Tải bản đầy đủ (.pdf) (301 trang)

BẢNG TÍNH SÀN GIẢM TẢI LỘ TẺ RẠCH SỎI MẪU

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (6.1 MB, 301 trang )

ECONOMIC DEVELOPMENT
COOPERATION FUND
KOREA

Socialist Republic of Vietnam – Ministry of Transport (MOT) – Cuu Long CIPM
Lo Te – Rach Soi Highway Construction Project
August, 2015
PACKAGE CW1: KM02+104.11 – KM26+275.00
DETAILED DESIGN
Part III: Calculation Sheets – Volume 2: Soft Soil Treatment – 2.1: Pile Slab

LO TE – RACH SOI HIGHWAY CONSTRUCTION PROJECT

MINISTRY OF TRANSPORT
VIET NAM

LO TE – RACH SOI HIGHWAY CONSTRUCTION PROJECT
PACKAGE CW1: KM02+104.11 – KM26+275.00

DETAILED DESIGN
PART III: CALCULATION SHEETS

VOLUME 2: SOFT SOIL TREATMENT
2.1: PILE SLAB
August, 2015

CUU LONG CIPM
JOINT VENTURE OF
DASAN CONSULTANTS CO., LTD.
AND PYUNGHWA ENGINEERING CONSULTANTS LTD.



The Socialist Republic of Vietnam
Ministry of Transport (MOT)
Cuu Long CIPM
PACKAGE CW1: KM02+104.11 – KM26+275.00

DETAILED DESIGN
PART III: CALCULATION SHEETS

VOLUME 2: SOFT SOIL TREATMENT
2.1: PILE SLAB
This Document is revised and updated in accordance with the
Decisions no. 2809/QĐ-BGTVT dated on 05 August 2015

LO TE – RACH SOI HIGHWAY CONSTRUCTION PROJECT
Contract No.121/CIPM-HD

Name

Position

Signature

Date

Approved by

Wan Hyoung CHO

Project Manager


August, 2015

Checked by

Kwang Cheol LEE

Sr. Geotechnical Engineer

August, 2015

Prepared by

Do Thanh TUNG

Sr. Geotechnical Engineer

August, 2015

Viet Nam

Joint Venture:
DASAN Consultants Co., Ltd.
Geosong B/D, 5-66, Gumijungang-ro 42-gil,
Gumi-si, Gyengsangbuk-do, Korea
PYUNGHWA Engineering Consultants Ltd.
454, Gwanak-daero, Dongan-gu, Anyang-si,
Gyeonggi-do, Korea

Lo Te – Rach Soi Highway

Construction Project
(LTRS)

Calculation Sheets
August, 2015


Joint Venture
DASAN CONSULTANTS CO., LTD

PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT

Lo Te – Rach Soi Highway Construction Project

STAGE

DETAILED DESIGN

CONTENT

CALCULATION RESULT FOR PILE SLAB

No.

Bridge Name

1

BO AO


2

DOC DINH

3

SUA DUA

4

HAI PHO

5

TON CHAT

6

LY CHIEU

7

BON TONG

8

LANG SEN

9


THANH QUOI

10

QUAN HEN

11

QUAN BIEU

12

THAY KY

Abutment
A1
A2
A1
A2
A1
A2
A1
A2
A1
A2
A1
A2
A1
A2

A1
A2
A1
A2
A1
A2
A1
A2
A1
A2

Station
Start

End

km2+355

km2+375

km2+431

km2+451

km5+406

km5+431

km5+492


km5+512

km8+457

km8+477

km8+533

km8+543

km9+490

km9+505

km9+556

km9+576

km10+562

km10+572

km10+618

km10+648

km13+393

km13+418


km13+479

km13+499

km14+406

km14+416

km14+951

km14+981

km15+934

km15+949

km16+007

km16+027

km17+456

km17+471

km17+522

km17+542

km21+081


km21+096

km21+154

km21+184

km24+649

km24+669

km24+730

km24+750

km25+399

km25+419

km25+487

km25+517

HE
4.34
4.34
4.34
4.34
4.45
4.45
3.82

3.82
3.39
4.39
4.19
4.19
4.04
5.03
4.64
4.64
4.13
4.63
4.28
4.28
4.01
4.01
4.03
4.03

Slab length
FS
DD
20
20
20
20
20
25
20
25
10

20
10
20
20
15
20
15
30
10
30
10
20
25
20
25
30
10
30
15
20
15
20
15
20
15
20
15
30
15
30

15
20
20
20
20
30
20
30
20

Pile
length
30
31
26
29
31
31
30
29
29
30
28
30
26
25
29
27
21
26

20
26
28
25
30
29

Xn
2.20
2.20
2.20
2.20
2.20
2.20
2.30
2.30
2.40
2.20
2.20
2.20
2.30
2.10
2.10
2.10
2.20
2.10
2.20
2.20
2.30
2.30

2.30
2.30

Spacing
Yn
Xn
2.20 2.20
2.20 2.20
2.20 2.20
2.20 2.20
2.20 2.20
2.20 2.20
2.30 2.30
2.30 2.30
2.40 2.40
2.20 2.20
2.20 2.20
2.20 2.20
2.30 2.30
2.10 2.10
2.10 2.10
2.10 2.10
2.20 2.20
2.10 2.10
2.20 2.20
2.20 2.20
2.30 2.30
2.30 2.30
2.30 2.30
2.30 2.30


Yn
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00

Bore hole
BA1-VST
BA2

DD-FS
DD1-VST
SD-FS
SD7
HP-FS
HP1-VST
TC4
TC-FS
LC-FS
LC1-VST
BT1-VST
BT13-VST
LS-FS
LS4
TQ-FS
TQ1-VST
QH-FS
QH4
QB-FS
QB1-VST
TK4
TK-FS

Internal Bearing Settlemen
force
capacity
t
595.37
618.44
48.65

595.37
644.01
43.68
588.38
649.22
37.28
588.38
590.19
40.91
609.41
624.45
65.53
609.41
646.35
70.18
599.98
624.08
61.87
599.98
601.77
71.67
623.32
642.25
53.29
637.02
650.90
61.16
571.82
629.90
63.98

571.82
595.44
67.54
644.13
677.04
49.03
615.36
670.86
46.06
584.87
622.79
64.68
584.87
832.93
60.75
584.13
610.05
53.31
583.84
585.49
42.35
602.57
632.34
52.89
602.57
628.96
48.82
612.10
616.50
41.73

612.10
668.73
56.11
608.88
653.15
20.55
608.88
829.98
27.29

Check
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.
O.K.

O.K.
O.K.
O.K.
O.K.
O.K.


Joint Venture:
DASAN CONSULTANTS CO., LTD
PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT
STAGE
CONTENT
BRIDGE
STATION
STANDARD

Lo Te – Rach Soi Highway Construction Project
DETAILED DESIGN
CALCULATION FOR PILE SLAB (PS)
BO AO BRIDGE
A_1: (KM2+355 ~ KM2+375 )
& A_2: (KM2+431 ~ KM2+451 )
22TCN-272-05

DIMENSIONS:
Content

Symbol


Value

Unit

WE

12.0

m

• Top abument elevations:
• Gradient:
• Density:
• Slope of talus:
• Thickness of pavement:
• Unit weight of structure:

Cm
i
γs
m
Δlp
γlp

6.86
1.05
18.0
1/2
0.550
22.5


m
%
kN/m³

• Top PS elevations:
• PS length:
• PS width:

Cs
Ls
W s1

2.50
20.00
29.36

m
m
m

• PS width:

W s2

28.52

m

• PS area:


♦ Embankment:
• Width of road surface:

m
kN/m³

• Pile slab:

As

578.80



• PS thickness:
• Concrete pile:
• Pile diameter:

ds

0.30

m

dc

0.40

m


• Pile thickness:

tc

0.075

m

Page 1


OUTLINE DRAWING
GENERAL VIEW OF PILE SLAB:

CROSS SECTION

Bmđ

Embankment
Geotextile
Pile PHC D=40cm

Embankment

ds

Bs

Geotextile


Pile PHC D=40cm

xn@yn

PILING PLAN

Bs
xn@yn
Y

a1

a1

b
xn@yn

Ls

1

2

3

4

5


6

7

8

9

10

11

12

13

14

15

16

17

18

19

20


21

22

23

24

`

0

X

b
a2

xn@yn
Bs

a2

LOADS:
A- LIVE LOADS:
• HL93
Page 2


* Design truck or design tandem, Or
* Design lane load.

• Pedestrian loads
• Distribution load:
* Number
* Lane factor m
LIVE LOAD

=
=

3.0 Lane
0.85
HL93 Properties

Symbol

Value

Unit:

P1

35

kN

P2

145

kN


P3

145

kN

V1

4.3

m

V2

4.3

m

DESIGN TRUCK

OUTLINE DRAWING

V2

V1

TANDEM

LANES LOAD


P1

110

kN

P2

110

kN

d
PL

1.2

m

3.0

m

WL

9.3

kN/m


P1

P2

P3
P2

d

P1

WL

• Calculation the live loads distribution for PS:
• Lanes load
The design lane load shall consist, uniformly distributed in the longitudinal direction:

Tranverely width:
• Distribution load per area of PS:
• Truck loads:
• Distribution load per area of PS:
• For the design truck
• For the design tandem
B- DEAD LOADS:
• Height of embankment of PS at A_bument
• Slope of road:
Loads

HE
i


=
=
=

9.30 kN/m
3.00 m
3.10 kN/m²

=
=

3.45 kN/m²
2.34 kN/m²

=
=

4.34 m
1.05 %

Symbol

Value

Unit

• PS length:

Ls


20.00

m

• Averange He on embankment area:

HE

4.24

m

• PS width:

Bs

28.94

m

1- PS selfweight :

DC

5.40

kN/m²

2- Load of pavement structures:


DW

12.38

kN/m²

3- Load of embankment structures over of embankment:

EV1

• Averange He on embankment area:

HE1

3.69

m

EV1

15919

KN

• Distribution load per area of PS:

ev1

66.33


kN/m²

4- Load of embankment structures over of talus:

EV2

• Averange He of talus:

HE2

4.24

m

EV2

6457

KN

ev2

38.12

kN/m²

• Distribution load per area of PS:

Page 3



INTERNAL FORCE CALCULATION:
• Load combination:
Loads combinated according to 22 TCN 272-05 in Strength-I and Service limited with load factors
taken as 3.4.1-1 tA_ble
Combination

DC

LL

DW

EH

EV

LS

CT

Strength-I
Service
Special

1.25
1
1.25


1.75
1
0.5

1.5
1
1.5

1.5
1
1.5

1.3
1
1.35

1.75
1
0.5

0
0
1

Symbol

Value

Unit


P=Σpi.ki=

123.0

kN/m²

• Tranvesser distance between piles:

X n=

2.20

m

• Longitudinal distance between piles:

Yn=

2.20



• Stressed area of 1 pile:

EV

4.84

KN


• Internal axial force max:

EV1

595.4

kN/m²

P=Σpi.ki=

56.3

kN/m²

• Tranvesser piles spacing:

X n=

2.20

m

• Longitudinal piles spacing:

Yn=

3.00




6.60

CHECK:

Loads
STRUCTURE MODELING:
EMBANKMENT:
• Total stress caused by dead load and live load per 1m² of PS:

TALUS:
• Total stress caused by dead load and live load per 1m² of PS:

• Distribution load per area of PS
EV1

371.6

KN
kN/m²

Pmax

595.4

kN

Bore hole

BA1-VST


618.4

kN

Bore hole

BA2

644.0

kN

• Internal axial force max:
CHECK OF PILE CAPACITY
• Internal axial force max
• Bearing capacity:
• Check:

O.K.

SETTLEMENT CHECK:
Pmax

21758.0

kN

{S}

100


mm

Bore hole

BA1-VST

48.7

mm

Bore hole

BA2

48.7

mm

• Internal axial force max:
• Allow settlement:
• Calculation settlement:
• Check:

O.K.

Page 4


Joint Venture:

DASAN CONSULTANTS CO., LTD
PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT
STAGE
CONTENT
BRIDGE
STATION
STANDARD
INPUT DATA:
• Pile diameter:
• Pile embedded length:
• Type Pile:
• Pile cross-sectional perimeter:
• Pile cross-sectional area:
• Pile distance:
• Pile concrete strength:

Lo Te – Rach Soi Highway Construction Project
DETAILED DESIGN
PRESTRESSING CAPACITY OF PILES
BO AO BRIDGE
ABUTMENTA1 (BOREHOLE BA1-VST)
22TCN-272-05
D
L

=
=

0.4 m

30.0 m

2.11
2.50


=
=
=
=

1.26
0.13
2.20
30.00

• Concrete unit weight:

γc

• Pile top elevations:

E1

=

2.5 m

E2
dSPT

Lsoil
C.m

=
=
=

-27.5 m
2.0 m
29.6 m
Driving

LK
E3
L_H
L3

BA1-VST
=
2.11 m
=
71.0 m
- m

• Piles tip elevation
• Parapet thickness:
• Pile length in soil:
• Method constryction (Bore:1, other:- ):
GEOTECHNICAL PARAMETER
• Borehole:

• Borehole elevation:
• Borehole depth:
• Casing length:

=

D0.4m

m

1.11
m
MPa

L=30m
Soft layer
@=2.2m
2.50

24.5 kN/m³

-27.50
2.11
L=30m

P
Ab
a
f'c


Firm layer

D0.4m

@=2.2m
-27.50

PRESTRESSING CAPACITY OF PILES

No.

z (m)

Layer

Thickness
(m)

Type soil

Density

qu (kPa)

SPT

cc

eo


Status

1
2
3
4
5
6
7
8
9
10
11
12

1.11
-11.19
-22.09
-39.29
-45.49
-47.89
-62.89
-68.89
-

1
2
3B
4
9B

TK
9B
9C
-

1.00
12.30
10.90
17.20
6.20
2.40
15.00
6.00
-

Clay
Clay
Clay
Clay
Sand
Clay
Sand
Sand
-

17.00
14.80
19.40
19.90
20.30

20.40
20.30
20.30
-

19+z
99.8
150.0
150.0
-

14
20
22
21
22
75
-

0.760
0.200
0.133
0.133
-

0.500
2.040
0.760
0.700
0.580

0.620
0.580
0.580
Db/D=

soft soil
soft soil
40.78

71.0
Bearing capacity :
The factor bearing risistance of pile shall be taken as:
QR = ϕqp▪Qp + ϕqs▪Qs = ϕqp▪qp▪Ap + ϕqs▪qs▪As
Where:
Qp
Qs
Pile tip resistance
qp
Ap

[10.7.3.2-2, 3 & 4]
Pile shaft resistance

unit tip resistance of pile

qs

Pile cross-sectional area

As


surface area of pile shaft

φqs

resistance factor for pile shaft bearing resistance

φqp

resistance factor for pile tip bearing resistance
φqp=
• Cohesive Soil:
0.56 • Cohesive Soil:
• Cohesionless Soil:

φqp=

0.36 • Cohesionless Soil:

φqs=
φqs=

unit shaft resistance of pile

0.56
0.36

[Table 10.5.5-3 22TCN 272-05]
[10.5.5.2.4-1 AASHTO 2007]



SKIN FRICTION CAPACITY
Unit shaft resistance:
• Cohesionless Soil:
(NTB:
• Cohesive Soil:
(Su:

qs2=0.0019Ntb (MPa)

[10.7.3.4.2b]

average (uncorrected) SPT -blow count along the pile shaft (blows/300mm)
qs = α•Su (MPa) - ( Method α)
(10.7.3.3.2a-1)
average undrained shear strength)
( α: cohension factor appliped to Su)
α=0.5(σvtb/Su)0.45
With:
σv=γhi
Qs = P•∑(qs•li)•φqs

Skin frition capacity:

Qs
=
η•φqs•Qs =
PILE TIP BEARING CAPACITY
Unit tip resistance of pile
• Cohesive Soil:

• Cohesionless Soil:

608.9 kN
578.4 kN

where

(η=

qP = 9•Su (MPa)

Su
(Su: average undrained shear strength)
qp=0.038NcorrDb/D≤0.4Ncorr (MPa)

0.95

=

for Sand;

75 kPa

0.95

for Clay)

[10.7.3.4.2]
[10.7.3.3.3]


Ncorr=0.77log10(1.92/σ'v)N
ϕqp▪Qp=ϕqp▪qp▪Ap

Pile tip resistance:
• Soil type under pile tip:
qP
φqp•Qp

η•φqp•Qp

Clay
= 675.0 kPa
=
=

where

47.5 kN
45.1 kN

Bearing risistance of piles:
• Without Group Capacity Factor:
QR = φqp•Qp + φqs•Qs
• With Group Capacity Factor:
QR = η•φqp•Qp + η•φqs•Qs

0.95

656.4


kN =

66.91

Tone

=

623.6

kN =

63.56

Tone

QT ≤0.3•f'c•Ab

Pile Structural Capacity:
CHECK:
Check for axial load
Allowable pushing force of pile:
• Bearing capacity:

QR

• Internal axial force max:
• Weight of 1 pile:
• Weight of Soil:


=

623.6 kN

Pmax
=
W p=L.Ab*(γp-10) =
W s=σ'vtb.Ab =

595.4 kN
33.7 kN

QR=QR-W p+W s =

• Bearing capacity:
QR=

618kN



for Sand;

=

QR = η•(φqp•Qp + φqs•Qs)

Soil Bearing Capacity:

Check:


(η=

Pmax

=

for Clay)
0.95
a=2.5D → η=0.65
a=6.0D → η=1.00

623.6 kN

63.6 Tone

1,131 kN

115.3 Tone

28.6 kN
618.4 kN
595kN

O.K.

%QR/Pmax

=


103.9%


=> η•φqs•Qs
Qs = P•∑(qs•li)•φqs
0.95 for Sand;
0.95
(η= where
(According to geological data at bode hole: BA1-VST)

SKIN FRICTION CAPACITY:

No.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50

Depth

li

Layer

Type

m

m

name

Soil

2.11
1.1
0.1
-1.9
-3.9
-5.9
-7.9
-9.9

-11.2
-11.9
-13.9
-15.9
-17.9
-19.9
-21.9
-22.1
-23.9
-25.9
-27.5
-27.9
-29.5
-29.9
-31.5
-31.9
-33.5
-33.9
-35.5
-35.9
-37.5
-37.9
-39.5
-39.9
-41.5
-41.9
-43.5
-43.9
-45.5
-45.9

-47.5
-47.9
-49.5
-49.9
-51.5
-51.9
-53.5
-53.9
-55.5
-55.9
-57.5
-57.9
-59.5

1.0
1.0
2.0
2.0
2.0
2.0
2.0
1.3
0.7
2.0
2.0
2.0
2.0
2.0
0.2
1.8

2.0
1.6
-

1
1
2
2
2
2
2
2
2
3B
3B
3B
3B
3B
3B
3B
4
4
4
4
4
4
4
4
4
4

4
4
4
4
9B
9B
9B
9B
9B
9B
TK
TK
TK
TK
9B
9B
9B
9B
9B
9B
9B
9B
9B
9B
9B

⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay

⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand

∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄⁄⁄⁄⁄⁄
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand

σ'vtb

7.2
12.2
22.2
32.1
42.1
52.1
62.1
68.6
75.3

94.5
113.6
132.8
152.0
171.2
173.1
191.3
211.4
227.7
-

NSPT

1
1
1
8
12
13
13
16
19
19
17
20
20
24
24
25
25

16
16
18
18
16
16
19
19
21
21
22
22
23
23
20
20
21
21
20
20
21
21
22
22
23
23
24
24

α


0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.7
0.7
0.7
-

Driving
for Clay)

Su

qs

Qs


η•φqs•Qs

kPa

kPa

kN

kN

11.5
13.5
15.5
17.5
19.5
21.5
22.8
49.9
49.9
49.9
49.9
49.9
49.9
49.9
75.0
75.0
75.0
75.0
75.0

75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
-

9.2
10.8
12.4
14.0
15.6
17.2
18.2
37.5
37.5
37.5
37.5
37.5
37.5
37.5
52.5

52.5
52.5
-

6.5
15.2
17.5
19.7
22.0
24.2
16.7
18.5
52.7
52.7
52.7
52.7
52.7
5.3
66.5
73.9
59.5
-

6.2
14.4
16.6
18.7
20.9
23.0
15.9

17.5
50.1
50.1
50.1
50.1
50.1
5.0
63.2
70.2
56.5
-


No.

Depth

li

Layer

Type

51
52
53
54
55
56
57

58
59
60

m
-59.9
-61.5
-61.9
-63.5
-63.9
-65.5
-65.9
-67.5
-67.9
-68.9

m
-

name
9B
9B
9B
9C
9C
9C
9C
9C
9C
9C


Soil
Sand
Sand
Sand
Sand
Sand
Sand
Sand
Sand
Sand
Sand

∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙

Sum Qs =

σ'vtb

NSPT


α

Su

qs

Qs

η•φqs•Qs

-

24
24
24
24
80
80
81
81
90
90

-

kPa
-

kPa
-


kN
-

kN
-

517.2

608.9

578.4


SETTLEMENT CALCULATION
BO AO BRIDGE

=

0.40
30.00
2.20
2.50

=
20.00
=
28.94
=
21758

BA1-VST
=
2.11
=
71.0
= -11.19
=
10.9
=
-22.1
=
16.3
=
-27.5
=
=
=

m
m
m

=21758
=2.11
=2.50
Soft
layer

m
m

m
kN

=-11.19
Firm
layer
=-22.1

m
m
m
m
m
m
m

=-27.5
• Type Pile

Lg

Ls
Ws
Qg
LK
E3
L_H
E3
2D p /3
• Effective depth taken as 2Db/3 (mm):

E4
• Effective elevation:
• Depth of embedment of piles in layer that provides support:
Dp
E2
• Pile tip elevation:
• Equivalent foundation dimension:
Lg
- Length
B
- Width
g
- Areas
A

=
=
=

2Db
3

D
L
a
n
E1

Db
3


I. INPUT DATA:
• Pile diameter:
• Pile embedded length:
• Pile distance:
• Number of pile:
• Pile top elevations:
• Pile cap dimension:
- Length
- Width
• Internal axial force max:
• Borehole
• Borehole elevation:
• Borehole depth:
• Soft soil bottom elevation:

Bg

19.00 m
27.94 m
530.9 m²

II. SETTLEMENT CALCULATION
Theo TCN 272-05 và tham khảo tài liệu phần 11.23 .Độ lún cố kết của nhóm cọc
• COHESIVE SOIL:
Formular:
Calculate the increased in effective stress caussed at middle of each soil layer bay the load Qg
(11.128) Độ lún cố kết của nhóm cọc
Calculate the Consolidation settlement of each layer caussed the increased stress


• COHESIVE SOIL:
No.

z (m)

Layer

Thickness
(m)

Type soil

SPT

eo

ccr

σo

Δσ

Sc (m)

1
2
3
4
5
6

7
8
9
10

-39.3
-45.5
-47.9
-62.9
-68.9
-

4
9B
TK
9B
9C
-

17.2
6.2
2.4
15.0
6.0
-

Clay
Sand
Clay
Sand

Sand
-

20
22
21
22
75
-

0.700
0.580
0.620
0.580
0.580
-

0.133
0.133
-

259.7
322.3
404.3
581.9
578.7
-

21.56
11.46

9.49
6.79
4.83
-

46.7
2.0
-

ΣSc=
• COHESIONLESS SOIL:
Formular:
Using SPT
Using CPT
where
• Effective elevation

E5

=

-39.3 m

48.7mm


• Net foundation pressure applied at 2Db/3.
• width or smallest dimension of pile group
• Influence factor of the effective group embedment (DIM)
• Effective depth taken as 2Db/3 (mm)

• Depth of embedment of piles in layer that provides support
• Uncorrected SPT -(blows/300mm)

q
=
0.013 Mpa
X
= 19,000 mm
I
=
0.93
D'
= 10,873 mm
Db
= 16,310 mm
N
=
22
N1effects
• SPT blow count corrected for both overburden and hammer efficiency
(blows/300
mm) as specified
=
17.71
60
N160 = CN N60 = CN (ER/60%) N

in Article 10.4.6.2.4

CN = {0.77log10(1.92/s'v)} and CN < 2.0

σv'

CN
ER
σ

Check:

ρ

v

ρ

=
=
=
=

0.173 Mpa

(Effective vertical stress MPa)

0.81
60% for conventional drop hammer using rope and cathead
0.0 mm
ΣSc

=


49mm



100mm

O.K.


Joint Venture:
DASAN CONSULTANTS CO., LTD
PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT
STAGE
CONTENT
BRIDGE
STATION
STANDARD
INPUT DATA:
• Pile diameter:
• Pile embedded length:
• Type Pile:
• Pile cross-sectional perimeter:
• Pile cross-sectional area:
• Pile distance:
• Pile concrete strength:

Lo Te – Rach Soi Highway Construction Project
DETAILED DESIGN
PRESTRESSING CAPACITY OF PILES

BO AO BRIDGE
ABUTMENTA2 (BOREHOLE BA2)
22TCN-272-05
D
L

=
=

0.4 m
31.0 m

2.37
2.00


=
=
=
=

1.26
0.13
2.20
30.00

• Concrete unit weight:

γc


• Pile top elevations:

E1

=

2.0 m

E2
dSPT
Lsoil
C.m

=
=
=

-29.0 m
2.0 m
31.0 m
Driving

LK
E3
L_H
L3

BA2
=
2.37 m

=
60.0 m
- m

• Piles tip elevation
• Parapet thickness:
• Pile length in soil:
• Method constryction (Bore:1, other:- ):
GEOTECHNICAL PARAMETER
• Borehole:
• Borehole elevation:
• Borehole depth:
• Casing length:

=

D0.4m

m

0.97
m
MPa

L=31m
Soft layer
@=2.2m
2.00

24.5 kN/m³


-29.00
2.37
L=31m

P
Ab
a
f'c

Firm layer

D0.4m

@=2.2m
-29.00

PRESTRESSING CAPACITY OF PILES

No.

z (m)

Layer

Thickness
(m)

Type soil


Density

qu (kPa)

SPT

cc

eo

Status

1
2
3
4
5
6
7
8
9
10
11
12

0.97
-12.03
-23.93
-38.33
-50.43

-57.63
-

1
2
3B
4
5A
9C
-

1.40
13.00
11.90
14.40
12.10
7.20
-

Clay
Clay
Clay
Clay
Sand
Sand
-

17.00
14.80
19.40

19.90
20.30
20.30
-

19+z
99.8
150.0
-

15
18
24
64
-

0.760
0.200
0.133
-

0.500
2.040
0.760
0.700
0.580
0.580
Db/D=

soft soil

soft soil
41.50

60.0
Bearing capacity :
The factor bearing risistance of pile shall be taken as:
QR = ϕqp▪Qp + ϕqs▪Qs = ϕqp▪qp▪Ap + ϕqs▪qs▪As
Where:
Qp
Qs
Pile tip resistance
qp
Ap

[10.7.3.2-2, 3 & 4]
Pile shaft resistance

unit tip resistance of pile

qs

Pile cross-sectional area

As

surface area of pile shaft

φqs

resistance factor for pile shaft bearing resistance


φqp

resistance factor for pile tip bearing resistance
φqp=
• Cohesive Soil:
0.56 • Cohesive Soil:
• Cohesionless Soil:

φqp=

0.36 • Cohesionless Soil:

φqs=
φqs=

unit shaft resistance of pile

0.56
0.36

[Table 10.5.5-3 22TCN 272-05]
[10.5.5.2.4-1 AASHTO 2007]


SKIN FRICTION CAPACITY
Unit shaft resistance:
• Cohesionless Soil:
(NTB:
• Cohesive Soil:

(Su:

qs2=0.0019Ntb (MPa)

[10.7.3.4.2b]

average (uncorrected) SPT -blow count along the pile shaft (blows/300mm)
qs = α•Su (MPa) - ( Method α)
(10.7.3.3.2a-1)
average undrained shear strength)
( α: cohension factor appliped to Su)
α=0.5(σvtb/Su)0.45
With:
σv=γhi
Qs = P•∑(qs•li)•φqs

Skin frition capacity:

Qs
=
η•φqs•Qs =
PILE TIP BEARING CAPACITY
Unit tip resistance of pile
• Cohesive Soil:
• Cohesionless Soil:

635.3 kN
603.6 kN

where


(η=

qP = 9•Su (MPa)

Su
(Su: average undrained shear strength)
qp=0.038NcorrDb/D≤0.4Ncorr (MPa)

0.95

=

for Sand;

75 kPa

0.95

for Clay)

[10.7.3.4.2]
[10.7.3.3.3]

Ncorr=0.77log10(1.92/σ'v)N
ϕqp▪Qp=ϕqp▪qp▪Ap

Pile tip resistance:
• Soil type under pile tip:
qP

φqp•Qp

η•φqp•Qp

Clay
= 675.0 kPa
=
=

where

47.5 kN
45.1 kN

Bearing risistance of piles:
• Without Group Capacity Factor:
QR = φqp•Qp + φqs•Qs
• With Group Capacity Factor:
QR = η•φqp•Qp + η•φqs•Qs

0.95

682.8

kN =

69.61

Tone


=

648.7

kN =

66.13

Tone

QT ≤0.3•f'c•Ab

Pile Structural Capacity:
CHECK:
Check for axial load
Allowable pushing force of pile:
• Bearing capacity:

QR

• Internal axial force max:
• Weight of 1 pile:
• Weight of Soil:

=

648.7 kN

Pmax
=

W p=L.Ab*(γp-10) =
W s=σ'vtb.Ab =

595.4 kN
34.9 kN

QR=QR-W p+W s =

• Bearing capacity:
QR=

644kN



for Sand;

=

QR = η•(φqp•Qp + φqs•Qs)

Soil Bearing Capacity:

Check:

(η=

Pmax

=


for Clay)
0.95
a=2.5D → η=0.65
a=6.0D → η=1.00

648.7 kN

66.1 Tone

1,131 kN

115.3 Tone

30.2 kN
644.0 kN
595kN

O.K.

%QR/Pmax

=

108.2%


=> η•φqs•Qs
Qs = P•∑(qs•li)•φqs
0.95 for Sand;

0.95
(η= where
(According to geological data at bode hole: BA2)

SKIN FRICTION CAPACITY:

No.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Depth


li

Layer

Type

m

m

name

Soil

2.37
1.0
0.4
-1.6
-3.6
-5.6
-7.6
-9.6
-11.6
-12.0
-13.6
-15.6
-17.6
-19.6
-21.6
-23.6

-23.9
-25.6
-27.6
-29.0
-29.6
-31.0
-31.6
-33.0
-33.6
-35.0
-35.6
-37.0
-37.6
-39.0
-39.6
-41.0
-41.6
-43.0
-43.6
-45.0
-45.6
-47.0
-47.6
-49.0
-49.6
-51.0
-51.6
-53.0
-53.6
-55.0

-55.6
-57.0
-57.6

1.4
0.6
2.0
2.0
2.0
2.0
2.0
2.0
0.4
1.6
2.0
2.0
2.0
2.0
2.0
0.3
1.7
2.0
1.4
-

1
1
2
2
2

2
2
2
2
2
3B
3B
3B
3B
3B
3B
3B
4
4
4
4
4
4
4
4
4
4
4
4
5A
5A
5A
5A
5A
5A

5A
5A
5A
5A
5A
5A
9C
9C
9C
9C
9C
9C
9C
9C

⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay

⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand

∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙
Sum Qs =

σ'vtb

10.1
13.1
23.0
33.0
43.0
53.0
63.0
72.9
74.9
90.3
109.5
128.6
147.8
167.0
186.2
189.1
206.2
226.4
240.2
-


NSPT

10
12
14
16
17
19
19
21
20
20
15
15
15
15
16
16
21
21
22
22
23
23
24
24
25
25
24
24

24
24
26
26
81
81
82
82
51
51
54

α

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.7
0.7
0.7
-

Driving
for Clay)

Su

qs

Qs

η•φqs•Qs

kPa

kPa

kN

kN

11.5
13.5
15.5
17.5
19.5

21.5
23.5
23.9
49.9
49.9
49.9
49.9
49.9
49.9
49.9
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
-

9.2
10.8
12.4
14.0
15.6
17.2

18.8
19.1
37.5
37.5
37.5
37.5
37.5
37.5
37.5
52.5
52.5
52.5
-

3.9
15.2
17.5
19.7
22.0
24.2
26.5
5.4
42.2
52.7
52.7
52.7
52.7
52.7
7.9
62.8

73.9
50.7
-

3.7
14.4
16.6
18.7
20.9
23.0
25.1
5.1
40.1
50.1
50.1
50.1
50.1
50.1
7.5
59.7
70.2
48.2
-

536.8

635.3

603.6



SETTLEMENT CALCULATION
BO AO BRIDGE

=

0.40
31.00
2.20
2.00

=
20.00
=
28.94
=
21758
BA2
=
2.37
=
60.0
= -12.03
=
11.3
=
-23.3
=
17.0
=

-29.0
=
=
=

m
m
m

=21758
=2.37
=2.00
Soft
layer

m
m
m
kN

=-12.03
Firm
layer
=-23.3

m
m
m
m
m

m
m

=-29.0
• Type Pile

Lg

Ls
Ws
Qg
LK
E3
L_H
E3
2D p /3
• Effective depth taken as 2Db/3 (mm):
E4
• Effective elevation:
• Depth of embedment of piles in layer that provides support:
Dp
E2
• Pile tip elevation:
• Equivalent foundation dimension:
Lg
- Length
B
- Width
g
- Areas

A

=
=
=

2Db
3

D
L
a
n
E1

Db
3

I. INPUT DATA:
• Pile diameter:
• Pile embedded length:
• Pile distance:
• Number of pile:
• Pile top elevations:
• Pile cap dimension:
- Length
- Width
• Internal axial force max:
• Borehole
• Borehole elevation:

• Borehole depth:
• Soft soil bottom elevation:

Bg

19.00 m
27.94 m
530.9 m²

II. SETTLEMENT CALCULATION
Theo TCN 272-05 và tham khảo tài liệu phần 11.23 .Độ lún cố kết của nhóm cọc
• COHESIVE SOIL:
Formular:
Calculate the increased in effective stress caussed at middle of each soil layer bay the load Qg
(11.128) Độ lún cố kết của nhóm cọc
Calculate the Consolidation settlement of each layer caussed the increased stress

• COHESIVE SOIL:
No.

z (m)

Layer

Thickness
(m)

Type soil

SPT


eo

ccr

σo

Δσ

Sc (m)

1
2
3
4
5
6
7
8
9
10

-38.3
-50.4
-57.6
-

4
5A
9C

-

15.0
12.1
7.2
-

Clay
Sand
Sand
-

18
24
64
-

0.700
0.580
0.580
-

0.133
-

258.8
382.7
473.3
-


23.18
11.10
7.47
-

43.7
-

ΣSc=
• COHESIONLESS SOIL:
Formular:
Using SPT
Using CPT
where
• Effective elevation

E5

=

-38.3 m

43.7mm


• Net foundation pressure applied at 2Db/3.
• width or smallest dimension of pile group
• Influence factor of the effective group embedment (DIM)
• Effective depth taken as 2Db/3 (mm)
• Depth of embedment of piles in layer that provides support

• Uncorrected SPT -(blows/300mm)

q
=
0.015 Mpa
X
= 19,000 mm
I
=
0.93
D'
= 11,315 mm
Db
= 16,972 mm
N
=
24
N1effects
• SPT blow count corrected for both overburden and hammer efficiency
(blows/300
mm) as specified
=
18.85
60
N160 = CN N60 = CN (ER/60%) N

in Article 10.4.6.2.4

CN = {0.77log10(1.92/s'v)} and CN < 2.0
σv'


CN
ER
σ

Check:

ρ

v

ρ

=
=
=
=

0.183 Mpa

(Effective vertical stress MPa)

0.79
60% for conventional drop hammer using rope and cathead
0.0 mm
ΣSc

=

44mm




100mm

O.K.


Joint Venture:
DASAN CONSULTANTS CO., LTD
PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT
STAGE
CONTENT
BRIDGE
STATION
STANDARD

Lo Te – Rach Soi Highway Construction Project
DETAILED DESIGN
CALCULATION FOR PILE SLAB (PS)
DOC DINH BRIDGE
A_1: (KM5+406 ~ KM5+431 )
& A_2: (KM5+492 ~ KM5+512 )
22TCN-272-05

DIMENSIONS:
Content

Symbol


Value

Unit

WE

12.0

m

• Top abument elevations:
• Gradient:
• Density:
• Slope of talus:
• Thickness of pavement:
• Unit weight of structure:

Cm
i
γs
m
Δlp
γlp

6.05
0.92
18.0
1/2
0.550

22.5

m
%
kN/m³

• Top PS elevations:
• PS length:
• PS width:

Cs
Ls
W s1

1.00
25.00
29.36

m
m
m

• PS width:

W s2

28.44

m


• PS area:

♦ Embankment:
• Width of road surface:

m
kN/m³

• Pile slab:

As

722.50



• PS thickness:
• Concrete pile:
• Pile diameter:

ds

0.30

m

dc

0.40


m

• Pile thickness:

tc

0.075

m

Page 1


OUTLINE DRAWING
GENERAL VIEW OF PILE SLAB:

CROSS SECTION

Bmđ

Embankment
Geotextile
Pile PHC D=40cm

Embankment

ds

Bs


Geotextile

Pile PHC D=40cm

xn@yn

PILING PLAN

Bs
xn@yn
Y

a1

a1

b
xn@yn

Ls

1

2

3

4

5


6

7

8

9

10

11

12

13

14

15

16

17

18

19

20


21

22

23

24

`

0

X

b
a2

xn@yn
Bs

a2

LOADS:
A- LIVE LOADS:
• HL93
Page 2


* Design truck or design tandem, Or

* Design lane load.
• Pedestrian loads
• Distribution load:
* Number
* Lane factor m
LIVE LOAD

=
=

3.0 Lane
0.85
HL93 Properties

Symbol

Value

Unit:

P1

35

kN

P2

145


kN

P3

145

kN

V1

4.3

m

V2

4.3

m

DESIGN TRUCK

OUTLINE DRAWING

V2

V1

TANDEM


LANES LOAD

P1

110

kN

P2

110

kN

d
PL

1.2

m

3.0

m

WL

9.3

kN/m


P1

P2

P3
P2

d

P1

WL

• Calculation the live loads distribution for PS:
• Lanes load
The design lane load shall consist, uniformly distributed in the longitudinal direction:

Tranverely width:
• Distribution load per area of PS:
• Truck loads:
• Distribution load per area of PS:
• For the design truck
• For the design tandem
B- DEAD LOADS:
• Height of embankment of PS at A_bument
• Slope of road:
Loads

HE

i

=
=
=

9.30 kN/m
3.00 m
3.10 kN/m²

=
=

2.76 kN/m²
1.87 kN/m²

=
=

4.34 m
0.92 %

Symbol

Value

Unit

• PS length:


Ls

25.00

m

• Averange He on embankment area:

HE

4.23

m

• PS width:

Bs

28.90

m

1- PS selfweight :

DC

5.40

kN/m²


2- Load of pavement structures:

DW

12.38

kN/m²

3- Load of embankment structures over of embankment:

EV1

• Averange He on embankment area:

HE1

3.68

m

EV1

19845

KN

• Distribution load per area of PS:

ev1


66.15

kN/m²

4- Load of embankment structures over of talus:

EV2

• Averange He of talus:

HE2

4.23

m

EV2

8033

KN

ev2

38.03

kN/m²

• Distribution load per area of PS:


Page 3


INTERNAL FORCE CALCULATION:
• Load combination:
Loads combinated according to 22 TCN 272-05 in Strength-I and Service limited with load factors
taken as 3.4.1-1 tA_ble
Combination

DC

LL

DW

EH

EV

LS

CT

Strength-I
Service
Special

1.25
1
1.25


1.75
1
0.5

1.5
1
1.5

1.5
1
1.5

1.3
1
1.35

1.75
1
0.5

0
0
1

Symbol

Value

Unit


P=Σpi.ki=

121.6

kN/m²

• Tranvesser distance between piles:

X n=

2.20

m

• Longitudinal distance between piles:

Yn=

2.20



• Stressed area of 1 pile:

EV

4.84

KN


• Internal axial force max:

EV1

588.4

kN/m²

P=Σpi.ki=

56.2

kN/m²

• Tranvesser piles spacing:

X n=

2.20

m

• Longitudinal piles spacing:

Yn=

3.00




6.60

CHECK:

Loads
STRUCTURE MODELING:
EMBANKMENT:
• Total stress caused by dead load and live load per 1m² of PS:

TALUS:
• Total stress caused by dead load and live load per 1m² of PS:

• Distribution load per area of PS
EV1

370.8

KN
kN/m²

Pmax

588.4

kN

Bore hole

DD-FS


649.2

kN

Bore hole

DD1-VST

590.2

kN

• Internal axial force max:
CHECK OF PILE CAPACITY
• Internal axial force max
• Bearing capacity:
• Check:

O.K.

SETTLEMENT CHECK:
Pmax

26936.3

kN

{S}


100

mm

Bore hole

DD-FS

37.3

mm

Bore hole

DD1-VST

37.3

mm

• Internal axial force max:
• Allow settlement:
• Calculation settlement:
• Check:

O.K.

Page 4



Joint Venture:
DASAN CONSULTANTS CO., LTD
PYUNGHWA ENGINEERING CONSULTANTS LTD
PROJECT
STAGE
CONTENT
BRIDGE
STATION
STANDARD
INPUT DATA:
• Pile diameter:
• Pile embedded length:
• Type Pile:
• Pile cross-sectional perimeter:
• Pile cross-sectional area:
• Pile distance:
• Pile concrete strength:

Lo Te – Rach Soi Highway Construction Project
DETAILED DESIGN
PRESTRESSING CAPACITY OF PILES
DOC DINH BRIDGE
ABUTMENTA1 (BOREHOLE DD-FS)
22TCN-272-05
D
L

=
=


0.4 m
26.0 m

1.42
1.00


=
=
=
=

1.26
0.13
2.20
30.00

• Concrete unit weight:

γc

• Pile top elevations:

E1

=

1.0 m

E2

dSPT
Lsoil
C.m

=
=
=

-25.0 m
2.0 m
26.0 m
Driving

LK
E3
L_H
L3

DD-FS
=
1.42 m
=
73.0 m
- m

• Piles tip elevation
• Parapet thickness:
• Pile length in soil:
• Method constryction (Bore:1, other:- ):
GEOTECHNICAL PARAMETER

• Borehole:
• Borehole elevation:
• Borehole depth:
• Casing length:

=

D0.4m

m

0.42
m
MPa

L=26m
Soft layer
@=2.2m
1.00

24.5 kN/m³

-25.00
1.42
L=26m

P
Ab
a
f'c


Firm layer

D0.4m

@=2.2m
-25.00

PRESTRESSING CAPACITY OF PILES

No.

z (m)

Layer

Thickness
(m)

Type soil

Density

qu (kPa)

SPT

cc

eo


Status

1
2
3
4
5
6
7
8
9
10
11
12

0.42
-19.58
-22.78
-34.28
-44.58
-65.58
-68.08
-71.58
-

1
2
3
5A

6B
6C
8B
7
-

1.00
20.00
3.20
11.50
10.30
21.00
2.50
3.50
-

Clay
Clay
Clay
Sand
Clay
Clay
Clay
Sand
-

17.00
14.80
19.50
20.30

20.40
20.40
20.40
20.30
-

19+z
104.0
230.0
230.0
230.0
-

1
15
28
14
17
35
99
-

0.760
0.200
0.133
0.133
0.133
-

0.500

2.040
0.760
0.580
0.620
0.620
0.630
0.580
Db/D=

soft soil
soft soil
12.50

73.0
Bearing capacity :
The factor bearing risistance of pile shall be taken as:
QR = ϕqp▪Qp + ϕqs▪Qs = ϕqp▪qp▪Ap + ϕqs▪qs▪As
Where:
Qp
Qs
Pile tip resistance
qp
Ap

[10.7.3.2-2, 3 & 4]
Pile shaft resistance

unit tip resistance of pile

qs


Pile cross-sectional area

As

surface area of pile shaft

φqs

resistance factor for pile shaft bearing resistance

φqp

resistance factor for pile tip bearing resistance
φqp=
• Cohesive Soil:
0.56 • Cohesive Soil:
• Cohesionless Soil:

φqp=

0.36 • Cohesionless Soil:

φqs=
φqs=

unit shaft resistance of pile

0.56
0.36


[Table 10.5.5-3 22TCN 272-05]
[10.5.5.2.4-1 AASHTO 2007]


SKIN FRICTION CAPACITY
Unit shaft resistance:
• Cohesionless Soil:
(NTB:
• Cohesive Soil:
(Su:

qs2=0.0019Ntb (MPa)

[10.7.3.4.2b]

average (uncorrected) SPT -blow count along the pile shaft (blows/300mm)
qs = α•Su (MPa) - ( Method α)
(10.7.3.3.2a-1)
average undrained shear strength)
( α: cohension factor appliped to Su)
α=0.5(σvtb/Su)0.45
With:
σv=γhi
Qs = P•∑(qs•li)•φqs

Skin frition capacity:

Qs
=

η•φqs•Qs =
PILE TIP BEARING CAPACITY
Unit tip resistance of pile
• Cohesive Soil:
• Cohesionless Soil:

288.2 kN
273.8 kN

where

0.95

for Sand;

0.95

qP = 9•Su (MPa)

[10.7.3.4.2]

(Su: average undrained shear strength)
qp=0.038NcorrDb/D≤0.4Ncorr (MPa)

[10.7.3.3.3]

Ncorr=0.77log10(1.92/σ'v)N

=


22

N

=

for Clay)

27

ϕqp▪Qp=ϕqp▪qp▪Ap

Pile tip resistance:
• Soil type under pile tip:
qP
φqp•Qp

η•φqp•Qp

Sand
= 8,944.0 kPa
=
=

where

404.6 kN
384.4 kN

Bearing risistance of piles:

• Without Group Capacity Factor:
QR = φqp•Qp + φqs•Qs
• With Group Capacity Factor:
QR = η•φqp•Qp + η•φqs•Qs

(η=

0.95

692.8

kN =

70.63

Tone

=

658.2

kN =

67.09

Tone

QT ≤0.3•f'c•Ab

Pile Structural Capacity:

CHECK:
Check for axial load
Allowable pushing force of pile:
• Bearing capacity:

QR

• Internal axial force max:
• Weight of 1 pile:
• Weight of Soil:

=

658.2 kN

Pmax
=
W p=L.Ab*(γp-10) =
W s=σ'vtb.Ab =

588.4 kN
29.2 kN

QR=QR-W p+W s =

• Bearing capacity:
QR=

649kN




for Sand;

=

QR = η•(φqp•Qp + φqs•Qs)

Soil Bearing Capacity:

Check:

(η=

Pmax

=

for Clay)
0.95
a=2.5D → η=0.65
a=6.0D → η=1.00

658.2 kN

67.1 Tone

1,131 kN

115.3 Tone


20.3 kN
649.2 kN
588kN

O.K.

%QR/Pmax

=

110.3%


=> η•φqs•Qs
Qs = P•∑(qs•li)•φqs
0.95 for Sand;
0.95
(η= where
(According to geological data at bode hole: DD-FS)

SKIN FRICTION CAPACITY:

No.

0
1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Depth

li

Layer

Type

m

m

name


Soil

1.42
0.4
-0.6
-2.6
-4.6
-6.6
-8.6
-10.6
-12.6
-14.6
-16.6
-18.6
-19.6
-20.6
-22.6
-22.8
-24.6
-25.0
-26.6
-27.0
-28.6
-29.0
-30.6
-31.0
-32.6
-33.0
-34.6

-35.0
-36.6
-37.0
-38.6
-39.0
-40.6
-41.0
-42.6
-43.0
-44.6
-45.0
-46.6
-47.0
-48.6
-49.0
-50.6
-51.0
-52.6
-53.0
-54.6
-55.0
-56.6
-57.0
-58.6

1.0
1.0
2.0
2.0
2.0

2.0
2.0
2.0
2.0
2.0
2.0
1.0
1.0
2.0
0.2
1.8
0.4
-

1
1
2
2
2
2
2
2
2
2
2
2
2
3
3
3

5A
5A
5A
5A
5A
5A
5A
5A
5A
5A
6B
6B
6B
6B
6B
6B
6B
6B
6B
6B
6B
6C
6C
6C
6C
6C
6C
6C
6C
6C

6C
6C
6C
6C
6C

⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand

∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Sand
∙∙∙∙∙∙∙∙ Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄ ⁄ ⁄ ⁄ ⁄ ⁄Clay
⁄⁄⁄⁄⁄⁄

σ'vtb


7.2
12.2
22.2
32.1
42.1
52.1
62.1
72.1
82.0
92.0
102.0
107.0
116.7
136.1
138.0
156.9
161.3
-

NSPT

1
1
1
1
1
1
11
17

17
27
27
29
29
32
32
27
27
26
26
11
11
12
12
13
13
11
11
15
15
29
29
19
19
16
16
15
15
16

16
15
15
15
15
16

α

0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.5
0.5
-

Driving
for Clay)


Su

qs

Qs

η•φqs•Qs

kPa

kPa

kN

kN

11.5
13.5
15.5
17.5
19.5
21.5
23.5
25.5
27.5
29.5
30.5
52.0
52.0
52.0

115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0
115.0

7.6
8.8
9.9
11.0

12.1
13.1
14.1
15.1
16.0
16.9
17.3
24.2
24.2
24.2
51.3
51.3
-

5.4
12.4
14.0
15.5
17.1
18.5
19.9
21.2
22.5
23.7
12.2
17.0
34.0
3.4
41.8
9.7

-

5.1
11.8
13.3
14.8
16.2
17.6
18.9
20.2
21.4
22.5
11.5
16.2
32.3
3.2
39.7
9.3
-


×