0
+


Λb → ψ(2S)[→ J/ψ π π ]pK decays is determined using an unbinned extended maximum
likelihood fit to the J/ψ π+ π− invariant mass distribution. The ψ(2S) component is modelled with a modified Gaussian function with power-law tails on both sides, where the tail
parameters are fixed from simulation. The nonresonant component is taken to be constant.
The mass resolution parameter obtained from the fit is 2.29±0.17 MeV/c2 . The signal yields
are summarized in table 1.
The ratio of branching fractions Rψ(2S) , defined in eq. (1.1), is measured in two different
decay modes,
Λ0

R

ψ(2S)
ψ(2S)→µ+ µ−

b
εJ/ψ
Nψ(2S)→µ+ µ−
B(J/ψ → µ+ µ− )
=
× Λ0

×
,
NJ/ψ
B(ψ(2S) → µ+ µ− )
b
εψ(2S)→µ
+ µ−

Λ0

Rψ(2S)

ψ(2S)→J/ψ π+ π−

b
εJ/ψ
Nψ(2S)→J/ψ π+ π−
1
=
× Λ0
×
,
NJ/ψ
B(ψ(2S) → J/ψ π+ π− )
b
εψ(2S)→J/ψ
+

π π
(4.1)


–5–

JHEP05(2016)132

0
0


Value
Λ0

Λ0

Λ0b

Λ0b

Λ0b

Λ0b

1.188 ± 0.006

b
b
εJ/ψ
/εψ(2S)→µ
+ µ−


εJ/ψ /εψ(2S)→J/ψ π+ π−

8.84 ± 0.05
7.59 ± 0.04

εJ/ψ /εJ/ψ π+ π−

Table 2. Ratios of efficiencies. The uncertainties reflect the limited size of the simulation sample.
+ π−

, defined in eq. (1.2), is measured as
Λ0

R

J/ψ π+ π−

b
εJ/ψ
NJ/ψ π+ π−
=
× Λ0
,
NJ/ψ
b
εJ/ψ
+

π π


(4.2)

Λ0

where NX represents the observed signal yield and εXb denotes the efficiency for the decay Λ0b → XpK− . The ratio

B(J/ψ→µ+ µ− )
B(ψ(2S)→µ+ µ− )

is taken to be equal to the more precisely
+ −

B(J/ψ →e e )
measured ratio of dielectron branching fractions, B(ψ(2S)→e
= 7.57 ± 0.17 [36].
+ e− )
+

For the ψ(2S) → J/ψ π π branching fraction the world average (34.46 ± 0.30)% [36]
is taken.
The efficiency is defined as the product of the geometric acceptance and the detection,
reconstruction, selection and trigger efficiencies. The efficiencies for hadron identification
as functions of kinematic parameters and event multiplicity are determined from data
using calibration samples of low-background decays: D∗+ → D0 π+ followed by D0 → K− π−
− +
for kaons and pions, and Λ0 → pπ− and Λ+
c → pK π for protons [34]. The remaining
efficiencies are determined using simulation.
In the simulation of Λ0b → J/ψ pK− decays, the model established in ref. [12] that includes pentaquark contributions is used, while in the simulation of the other decay modes
the events are generated uniformly in phase space. The simulation is corrected to reproduce

the transverse momentum and rapidity distributions of the Λ0b baryons observed in data [9]
and to account for small discrepancies between data and simulation in the reconstruction
of charged tracks [41]. The ratios of efficiencies to those in the Λ0b → J/ψ pK− channel are
presented in table 2.

4.2

Systematic uncertainties

Most systematic uncertainties cancel in the measurements of the ratios of branching fractions, notably those related to the reconstruction, identification and trigger efficiencies of
the J/ψ → µ+ µ− and ψ(2S) → µ+ µ− candidates [13], due to the similarity of the muon and
dimuon spectra for these modes. The remaining systematic uncertainties are summarized
in table 3 and discussed below.
Alternative parametrizations for the signal and background are used to estimate
the systematic uncertainties related to the fit model. A modified Novosibirsk function [42],

–6–

JHEP05(2016)132

and the ratio RJ/ψ π


Source

Rψ(2S)

ψ(2S)→µ+ µ−

Rψ(2S)


ψ(2S)→J/ψ π+ π−

RJ/ψ π

+ π−

Fit model

0.8

3.0

3.5

Cross-feed

0.8

0.9

0.9

0.3

0.8

0.8

Hadron interaction




2 × 2.0

2 × 2.0

Track efficiency correction



3.2

2.7

Hadron identification

0.1

0.1

0.2

Trigger

1.1

1.1

1.1


Selection criteria

0.6

0.9

0.2

Simulation sample size

1.0

1.6

1.7

2.0

6.4

6.4

Efficiency calculation:
Λ0b decay model
Reconstruction of additional pions:

Table 3. Systematic uncertainties (in %) on the ratios of branching fractions Rψ(2S) and RJ/ψ π

+


π−

.

an Apolonios function [43], an asymmetric variant of the Apolonios function and the Student’s t-distribution are used for the Λ0b signal shape, and an exponential function multiplied by a second-order polynomial is used for the background. The ratio of event yields
is remeasured with the cross-check models, and the maximum deviation with respect to
the nominal value is assigned as a systematic uncertainty.
The uncertainty associated with the B0s and B0 cross-feed is estimated by varying
the widths of the rejected regions and recomputing the signal yields, taking into account
the changes in efficiencies. As an additional cross-check, a veto is applied also on possible contributions from Λ0b → J/ψ pK+ , Λ0b → ψ(2S)pK+ and Λ0b → J/ψ π+ π− pK+ decays
where the positive kaon is misidentified as a proton and the antiproton is misidentified
as a negative kaon. The maximum of the observed differences from the nominal values is
assigned as the corresponding systematic uncertainty.
The remaining systematic uncertainties are associated with the efficiency determination. The systematic uncertainty related to the decay model for Λ0b → ψ(2S)pK− and
Λ0b → J/ψ π+ π− pK− decays is estimated using the simulated samples, corrected to reproduce the invariant mass of the pK− and ψ(2S)p or J/ψ π+ π− p systems observed in data.
The largest change in efficiency is taken as the corresponding systematic uncertainty.
The decay modes Λ0b → J/ψ π+ π− pK− and Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK− have two
additional pions to reconstruct compared to the reference mode Λ0b → J/ψ pK− . The uncertainty associated with the reconstruction of these additional low-pT tracks has two
independent contributions. First, the uncertainties in the amount and distribution of material in the detector result in an uncertainty of 2.0% per additional final-state pion due to

–7–

JHEP05(2016)132

Sum in quadrature


tio RJ/ψ π
4.3


+ π−

.

Results

Using eq. (4.1) and the ratios of yields and efficiencies determined above, the ratio Rψ(2S)
is measured for each ψ(2S) decay mode separately:
Rψ(2S)
Rψ(2S)

ψ(2S)→µ+ µ−

ψ(2S)→J/ψ π+ π−

= (20.74 ± 0.88 ± 0.41 ± 0.47) × 10−2 ,
= (20.55 ± 1.52 ± 1.32 ± 0.18) × 10−2 ,

(4.3)

where the first uncertainty is statistical, the second is systematic and the third is related to the uncertainties on the dielectron J/ψ and ψ(2S) branching fractions and
the ψ(2S) → J/ψ π+ π− branching fraction. The average of the ratios in eq. (4.3) is
Rψ(2S) = (20.70 ± 0.76 ± 0.46 ± 0.37) × 10−2 .

(4.4)

In this average the systematic uncertainties related to the normalization channel,
Λ0b → J/ψ pK− , and the trigger efficiency are considered to be 100% correlated while other
systematic uncertainties are treated as uncorrelated.

The ratio of the branching fractions of Λ0b → J/ψ π+ π− pK− and Λ0b → J/ψ pK− is
found to be
+ −
RJ/ψ π π = (20.86 ± 0.96 ± 1.34) × 10−2 ,
(4.5)
where contributions via intermediate resonances are included.

–8–

JHEP05(2016)132

the modelling of hadron interactions [41]. Second, the small difference in the track finding efficiency between data and simulation is corrected using a data-driven technique [41].
The uncertainties in the correction factors are propagated to the efficiency ratios by means
of pseudoexperiments. This results in a systematic uncertainty of 3.2% for the ratio
+ −
Rψ(2S) ψ(2S)→J/ψ π+ π− and 2.7% for the ratio RJ/ψ π π .
The systematic uncertainties related to the hadron identification efficiency, 0.1 (0.2)%
+ −
for Rψ(2S) (RJ/ψ π π ) ratios, reflect the limited sizes of the calibration samples, and are
+ −
propagated to the ratios Rψ(2S) and RJ/ψ π π by means of pseudoexperiments.
The trigger efficiency for events with J/ψ → µ+ µ− and ψ(2S) → µ+ µ− produced in
beauty hadron decays is studied in data. A systematic uncertainty of 1.1% is assigned
based on a comparison between data and simulation of the ratio of trigger efficiencies for
high-yield samples of B+ → J/ψ K+ and B+ → ψ(2S)K+ decays [13].
Another source of uncertainty is the potential disagreement between data and simulation in the estimation of efficiencies, due to effects not considered above. This is studied by
varying the selection criteria in ranges that lead to as much as ±20% change in the measured signal yields. The stability is tested by comparing the efficiency-corrected yields
within these variations. The largest deviations range between 0.2% and 0.9% and are
taken as systematic uncertainties.
Finally, a systematic uncertainty due to the limited size of the simulation sample is

assigned. With all the systematic uncertainties added in quadrature, the total is 2.0% for
the ratio Rψ(2S) ψ(2S)→µ+ µ− , 6.4% for the ratio Rψ(2S) ψ(2S)→J/ψ π+ π− and 6.4% for the ra-


The absolute branching fractions Λ0b → ψ(2S)pK− and Λ0b → J/ψ π+ π− pK− are derived
−4
using the branching fraction B(Λ0b → J/ψ pK− ) = (3.04 ± 0.04 ± 0.06 ± 0.33 +0.43
−0.27 ) × 10 ,
measured in ref. [9], where the third uncertainty is due to the uncertainty on the branching

fraction of the decay B0 → J/ψ K (892)0 and the fourth is due to the knowledge of the ratio
of fragmentation fractions fΛ0 /fd . They are found to be
b

−5
B(Λ0b → ψ(2S)pK− ) = (6.29 ± 0.23 ± 0.14 +1.14
,
−0.90 ) × 10
−5
B(Λ0b → J/ψ π+ π− pK− ) = (6.34 ± 0.29 ± 0.41 +1.15
,
−0.91 ) × 10

(4.6)

Λ0

b
εψ(2S)→J/ψ
Nψ(2S)→µ+ µ−

B(ψ(2S) → µ+ µ− )
π + π−
=
× Λ0
× B(J/ψ → µ+ µ− )
+

B(ψ(2S) → J/ψ π π )
Nψ(2S)→J/ψ π+ π−
b
εψ(2S)→µ+ µ−

= (2.30 ± 0.20 ± 0.12 ± 0.01) × 10−2 ,

(4.7)

where the third uncertainty is related to the uncertainty of the known branching fraction
B(J/ψ → µ+ µ− ) = (5.961 ± 0.033)% [36]. This result is in agreement with the world average of (2.29 ± 0.25) × 10−2 [36] based on results of the E672/E706 [44] and BaBar [45]
collaborations, and has similar precision.

5

Measurement of Λ0b baryon mass

The low energy release in Λ0b → ψ(2S)pK− and Λ0b → J/ψ π+ π− pK− decays allows the Λ0b mass to be determined with a small systematic uncertainty.
The mass is measured using four decay channels:
Λ0b → ψ(2S)[→ µ+ µ− ]pK− ,
0
+



0
+


0
Λb → ψ(2S)[→ J/ψ π π ]pK , Λb → J/ψ π π pK and Λb → J/ψ pK− . The mass distributions for the Λ0b → ψ(2S)[→ µ+ µ− ]pK− and Λ0b → J/ψ pK− channels are shown in figure 1. In the Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK− channel, the J/ψ π+ π− system is constrained
to the nominal ψ(2S) mass [36] to improve the precision. In the Λ0b → J/ψ π+ π− pK− channel, to avoid overlap with the Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK− channel the ψ(2S) region is
vetoed, i.e. the mass of the J/ψ π+ π− combination is required to be outside the range
3670 < m(J/ψ π+ π− ) < 3700 MeV/c2 . The mass distributions for these two samples, along
with the result of an unbinned extended maximum likelihood fit using the model described
in section 4.1, are shown in figure 3.
The systematic uncertainties on the measurement of the Λ0b baryon mass for all four
channels are listed in table 4. The precision of the absolute momentum scale calibration of
0.03% is the dominant source of uncertainty [23, 46]. This uncertainty is proportional to
the energy release in the decay and is minimal for the processes with a ψ(2S) in the final
state. A further uncertainty is related to the energy loss in the material of the tracking

–9–

JHEP05(2016)132

where the third uncertainty comes from the uncertainties in the branching fractions of
Λ0b → J/ψ pK− , ψ(2S) → J/ψ π+ π− , ψ(2S) → e+ e− and J/ψ → e+ e− decays.
From the two separate measurements of the ratio Rψ(2S) via different decay modes
of the ψ(2S) meson (eq. (4.3)), the ratio of the ψ(2S) → µ+ µ− and ψ(2S) → J/ψ π+ π−
branching fractions is calculated as


Candidates/(2 MeV/c2 )


Candidates/(2 MeV/c2 )

LHCb
40

20

5.6

50

0

5.65

m(ψ(2S)pK− )

100

5.6

5.65

m(J/ψ π+ π− pK− )

GeV/c2

GeV/c2


Figure 3. Left: mass distribution of selected Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK− candidates with
an additional constraint for the ψ(2S) mass [36].
Right: mass distribution of selected
Λ0b → J/ψ π+ π− pK− candidates with a requirement of the J/ψ π+ π− combination mass to be outside the range 3670 < m(J/ψ π+ π− ) < 3700 MeV/c2 . The total fit function (solid red), the Λ0b signal
contribution (dotted magenta) and the combinatorial background (dashed blue) are shown.

J/ψ

ψ(2S) → µ+ µ−

ψ(2S) → J/ψ π+ π−

✘✘
J/ψ π+ π− , ✘
ψ(2S)

Momentum scale

0.34

0.19

0.15

0.26

Energy loss correction

0.03


0.02

0.06

0.07

Fit model

0.04

0.03

0.08

0.05

Sum in quadrature

0.34

0.19

0.18

0.27

Table 4.
Systematic uncertainties (in MeV/c2 ) on the Λ0b mass using the decay
0
modes

Λb → J/ψ pK− ,
Λ0b → ψ(2S)[→ µ+ µ− ]pK− ,
Λ0b → ψ(2S)[→ J/ψ π+ π− ]pK−
and
0
+ −

+ −
Λb → J/ψ π π pK with the J/ψ π π mass outside the ψ(2S) region.

system [47], which is known with an accuracy of 10% [48]. This effect is estimated by
varying the energy loss correction in the reconstruction by 10% and taking the observed
mass shift as an uncertainty. The uncertainty due to the fit model is estimated using
the same set of cross-check models for the signal and background parameterization as
considered in section 4, with the maximum deviation in the mass assigned as a systematic
uncertainty. The uncertainties on the masses of the J/ψ and ψ(2S) mesons [36] are small
and are therefore neglected.

As a cross-check, the data sample is divided into four parts, for data collected at s = 7
and 8TeV and with different magnet polarities. The measured masses are consistent among
these subsamples, and therefore no systematic uncertainty is assigned. To check the effect
of the selection criteria (see section 3), the high-yield Λ0b → J/ψ pK− decay channel is used.
No sizeable dependence of the mass on the selection criteria is observed and no additional
uncertainty is assigned.
The results from the four decay channels are presented in table 5. To combine them,
correlations must be taken into account. The statistical uncertainties and those related

– 10 –

JHEP05(2016)132


0

LHCb


M (Λ0b ) MeV/c2

Channel
Λ0b → J/ψ pK−

5619.62 ± 0.04 ± 0.34

Λ0b → ψ(2S)[→ µ+ µ− ]pK−
Λ0b →
Λ0b →

ψ(2S)[→

5619.84 ± 0.18 ± 0.19

J/ψ π+ π− ]pK−

J/ψ π+ π− pK− excluding ψ(2S)

5619.38 ± 0.33 ± 0.18
5619.08 ± 0.30 ± 0.27

Table 5. Measured Λ0b mass in different decay channels. The first uncertainty is statistical and the
second is systematic.


M (Λ0b ) = 5619.65 ± 0.17 ± 0.17 MeV/c2 ,

(5.1)

where the first uncertainty is statistical and the second systematic. The χ2 /ndf calculated
for the individual measurements with respect to the combined value is 3.0/3. This is the
most precise measurement of any b-hadron mass reported to date.
Previous direct measurements of the Λ0b mass by LHCb were made using the decay Λ0b → J/ψ Λ0 [23, 47] and are statistically independent of the results of this study.
The combination obtained here is consistent with, and more precise than, the results of
these earlier studies. The LHCb results are combined, taking the statistical uncertainties
and those related to the fit procedure to be uncorrelated and those due to the energy
loss correction to be fully correlated. The uncertainty due to the momentum scale in
ref. [23] is also taken to be fully correlated, whereas in ref. [47] a different alignment and
calibration procedure was used and so the corresponding uncertainty is considered to be
uncorrelated with the other measurements. The result of the combination is dominated by
the measurements of this analysis and is
M (Λ0b ) = 5619.65 ± 0.16 ± 0.14 MeV/c2 ,

(5.2)

where the uncertainties are statistical and systematic. The χ2 /ndf calculated for the individual measurements with respect to the combined value is 3.4/5. The measured mass is
in agreement with, but more precise than, the results of the ATLAS [49] and CDF [5] collaborations.
From the value of the Λ0b mass in eq. (5.2) and a precise measurement of the mass
difference between the Λ0b and B0 hadrons reported in ref. [7], the mass of the B0 meson is
calculated to be
M (B0 ) = 5279.93 ± 0.39 MeV/c2 ,

(5.3)


where the correlation of 41% between the LHCb measurements of the Λ0b mass and
the Λ0b –B0 mass splitting has been taken into account. This is in agreement with the current
world average of 5279.61 ± 0.16 MeV/c2 [36].

– 11 –

JHEP05(2016)132

to the fit procedure are treated as uncorrelated while those due to the momentum scale
and energy loss correction are considered to be fully correlated. The combined value of
the Λ0b mass is


6

Results and summary

The Λ0b → ψ(2S)pK− and Λ0b → J/ψ π+ π− pK− decay modes are observed using a sample of pp collisions at centre-of-mass energies of 7 and 8TeV, corresponding to an
integrated luminosity of 3 fb−1 . With results from the channels ψ(2S) → µ+ µ− and
ψ(2S) → J/ψ π+ π− combined, the ratio of branching fractions is measured:
Rψ(2S) =

B(Λ0b → ψ(2S)pK− )
= (20.70 ± 0.76 ± 0.46 ± 0.37) × 10−2 ,
B(Λ0b → J/ψ pK− )

RJ/ψ π

+ π−


=

B(Λ0b → J/ψ π+ π− pK− )
= (20.86 ± 0.96 ± 1.34) × 10−2 ,
B(Λ0b → J/ψ pK− )

where the first uncertainty is statistical, the second is systematic and contributions via
intermediate resonances are included.
From measurements of the ratio Rψ(2S) via two different decay modes of the ψ(2S) meson it is determined that
B(ψ(2S) → µ+ µ− )
= (2.30 ± 0.20 ± 0.12 ± 0.01) × 10−2 ,
B(ψ(2S) → J/ψ π+ π− )
where the first uncertainty is statistical, the second is systematic and the third is related
to the uncertainty on B(J/ψ → µ+ µ− ). This is the most precise direct measurement of
this ratio to date.
Using Λ0b → ψ(2S)pK− , Λ0b → J/ψ π+ π− pK− and Λ0b → J/ψ pK− decays, the mass of
the Λ0b baryon is measured to be
M (Λ0b ) = 5619.65 ± 0.17 ± 0.17 MeV/c2 ,
where the first uncertainty is statistical and the second is systematic. Combining this result
with previous LHCb measurements that used the channel Λ0b → J/ψ Λ0 [23, 47] gives
M (Λ0b ) = 5619.65 ± 0.16 ± 0.14 MeV/c2 ,

(6.1)

where the first uncertainty is statistical and the second is systematic. This is the most
precise determination of the mass of any b hadron to date.

Acknowledgments
We express our gratitude to our colleagues in the CERN accelerator departments
for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from


– 12 –

JHEP05(2016)132

where the first uncertainty is statistical, the second is systematic and the third is related
to the uncertainties of the known dielectron J/ψ and ψ(2S) branching fractions and of
the branching fraction of the ψ(2S) → J/ψ π+ π− decay. The ratio of branching fractions
for Λ0b → J/ψ π+ π− pK− and Λ0b → J/ψ pK− is


Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References
[1] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320]
[INSPIRE].
[2] A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys.
Cosmol., volume 10, Camrbidge University Press, Cambridge U.K. (2000).
[3] CDF collaboration, A. Abulencia et al., Measurement of


+ −
¯ 0 ) × BR(Λ0 → Λ+
¯0
σ(Λ0b )/σ(B
p collisions at s = 1.96 TeV, Phys.
c π )/BR(B → D π ) in p¯
b

Rev. Lett. 98 (2007) 122002 [hep-ex/0601003] [INSPIRE].
[4] D0 collaboration, V.M. Abazov et al., Measurement of the production fraction times
branching fraction f (b → Λb ) · B(Λb → J/ψΛ), Phys. Rev. D 84 (2011) 031102
[arXiv:1105.0690] [INSPIRE].
[5] CDF collaboration, T.A. Aaltonen et al., Mass and lifetime measurements of bottom and

charm baryons in p¯
p collisions at s = 1.96 TeV, Phys. Rev. D 89 (2014) 072014
[arXiv:1403.8126] [INSPIRE].

[6] LHCb collaboration, Studies of beauty baryon decays to D0 ph− and Λ+
c h final states, Phys.
Rev. D 89 (2014) 032001 [arXiv:1311.4823] [INSPIRE].

[7] LHCb collaboration, Study of beauty hadron decays into pairs of charm hadrons, Phys. Rev.
Lett. 112 (2014) 202001 [arXiv:1403.3606] [INSPIRE].
[8] LHCb collaboration, Observation of the Λ0b → J/ψpπ − decay, JHEP 07 (2014) 103
[arXiv:1406.0755] [INSPIRE].

– 13 –

JHEP05(2016)132

the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China);
CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and
NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES
and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine);
STFC (United Kingdom); NSF (U.S.A.).
We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany),
INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI

and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil),
PL-GRID (Poland) and OSC (U.S.A.).
We are indebted to the communities behind the multiple open source software packages on which we depend. Individual
groups or members have received support from AvH Foundation (Germany), EPLANET,
Marie Sklodowska-Curie Actions and ERC (European Union), Conseil G´en´eral de
Haute-Savoie, Labex ENIGMASS and OCEVU, R´egion Auvergne (France), RFBR and
Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund,
The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme
Trust (United Kingdom).


0

[9] LHCb collaboration, Study of the production of Λ0b and B hadrons in pp collisions and first
measurement of the Λ0b → J/ψpK − branching fraction, Chin. Phys. C 40 (2016) 011001
[arXiv:1509.00292] [INSPIRE].
0

[10] LHCb collaboration, Precision measurement of the ratio of the Λ0b to B lifetimes, Phys.
Lett. B 734 (2014) 122 [arXiv:1402.6242] [INSPIRE].
[11] LHCb collaboration, Precision measurement of the mass and lifetime of the Ξ−
b baryon,
Phys. Rev. Lett. 113 (2014) 242002 [arXiv:1409.8568] [INSPIRE].

[13] LHCb collaboration, Measurement of relative branching fractions of B decays to ψ(2S) and
J/ψ mesons, Eur. Phys. J. C 72 (2012) 2118 [arXiv:1205.0918] [INSPIRE].
0
[14] LHCb collaboration, Observations of Bs0 → ψ(2S)η and B(s)
→ ψ(2S)π + π − decays, Nucl.
Phys. B 871 (2013) 403 [arXiv:1302.6354] [INSPIRE].


[15] LHCb collaboration, Observation of Bs0 → χc1 φ decay and study of B 0 → χc1,2 K ∗0 decays,
Nucl. Phys. B 874 (2013) 663 [arXiv:1305.6511] [INSPIRE].

[16] LHCb collaboration, Measurement of Bc+ production in proton-proton collisions at s = 8
TeV, Phys. Rev. Lett. 114 (2015) 132001 [arXiv:1411.2943] [INSPIRE].
0
[17] LHCb collaboration, Study of η − η mixing from measurement of B(s)
→ J/ψη ( ) decay rates,
JHEP 01 (2015) 024 [arXiv:1411.0943] [INSPIRE].

[18] LHCb collaboration, Measurement of the branching fraction ratio
B(Bc+ → ψ(2S)π + )/B(Bc+ → J/ψπ + ), Phys. Rev. D 92 (2015) 072007 [arXiv:1507.03516]
[INSPIRE].
[19] ATLAS collaboration, Measurement of the branching ratio
Γ(Λ0b → ψ(2S)Λ0 )/Γ(Λ0b → J/ψΛ0 ) with the ATLAS detector, Phys. Lett. B 751 (2015) 63
[arXiv:1507.08202] [INSPIRE].
[20] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
[21] LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022
[arXiv:1412.6352] [INSPIRE].
[22] R. Aaij et al., Performance of the LHCb vertex locator, 2014 JINST 9 09007
[arXiv:1405.7808] [INSPIRE].

[23] LHCb collaboration, Measurement of the Λ0b , Ξ−
b and Ωb baryon masses, Phys. Rev. Lett.
110 (2013) 182001 [arXiv:1302.1072] [INSPIRE].

[24] R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022
[arXiv:1211.3055] [INSPIRE].
[25] T. Sj¨

ostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05
(2006) 026 [hep-ph/0603175] [INSPIRE].
[26] T. Sj¨
ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput.
Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
[27] LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb
simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

– 14 –

JHEP05(2016)132

[12] LHCb collaboration, Observation of J/ψp resonances consistent with pentaquark states in
Λ0b → J/ψK − p decays, Phys. Rev. Lett. 115 (2015) 072001 [arXiv:1507.03414] [INSPIRE].


[28] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462
(2001) 152 [INSPIRE].
[29] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z
and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
[30] Geant4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE
Trans. Nucl. Sci. 53 (2006) 270.
[31] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum.
Meth. A 506 (2003) 250 [INSPIRE].

[33] LHCb collaboration, Evidence for the decay Bc+ → J/ψ3π + 2π − , JHEP 05 (2014) 148
[arXiv:1404.0287] [INSPIRE].
[34] LHCb RICH Group collaboration, M. Adinolfi et al., Performance of the LHCb RICH
detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
[35] F. Archilli et al., Performance of the muon identification at LHCb, 2013 JINST 8 P10020

[arXiv:1306.0249] [INSPIRE].
[36] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin.
Phys. C 38 (2014) 090001 [INSPIRE].
[37] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552
(2005) 566 [physics/0503191] [INSPIRE].
[38] T. Skwarnicki, A study of the radiative cascade transitions between the Υ and Υ resonances,
Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986), DESY-F31-86-02
[INSPIRE].

[39] LHCb collaboration, Observation of J/ψ pair production in pp collisions at s = 7T eV ,
Phys. Lett. B 707 (2012) 52 [arXiv:1109.0963] [INSPIRE].
[40] M. Pivk and F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions, Nucl.
Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].
[41] LHCb collaboration, Measurement of the track reconstruction efficiency at LHCb, 2015
JINST 10 P02007 [arXiv:1408.1251] [INSPIRE].
[42] BaBar collaboration, J.P. Lees et al., Branching fraction measurements of the
¯ 0 → D(∗)0 π 0 , D(∗)0 η, D(∗)0 ω and D(∗)0 η and measurement of the
color-suppressed decays B
¯ 0 → D∗0 ω, Phys. Rev. D 84 (2011) 112007 [arXiv:1107.5751]
polarization in the decay B
[INSPIRE].
[43] D. Mart´ınez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors,
Nucl. Instrum. Meth. A 764 (2014) 150 [arXiv:1312.5000] [INSPIRE].
[44] E672 and E706 collaborations, A. Gribushin et al., Production of J/ψ and ψ(2S) mesons in
π − Be collisions at 515 GeV/c, FERMILAB-PUB-95-298 (1995).
[45] BaBar collaboration, B. Aubert et al., Measurement of the branching fractions for
ψ(2S) → e+ e− and ψ(2S) → µ+ µ− , Phys. Rev. D 65 (2002) 031101 [hep-ex/0109004]
[INSPIRE].
[46] LHCb collaboration, Precision measurement of D meson mass differences, JHEP 06 (2013)
065 [arXiv:1304.6865] [INSPIRE].


– 15 –

JHEP05(2016)132

[32] LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and
experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].


[47] LHCb collaboration, Measurement of b-hadron masses, Phys. Lett. B 708 (2012) 241
[arXiv:1112.4896] [INSPIRE].

[48] LHCb collaboration, Prompt Ks0 production in pp collisions at s = 0.9 TeV, Phys. Lett. B
693 (2010) 69 [arXiv:1008.3105] [INSPIRE].
[49] ATLAS collaboration, Measurement of the Λ0b lifetime and mass in the ATLAS experiment,
Phys. Rev. D 87 (2013) 032002 [arXiv:1207.2284] [INSPIRE].

JHEP05(2016)132

– 16 –


The LHCb collaboration

– 17 –

JHEP05(2016)132

R. Aaij39 , C. Abell´an Beteta41 , B. Adeva38 , M. Adinolfi47 , A. Affolder53 , Z. Ajaltouni5 , S. Akar6 ,
J. Albrecht10 , F. Alessio39 , M. Alexander52 , S. Ali42 , G. Alkhazov31 , P. Alvarez Cartelle54 ,

A.A. Alves Jr58 , S. Amato2 , S. Amerio23 , Y. Amhis7 , L. An3,40 , L. Anderlini18 , G. Andreassi40 ,
M. Andreotti17,g , J.E. Andrews59 , R.B. Appleby55 , O. Aquines Gutierrez11 , F. Archilli39 ,
P. d’Argent12 , A. Artamonov36 , M. Artuso60 , E. Aslanides6 , G. Auriemma26,n , M. Baalouch5 ,
S. Bachmann12 , J.J. Back49 , A. Badalov37 , C. Baesso61 , W. Baldini17,39 , R.J. Barlow55 ,
C. Barschel39 , S. Barsuk7 , W. Barter39 , V. Batozskaya29 , V. Battista40 , A. Bay40 , L. Beaucourt4 ,
J. Beddow52 , F. Bedeschi24 , I. Bediaga1 , L.J. Bel42 , V. Bellee40 , N. Belloli21,k , I. Belyaev32 ,
E. Ben-Haim8 , G. Bencivenni19 , S. Benson39 , J. Benton47 , A. Berezhnoy33 , R. Bernet41 ,
A. Bertolin23 , F. Betti15 , M.-O. Bettler39 , M. van Beuzekom42 , S. Bifani46 , P. Billoir8 , T. Bird55 ,
A. Birnkraut10 , A. Bizzeti18,i , T. Blake49 , F. Blanc40 , J. Blouw11 , S. Blusk60 , V. Bocci26 ,
A. Bondar35 , N. Bondar31,39 , W. Bonivento16 , A. Borgheresi21,k , S. Borghi55 , M. Borisyak67 ,
M. Borsato38 , T.J.V. Bowcock53 , E. Bowen41 , C. Bozzi17,39 , S. Braun12 , M. Britsch12 ,
T. Britton60 , J. Brodzicka55 , N.H. Brook47 , E. Buchanan47 , C. Burr55 , A. Bursche2 ,
J. Buytaert39 , S. Cadeddu16 , R. Calabrese17,g , M. Calvi21,k , M. Calvo Gomez37,p , P. Campana19 ,
D. Campora Perez39 , L. Capriotti55 , A. Carbone15,e , G. Carboni25,l , R. Cardinale20,j ,
A. Cardini16 , P. Carniti21,k , L. Carson51 , K. Carvalho Akiba2 , G. Casse53 , L. Cassina21,k ,
L. Castillo Garcia40 , M. Cattaneo39 , Ch. Cauet10 , G. Cavallero20 , R. Cenci24,t , M. Charles8 ,
Ph. Charpentier39 , G. Chatzikonstantinidis46 , M. Chefdeville4 , S. Chen55 , S.-F. Cheung56 ,
N. Chiapolini41 , M. Chrzaszcz41,27 , X. Cid Vidal39 , G. Ciezarek42 , P.E.L. Clarke51 ,
M. Clemencic39 , H.V. Cliff48 , J. Closier39 , V. Coco39 , J. Cogan6 , E. Cogneras5 , V. Cogoni16,f ,
L. Cojocariu30 , G. Collazuol23,r , P. Collins39 , A. Comerma-Montells12 , A. Contu39 , A. Cook47 ,
M. Coombes47 , S. Coquereau8 , G. Corti39 , M. Corvo17,g , B. Couturier39 , G.A. Cowan51 ,
D.C. Craik51 , A. Crocombe49 , M. Cruz Torres61 , S. Cunliffe54 , R. Currie54 , C. D’Ambrosio39 ,
E. Dall’Occo42 , J. Dalseno47 , P.N.Y. David42 , A. Davis58 , O. De Aguiar Francisco2 ,
K. De Bruyn6 , S. De Capua55 , M. De Cian12 , J.M. De Miranda1 , L. De Paula2 , P. De Simone19 ,
C.-T. Dean52 , D. Decamp4 , M. Deckenhoff10 , L. Del Buono8 , N. D´el´eage4 , M. Demmer10 ,
D. Derkach67 , O. Deschamps5 , F. Dettori39 , B. Dey22 , A. Di Canto39 , F. Di Ruscio25 ,
H. Dijkstra39 , S. Donleavy53 , F. Dordei39 , M. Dorigo40 , A. Dosil Su´arez38 , A. Dovbnya44 ,
K. Dreimanis53 , L. Dufour42 , G. Dujany55 , K. Dungs39 , P. Durante39 , R. Dzhelyadin36 ,
A. Dziurda27 , A. Dzyuba31 , S. Easo50,39 , U. Egede54 , V. Egorychev32 , S. Eidelman35 ,
S. Eisenhardt51 , U. Eitschberger10 , R. Ekelhof10 , L. Eklund52 , I. El Rifai5 , Ch. Elsasser41 ,

S. Ely60 , S. Esen12 , H.M. Evans48 , T. Evans56 , A. Falabella15 , C. F¨arber39 , N. Farley46 ,
S. Farry53 , R. Fay53 , D. Fazzini21,k , D. Ferguson51 , V. Fernandez Albor38 , F. Ferrari15 ,
F. Ferreira Rodrigues1 , M. Ferro-Luzzi39 , S. Filippov34 , M. Fiore17,39,g , M. Fiorini17,g , M. Firlej28 ,
C. Fitzpatrick40 , T. Fiutowski28 , F. Fleuret7,b , K. Fohl39 , M. Fontana16 , F. Fontanelli20,j , D.
C. Forshaw60 , R. Forty39 , M. Frank39 , C. Frei39 , M. Frosini18 , J. Fu22 , E. Furfaro25,l ,
A. Gallas Torreira38 , D. Galli15,e , S. Gallorini23 , S. Gambetta51 , M. Gandelman2 , P. Gandini56 ,
Y. Gao3 , J. Garc´ıa Pardi˜
nas38 , J. Garra Tico48 , L. Garrido37 , D. Gascon37 , C. Gaspar39 ,
10
L. Gavardi , G. Gazzoni5 , D. Gerick12 , E. Gersabeck12 , M. Gersabeck55 , T. Gershon49 ,
Ph. Ghez4 , S. Gian`ı40 , V. Gibson48 , O.G. Girard40 , L. Giubega30 , V.V. Gligorov39 , C. G¨obel61 ,
D. Golubkov32 , A. Golutvin54,39 , A. Gomes1,a , C. Gotti21,k , M. Grabalosa G´andara5 ,
R. Graciani Diaz37 , L.A. Granado Cardoso39 , E. Graug´es37 , E. Graverini41 , G. Graziani18 ,
A. Grecu30 , P. Griffith46 , L. Grillo12 , O. Gr¨
unberg65 , B. Gui60 , E. Gushchin34 , Yu. Guz36,39 ,
T. Gys39 , T. Hadavizadeh56 , C. Hadjivasiliou60 , G. Haefeli40 , C. Haen39 , S.C. Haines48 , S. Hall54 ,
B. Hamilton59 , X. Han12 , S. Hansmann-Menzemer12 , N. Harnew56 , S.T. Harnew47 , J. Harrison55 ,


– 18 –

JHEP05(2016)132

J. He39 , T. Head40 , V. Heijne42 , A. Heister9 , K. Hennessy53 , P. Henrard5 , L. Henry8 ,
J.A. Hernando Morata38 , E. van Herwijnen39 , M. Heß65 , A. Hicheur2 , D. Hill56 , M. Hoballah5 ,
C. Hombach55 , L. Hongming40 , W. Hulsbergen42 , T. Humair54 , M. Hushchyn67 , N. Hussain56 ,
D. Hutchcroft53 , M. Idzik28 , P. Ilten57 , R. Jacobsson39 , A. Jaeger12 , J. Jalocha56 , E. Jans42 ,
A. Jawahery59 , M. John56 , D. Johnson39 , C.R. Jones48 , C. Joram39 , B. Jost39 , N. Jurik60 ,
S. Kandybei44 , W. Kanso6 , M. Karacson39 , T.M. Karbach39,† , S. Karodia52 , M. Kecke12 ,
M. Kelsey60 , I.R. Kenyon46 , M. Kenzie39 , T. Ketel43 , E. Khairullin67 , B. Khanji21,39,k ,

C. Khurewathanakul40 , T. Kirn9 , S. Klaver55 , K. Klimaszewski29 , O. Kochebina7 , M. Kolpin12 ,
I. Komarov40 , R.F. Koopman43 , P. Koppenburg42,39 , M. Kozeiha5 , L. Kravchuk34 , K. Kreplin12 ,
M. Kreps49 , P. Krokovny35 , F. Kruse10 , W. Krzemien29 , W. Kucewicz27,o , M. Kucharczyk27 ,
V. Kudryavtsev35 , A. K. Kuonen40 , K. Kurek29 , T. Kvaratskheliya32 , D. Lacarrere39 ,
G. Lafferty55,39 , A. Lai16 , D. Lambert51 , G. Lanfranchi19 , C. Langenbruch49 , B. Langhans39 ,
T. Latham49 , C. Lazzeroni46 , R. Le Gac6 , J. van Leerdam42 , J.-P. Lees4 , R. Lef`evre5 ,
A. Leflat33,39 , J. Lefran¸cois7 , E. Lemos Cid38 , O. Leroy6 , T. Lesiak27 , B. Leverington12 , Y. Li7 ,
T. Likhomanenko67,66 , M. Liles53 , R. Lindner39 , C. Linn39 , F. Lionetto41 , B. Liu16 , X. Liu3 ,
D. Loh49 , I. Longstaff52 , J.H. Lopes2 , D. Lucchesi23,r , M. Lucio Martinez38 , H. Luo51 ,
A. Lupato23 , E. Luppi17,g , O. Lupton56 , N. Lusardi22 , A. Lusiani24 , F. Machefert7 , F. Maciuc30 ,
O. Maev31 , K. Maguire55 , S. Malde56 , A. Malinin66 , G. Manca7 , G. Mancinelli6 , P. Manning60 ,
A. Mapelli39 , J. Maratas5 , J.F. Marchand4 , U. Marconi15 , C. Marin Benito37 , P. Marino24,39,t ,
J. Marks12 , G. Martellotti26 , M. Martin6 , M. Martinelli40 , D. Martinez Santos38 ,
F. Martinez Vidal68 , D. Martins Tostes2 , L.M. Massacrier7 , A. Massafferri1 , R. Matev39 ,
A. Mathad49 , Z. Mathe39 , C. Matteuzzi21 , A. Mauri41 , B. Maurin40 , A. Mazurov46 , M. McCann54 ,
J. McCarthy46 , A. McNab55 , R. McNulty13 , B. Meadows58 , F. Meier10 , M. Meissner12 ,
D. Melnychuk29 , M. Merk42 , A Merli22,u , E Michielin23 , D.A. Milanes64 , M.-N. Minard4 ,
D.S. Mitzel12 , J. Molina Rodriguez61 , I.A. Monroy64 , S. Monteil5 , M. Morandin23 , P. Morawski28 ,
A. Mord`
a6 , M.J. Morello24,t , J. Moron28 , A.B. Morris51 , R. Mountain60 , F. Muheim51 ,
D. M¨
uller55 , J. M¨
uller10 , K. M¨
uller41 , V. M¨
uller10 , M. Mussini15 , B. Muster40 , P. Naik47 ,
40
50
56
T. Nakada , R. Nandakumar , A. Nandi , I. Nasteva2 , M. Needham51 , N. Neri22 , S. Neubert12 ,
N. Neufeld39 , M. Neuner12 , A.D. Nguyen40 , C. Nguyen-Mau40,q , V. Niess5 , S. Nieswand9 ,

R. Niet10 , N. Nikitin33 , T. Nikodem12 , A. Novoselov36 , D.P. O’Hanlon49 , A. Oblakowska-Mucha28 ,
V. Obraztsov36 , S. Ogilvy52 , O. Okhrimenko45 , R. Oldeman16,48,f , C.J.G. Onderwater69 ,
B. Osorio Rodrigues1 , J.M. Otalora Goicochea2 , A. Otto39 , P. Owen54 , A. Oyanguren68 ,
A. Palano14,d , F. Palombo22,u , M. Palutan19 , J. Panman39 , A. Papanestis50 , M. Pappagallo52 ,
L.L. Pappalardo17,g , C. Pappenheimer58 , W. Parker59 , C. Parkes55 , G. Passaleva18 , G.D. Patel53 ,
M. Patel54 , C. Patrignani20,j , A. Pearce55,50 , A. Pellegrino42 , G. Penso26,m , M. Pepe Altarelli39 ,
S. Perazzini15,e , P. Perret5 , L. Pescatore46 , K. Petridis47 , A. Petrolini20,j , M. Petruzzo22 ,
E. Picatoste Olloqui37 , B. Pietrzyk4 , M. Pikies27 , D. Pinci26 , A. Pistone20 , A. Piucci12 ,
S. Playfer51 , M. Plo Casasus38 , T. Poikela39 , F. Polci8 , A. Poluektov49,35 , I. Polyakov32 ,
E. Polycarpo2 , A. Popov36 , D. Popov11,39 , B. Popovici30 , C. Potterat2 , E. Price47 , J.D. Price53 ,
J. Prisciandaro38 , A. Pritchard53 , C. Prouve47 , V. Pugatch45 , A. Puig Navarro40 , G. Punzi24,s ,
W. Qian56 , R. Quagliani7,47 , B. Rachwal27 , J.H. Rademacker47 , M. Rama24 , M. Ramos Pernas38 ,
M.S. Rangel2 , I. Raniuk44 , G. Raven43 , F. Redi54 , S. Reichert55 , A.C. dos Reis1 , V. Renaudin7 ,
S. Ricciardi50 , S. Richards47 , M. Rihl39 , K. Rinnert53,39 , V. Rives Molina37 , P. Robbe7,39 ,
A.B. Rodrigues1 , E. Rodrigues55 , J.A. Rodriguez Lopez64 , P. Rodriguez Perez55 ,
A. Rogozhnikov67 , S. Roiser39 , V. Romanovsky36 , A. Romero Vidal38 , J. W. Ronayne13 ,
M. Rotondo23 , T. Ruf39 , P. Ruiz Valls68 , J.J. Saborido Silva38 , N. Sagidova31 , B. Saitta16,f ,
V. Salustino Guimaraes2 , C. Sanchez Mayordomo68 , B. Sanmartin Sedes38 , R. Santacesaria26 ,
C. Santamarina Rios38 , M. Santimaria19 , E. Santovetti25,l , A. Sarti19,m , C. Satriano26,n ,


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Centro Brasileiro de Pesquisas F´ısicas (CBPF), Rio de Janeiro, Brazil
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Center for High Energy Physics, Tsinghua University, Beijing, China
LAPP, Universit´e Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
Clermont Universit´e, Universit´e Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille, France
LAL, Universit´e Paris-Sud, CNRS/IN2P3, Orsay, France
LPNHE, Universit´e Pierre et Marie Curie, Universit´e Paris Diderot, CNRS/IN2P3, Paris, France
I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Fakult¨
at Physik, Technische Universit¨
at Dortmund, Dortmund, Germany
Max-Planck-Institut f¨
ur Kernphysik (MPIK), Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universit¨
at Heidelberg, Heidelberg, Germany
School of Physics, University College Dublin, Dublin, Ireland

Sezione INFN di Bari, Bari, Italy
Sezione INFN di Bologna, Bologna, Italy
Sezione INFN di Cagliari, Cagliari, Italy
Sezione INFN di Ferrara, Ferrara, Italy
Sezione INFN di Firenze, Firenze, Italy
Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
Sezione INFN di Genova, Genova, Italy
Sezione INFN di Milano Bicocca, Milano, Italy

– 19 –

JHEP05(2016)132

A. Satta25 , D.M. Saunders47 , D. Savrina32,33 , S. Schael9 , M. Schiller39 , H. Schindler39 ,
M. Schlupp10 , M. Schmelling11 , T. Schmelzer10 , B. Schmidt39 , O. Schneider40 , A. Schopper39 ,
M. Schubiger40 , M.-H. Schune7 , R. Schwemmer39 , B. Sciascia19 , A. Sciubba26,m , A. Semennikov32 ,
A. Sergi46 , N. Serra41 , J. Serrano6 , L. Sestini23 , P. Seyfert21 , M. Shapkin36 , I. Shapoval17,44,g ,
Y. Shcheglov31 , T. Shears53 , L. Shekhtman35 , V. Shevchenko66 , A. Shires10 , B.G. Siddi17 ,
R. Silva Coutinho41 , L. Silva de Oliveira2 , G. Simi23,s , M. Sirendi48 , N. Skidmore47 ,
T. Skwarnicki60 , E. Smith54 , I.T. Smith51 , J. Smith48 , M. Smith55 , H. Snoek42 , M.D. Sokoloff58,39 ,
F.J.P. Soler52 , F. Soomro40 , D. Souza47 , B. Souza De Paula2 , B. Spaan10 , P. Spradlin52 ,
S. Sridharan39 , F. Stagni39 , M. Stahl12 , S. Stahl39 , S. Stefkova54 , O. Steinkamp41 , O. Stenyakin36 ,
S. Stevenson56 , S. Stoica30 , S. Stone60 , B. Storaci41 , S. Stracka24,t , M. Straticiuc30 ,
U. Straumann41 , L. Sun58 , W. Sutcliffe54 , K. Swientek28 , S. Swientek10 , V. Syropoulos43 ,
M. Szczekowski29 , T. Szumlak28 , S. T’Jampens4 , A. Tayduganov6 , T. Tekampe10 , G. Tellarini17,g ,
F. Teubert39 , C. Thomas56 , E. Thomas39 , J. van Tilburg42 , V. Tisserand4 , M. Tobin40 , J. Todd58 ,
S. Tolk43 , L. Tomassetti17,g , D. Tonelli39 , S. Topp-Joergensen56 , E. Tournefier4 , S. Tourneur40 ,
K. Trabelsi40 , M. Traill52 , M.T. Tran40 , M. Tresch41 , A. Trisovic39 , A. Tsaregorodtsev6 ,
P. Tsopelas42 , N. Tuning42,39 , A. Ukleja29 , A. Ustyuzhanin67,66 , U. Uwer12 , C. Vacca16,39,f ,
V. Vagnoni15 , G. Valenti15 , A. Vallier7 , R. Vazquez Gomez19 , P. Vazquez Regueiro38 ,

C. V´
azquez Sierra38 , S. Vecchi17 , M. van Veghel42 , J.J. Velthuis47 , M. Veltri18,h , G. Veneziano40 ,
M. Vesterinen12 , B. Viaud7 , D. Vieira2 , M. Vieites Diaz38 , X. Vilasis-Cardona37,p , V. Volkov33 ,
A. Vollhardt41 , D. Voong47 , A. Vorobyev31 , V. Vorobyev35 , C. Voß65 , J.A. de Vries42 , R. Waldi65 ,
C. Wallace49 , R. Wallace13 , J. Walsh24 , J. Wang60 , D.R. Ward48 , N.K. Watson46 , D. Websdale54 ,
A. Weiden41 , M. Whitehead39 , J. Wicht49 , G. Wilkinson56,39 , M. Wilkinson60 , M. Williams39 ,
M.P. Williams46 , M. Williams57 , T. Williams46 , F.F. Wilson50 , J. Wimberley59 , J. Wishahi10 ,
W. Wislicki29 , M. Witek27 , G. Wormser7 , S.A. Wotton48 , K. Wraight52 , S. Wright48 , K. Wyllie39 ,
Y. Xie63 , Z. Xu40 , Z. Yang3 , H. Yin63 , J. Yu63 , X. Yuan35 , O. Yushchenko36 , M. Zangoli15 ,
M. Zavertyaev11,c , L. Zhang3 , Y. Zhang3 , A. Zhelezov12 , Y. Zheng62 , A. Zhokhov32 , L. Zhong3 ,
V. Zhukov9 , S. Zucchelli15


22
23
24
25
26
27
28

29
30

32
33
34
35

36

37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63


64
65
66
67

– 20 –

JHEP05(2016)132

31

Sezione INFN di Milano, Milano, Italy
Sezione INFN di Padova, Padova, Italy
Sezione INFN di Pisa, Pisa, Italy
Sezione INFN di Roma Tor Vergata, Roma, Italy
Sezione INFN di Roma La Sapienza, Roma, Italy
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krak´
ow, Poland
AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,
Krak´
ow, Poland
National Center for Nuclear Research (NCBJ), Warsaw, Poland
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele,
Romania
Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk,
Russia

Institute for High Energy Physics (IHEP), Protvino, Russia
Universitat de Barcelona, Barcelona, Spain
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universit¨
at Z¨
urich, Z¨
urich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Pontif´ıcia Universidade Cat´

olica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil,
associated to2
University of Chinese Academy of Sciences, Beijing, China, associated to 3
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China,
associated to3
Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 8
Institut f¨
ur Physik, Universit¨
at Rostock, Rostock, Germany, associated to 12
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 32
Yandex School of Data Analysis, Moscow, Russia, associated to32


68

69

a
b
c
d
e
f
g

i
j
k
l
m

n
o

p
q
r
s
t
u

Universidade Federal do Triˆ
angulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Universit`
a di Bari, Bari, Italy
Universit`
a di Bologna, Bologna, Italy
Universit`
a di Cagliari, Cagliari, Italy
Universit`
a di Ferrara, Ferrara, Italy
Universit`
a di Urbino, Urbino, Italy
Universit`
a di Modena e Reggio Emilia, Modena, Italy
Universit`
a di Genova, Genova, Italy
Universit`
a di Milano Bicocca, Milano, Italy

Universit`
a di Roma Tor Vergata, Roma, Italy
Universit`
a di Roma La Sapienza, Roma, Italy
Universit`
a della Basilicata, Potenza, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krak´
ow, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Universit`
a di Padova, Padova, Italy
Universit`
a di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Universit`
a degli Studi di Milano, Milano, Italy † Deceased

– 21 –

JHEP05(2016)132

h

Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain,
associated to37
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 42




×