Tải bản đầy đủ (.pdf) (483 trang)

Biomass conversion the interface of biotechnology chemistry and materials science

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (8.31 MB, 483 trang )

Biomass Conversion


Chinnappan Baskar Shikha Baskar
Ranjit S. Dhillon


Editors

Biomass Conversion
The Interface of Biotechnology, Chemistry
and Materials Science

123


Editors
Chinnappan Baskar
Department of Environmental
Engineering and Biotechnology
Myongji University
San 38-2 Namdong, Cheoin-gu
Yongin 449-728
South Korea

Ranjit S. Dhillon
Department of Chemistry
Punjab Agricultural University
Ludhiana 141004
Punjab, India


Shikha Baskar
THDC Institute of Hydropower
Engineering and Technology, Tehri
Uttarakhand Technical University
Dehradun, Uttarakhand
India

ISBN 978-3-642-28417-5
DOI 10.1007/978-3-642-28418-2

ISBN 978-3-642-28418-2

(eBook)

Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012933321
Ó Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt

from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)


This book is dedicated to
our beloved parents
Mr. S. Chinnappan &
Mrs. Mariya Chinnappan
and
Mr. Pawan Kumar Sambher &
Mrs. Sudesh Sambher


Foreword

Souring prices of petroleum, concern over secured supply beside climate change
are major drivers in the search for alternative renewable energy sources. The use of
biomass to produce energy is an alternative source of renewable energy that can be
utilized to reduce the adverse impact of energy production on the global
environment.
Current biomass resources comprise primarily industrial waste materials such
as sawdust or pulp process wastes, hog fuel, forest residues, clean wood waste
from landfills, and agricultural prunings and residues from plants such as lignocellulosic materials. The increased use of biomass fuels would diversify the
nation’s fuel supply while reducing net CO2 production (because CO2 is withdrawn from the atmosphere during plant growth) and reduce the amount of waste
material that eventually ends up in landfills. It is important that biomass uses have

a high process efficiency to increase the overall resource productivity from past
commercial applications. Biomass is considered carbon neutral because the
amount of carbon it can release is equivalent to the amount it absorbed during its
lifetime. There is no net increase of carbon to the environment in the long term
when combusting the lignocellulosic materials. Therefore, biomass is expected to
have a significant contribution to the world energy and environment demand in the
foreseeable future.
This new book entitled ‘‘Biomass Conversion: The Interface of Biotechnology,
Chemistry and Materials Science’’ assembles 14 chapters authored by renowned
specialists. This book provides an important review of the main issues and technologies that are essential to the future success of the production of biofuels,
bioenergy, and fine-chemicals from biomass, and the editors and authors are to be
applauded for constructing this high quality collection. The scientific and engineering breakthroughs contained in this book are the essential building blocks that
construct the foundation and future development of biomass conversion with
interface of biotechnology, bioengineering, chemistry, and materials science.
This book therefore reviews the state of the art of biomass conversion, along
with their advantages and drawbacks. By disseminating this information more
widely, this book can help bring about a surge in investment in the use of these
vii


viii

Foreword

technologies and thus enable developing countries to exploit their biomass
resources better and help close the gap between their energy needs and their
energy supply.
I am delighted that the editors, Dr. Baskar, Dr. Shikha, and Dr. Dhillon, took
their strong involvement in this enterprise, and the authors, whose liberally contributed expertise made it possible and will guarantee success.
March 2012


Prof. D. S. Chauhan
Vice Chancellor
Uttarakhand Technical University
Dehradun, Uttarakhand
India


Foreword

High worldwide demand for energy, unstable and uncertain petroleum sources,
and concern over global climate change has led to resurgence in the development
of alternative energy that can displace fossil transportation fuel. Biomass is considered to be an important renewable source for securing future energy supply,
production of fine chemicals and sustainable development.
Having looked at a lot of integrated multi-disciplinary research on biomass
conversion into energy and fine chemicals, I was delighted to find that this book
does exactly what it says on the cover - it provides a guide to conversion of
biomass into energy, biofuels and fine chemicals. This timely book covers many
different topics: from biomass conversion to energy, the concept of green chemistry (the applications of ionic liquids for biomass conversion), catalysts in thermochemical biomass conversion, production of biobutanol, bioethanol, bio-oil,
biohydrogen and fine chemicals, the perceptive of biorefinery processing and
bioextraction. The majority of chapters survey topics that will allow the reader to
obtain a greater understanding about biomass conversion and the role of multidisciplinary subjects which include biotechnology, microbiology, green chemistry,
materials science and engineering.
I am pleased that the editors took on the challenge to give an excellent overview
of the different techniques for biomass conversion applied in academia and
industry. Their expertise and their valuable network of contributors have made this
volume a highly respected work that has a central place in this series on renewable
resources.
National University of Singapore
Singapore, February 2012


Dr. Seeram Ramakrishna
Professor of Mechanical Engineering
and Bioengineering
Vice-President (Research Strategy)

ix


Preface

Conventional resources, mainly fossil fuels, are becoming limited because of the
rapid increase in energy demand. This imbalance in energy demand and supply has
placed immense pressure not only on consumer prices but also on the environment,
prompting mankind to look for sustainable energy resources. Biomass is one of the
few resources that has the potential to meet the challenges of sustainable and green
energy systems. Biomass can be converted into three main products such as
energy, biofuels and fine-chemicals using a number of different processes. Today,
its a great challenge for researchers to find new environmentally benign methodologies for biomass conversion, which are industrially profitable as well.
This book aims to offer the state-of-the-art reviews, current research and the
future developments of biomass conversion to bioenergy, biofuels, fatty acids, and
fine chemicals with the integration of multi-disciplinary subjects which include
biotechnology, microbiology, energy technology, chemistry, materials science,
and engineering.
The chapters are organized as follows: Chaps. 1 and 2 provide an overview of
biomass conversion into energy. Chapters 3 and 4 cover the application of ionic
liquids for the production of bioenergy and biofuels from biomass (Green chemistry approach towards the biomass conversion). Chapter 5 focuses on the role of
catalysts in thermochemical biomass conversion. This chapter also describes the
role of nanoparticles for biomass conversion. Chapter 6 gives an overview of
catalytic deoxygenation of fatty acids, their esters, and triglycerides for production

of green diesel fuel. This new technology is an alternative route for production of
diesel range hydrocarbons and can be achieved by catalytic hydrogenation of
carboxyl groups over sulfided catalysts as well as decarboxylation/decarbonylation
over noble metal supported catalysts, and catalytic cracking of fatty acids and their
derivatives.
The common examples of biofuels are biobutanol, bioethanol, and biodiesel.
Biobutanol continuously draws the attention of researchers and industrialists
because of its several advantages such as high energy contents, high hydrophobicity, good blending ability, and because it does not require modification in
present combustion engines, and is less corrosive than other biofuels.
xi


xii

Preface

Unfortunately, the economic feasibility of biobutanol fermentation is suffering due
to low butanol titer as butanol itself acts as inhibitor during fermentation. To
overcome this problem, several genetic and metabolic engineering strategies are
being tested. In this direction, Chap. 7 outlines the overview of the conversion of
cheaper lignocellulosic biomass into biobutanol.
Chapter 8 discusses some of the strategies to genetically improve biofuel plant
species in order to produce more biomass for future lignocellulosic ethanol production. Chapter 9 describes the production of bioethanol from food industry
waste. Hydrogen is an attractive future clean, renewable energy carrier. Biological
hydrogen production from wastes could be an environmentally friendly and economically viable way to produce hydrogen compared with present production
technologies. Chapter 10 reviews the current research on bio-hydrogen production
using two-stage systems that combine dark fermentation by mixed cultures and
photo-fermentation by purple non-sulfur bacteria.
Organosolv fractionation, one of the most promising fractionation approaches,
has been performed to separate lignocellulosic feedstocks into cellulose, hemicelluloses, and lignin via organic solvent under mild conditions in a biorefinery

manner. Chapter 11 focuses particularly on new research on the process of organosolv fractionation and utilization of the prepared products in the field of fuels,
chemicals, and materials. Production and separation of high-added value compounds from renewable resources are emergent areas of science and technology
with relevance to both scientific and industrial communities. Lignin is one of the
raw materials with high potential due to its chemistry and properties. The types,
availability, and characteristics of lignins as well as the production and separation
processes for the recovery of vanillin and syringaldehyde are described in
Chap. 12.
The production of consistent renewable-based hydrocarbons from woody biomass involves the efficient conversion into stable product streams. Supercritical
methanol treatment is a new approach to efficiently convert woody biomass into
bio-oil at modest processing temperatures and pressures. The resulting bio-oil
consisted of partially methylated lignin-derived monomers and sugar derivatives
which results in a stable and consistent product platform that can be followed by
catalytic upgrading into a drop-in-fuel. The broader implications of this novel
approach to obtain sustainable bioenergy and biofuel infrastructure is discussed in
Chap. 13.
Industrialization and globalization is causing numerous fluctuations in our
ecosystem including increased level of heavy metals. Bioextraction is an alternative to the existing chemical processes for better efficiency with least amount of
by-products at optimum utilization of energy. The last chapter provides an overview of bioextraction methodology and its associated biological processes, and
discusses the approaches that have been used successfully for withdrawal of heavy
metals using metal selective high biomass transgenic plants and microbes from
contaminated sites and sub grade ores.
This book is intended to serve as a valuable reference for academic and
industrial professionals engaged in research and development activities in the


Preface

xiii

emerging field of biomass conversion. Some review chapters are written at an

introductory level to attract newcomers including senior undergraduate and
graduate students and to serve as a reference book for professionals from all
disciplines. Since this book is the first of its kind devoted solely to biomass
conversion, it is hoped that it will be sought after by a broader technical audience.
The book may even be adopted as a textbook/reference book for researchers
pursuing energy technology courses that deal with biomass conversion.
All chapters were contributed by renowned professionals from academia and
government laboratories from various countries and were peer reviewed. The
editors would like to thank all contributors for believing in this endeavor, sharing
their views and precious time, and obtaining supporting documents. Finally, the
editors would like to express their gratitude to the external reviewers whose
contributions helped improve the quality of this book.
February 2012

Dr. Chinnappan Baskar
Dr. Shikha Baskar
Dr. Ranjit S. Dhillon


Acknowledgments

Words are compendious in expressing our deep gratitude and profound indebtedness to Prof. D. S. Chauhan, Vice Chancellor, Uttarakhand Technical University, Dehradun for his dexterous guidance, invaluable suggestions and perceptive
enthusiasm which enabled us to accomplish this project. His association, inspiration, constructive criticism and encouragement throughout the period of our
academic and our personal life, especially for the time spent in informal discussions have all been a valuable part of our learning experience.
We accord our cordial thanks to Prof. Wook-Jin Chung (Director, Energy and
Environment Fusion Technology Center, Myongji University, South Korea) and
Prof. Hern Kim (Department of Environmental Engineering and Energy, Myongji
University, South Korea) for their timely support and suggestions during our stay
at Myongji University.
We owe our sincere thanks to Prof. Seeram Ramakrishna, Vice-President

(Research Strategy), National University of Singapore for his motivation. Our
heartfelt thanks to Mr. A. L. Shah, Director, THDC Institute of Hydropower
Engineering and Technology, Tehri (Constitute Institute of Uttarakhand Technical
University) for his encouragement.
We would like to thank the production team at Springer-Verlag Heidelberg,
particularly Dr. Marion Hertel, Beate Siek, Elizabeth Hawkins, Birgit Münch and
Tobias Wassermann for their patience, help and suggestions.
We extend our sincere gratitude, love, and appreciation to our family members,
especially parents, Mr. Chinnappan, Mrs. Mariya, Mr. Pawan Kumar Sambher and
Mrs. Sudesh Sambher, brother Doss Chinnappan, and sister Amutha Chinnappan
(Department of Environmental Engineering and Energy, Myongji University,
South Korea) for their support throughout this book project. We are also indebted to
our sons Suvir Baskar and Yavin Baskar, who missed our company in many days,
we were working on this project. We hope they will appreciate this effort when they
grow up. This book is also dedicated to my late brother, Julian Chinnappan.

xv


xvi

Acknowledgments

As editors we bear responsibility for all interpretations, opinions and errors in
this work. We welcome valuable comments and suggestions from our readers.
February 2012

Dr. Chinnappan Baskar
E-mail: ; Website: www.baskarc.com
Dr. Shikha Baskar



Contents

1

2

Biomass Conversion to Energy . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Biomass and Energy Generation. . . . . . . . . . . . . . . . . . . .
1.2.1
Methods of Biomass Conversion . . . . . . . . . . . . .
1.2.2
Conversion of Biomass to Biofuels:
The Biorefinery Concept . . . . . . . . . . . . . . . . . . .
1.2.3
Biomass Conversion into Electricity . . . . . . . . . . .
1.3 Economics and Modeling of Biomass Conversion Processes
to Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Future of Biomass Conversion into Energy . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Energy Plantation . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Biomass Production Techniques . . . . . . . . . . . . . . .
2.4 Biomass Conversion Processes . . . . . . . . . . . . . . . .
2.4.1
Direct Combustion Processes . . . . . . . . . . .
2.4.2

Thermochemical Process . . . . . . . . . . . . . .
2.5 Types of Gasifiers . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
Updraught or Counter Current Gasifier . . . .
2.5.2
Downdraught or Co-Current Gasifiers . . . . .
2.5.3
Cross-Draught Gasifier . . . . . . . . . . . . . . .
2.5.4
Fluidized Bed Gasifier . . . . . . . . . . . . . . .
2.5.5
Other Types of Gasifiers . . . . . . . . . . . . . .
2.6 Briquetting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1
Screw Press and Piston Press Technologies .
2.6.2
Compaction Characteristics of Biomass and
Their Significance . . . . . . . . . . . . . . . . . .

.
.
.
.

1
1
4
7

..

..

56
79

..
..
..

84
87
88

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

91
91
93
94
95
96
97
102
102
102
103
103
104
104
104


.......

107

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.


xvii


xviii

Contents

2.7

Anaerobic Digestion . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1
Batch or Continuous . . . . . . . . . . . . . . . . . . . . .
2.7.2
Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.3
Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.4
Number of Stages . . . . . . . . . . . . . . . . . . . . . . .
2.7.5
Residence . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.6
Feedstocks . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Methane Production in Landfills. . . . . . . . . . . . . . . . . . .
2.9 Ethanol Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11 First-Generation Versus Second-Generation Technologies .
2.12 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3


4

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.

109
112
113
113
114
115
115
116
117
119
120
121
122

Lignocellulose Pretreatment by Ionic Liquids: A Promising Start
Point for Bio-energy Production . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Ionic Liquids: Good Solvents for Biomass. . . . . . . . . . . . . . .
3.2.1
Relationship Between Ionic Liquids’ Structure
and Solubility. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2
Molecular Level Understanding of the Interaction
of Ionic Liquids and Lignocellulose: The Key
for Lignocellulose Pretreatment . . . . . . . . . . . . . . . .
3.3 Toward Better Understanding of the Wood Chemistry
in Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Ionic Liquids Pretreatment Technology for Enzymatic
Production of Monosugars . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Ionic Liquids Pretreatment Technology for Chemical
Production of Monosugars . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Enzymatic Compatible Ionic Liquids for Biomass
Pretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Conclusions and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

138
140
140

Application of Ionic Liquids in the Conversion of Native
Lignocellulosic Biomass to Biofuels . . . . . . . . . . . . . . . . . .
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Pretreatment of Native Biomass . . . . . . . . . . . . . . . . .
4.2.1
Cellulose and Lignin Composition in Biomass .

4.2.2
Dissolution of Biomass in Ionic Liquids . . . . .
4.2.3
Effect of Ionic Liquid Chemical Composition .
4.2.4
Effect of Temperature . . . . . . . . . . . . . . . . . .
4.2.5
Effect of Density . . . . . . . . . . . . . . . . . . . . .
4.2.6
Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . .

145
145
146
146
147
149
150
151
151

.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.

123
123
124
125

126
128
130
132


Contents

4.2.7
Acid Hydrolysis . . . . . . . . . . . . . . . . . . . . . . .
4.2.8
Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.9
Pretreatment with Ammonia . . . . . . . . . . . . . .

4.2.10 Microwave Heating and Ultrasounds. . . . . . . . .
4.2.11 Biomass Size Reduction . . . . . . . . . . . . . . . . .
4.2.12 Comparison with Other Pretreatments . . . . . . . .
4.2.13 Water Adsorption as an Issue. . . . . . . . . . . . . .
4.2.14 Presence of Impurities. . . . . . . . . . . . . . . . . . .
4.3 Mechanism of Delignification and Cellulose Dissolution .
4.3.1
Analytical Techniques . . . . . . . . . . . . . . . . . . .
4.3.2
Purified Cellulose Substrates and Lignin Models
4.3.3
Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4
Regeneration and Reduction of Cellulose
Crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5
Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . .
4.3.6
Empirical Solvent Polarity Scales . . . . . . . . . . .
4.4 Compatibility with Cellulases. . . . . . . . . . . . . . . . . . . .
4.4.1
General Toxicity of Ionic Liquids. . . . . . . . . . .
4.4.2
Deactivation of Cellulases in ILs . . . . . . . . . . .
4.4.3
Temperature and pH Dependence of Cellulase
Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4
Effect of High Pressure . . . . . . . . . . . . . . . . . .
4.4.5

Identification of Cellulases Resistant
to Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . .
4.4.6
Designing New Ionic Liquids Suitable for
Cellulose Dissolution and Cellulase Activity . . .
4.4.7
Stabilization of Cellulases in Microemulsions
and by Immobilization . . . . . . . . . . . . . . . . . .
4.5 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1
How Green are ILs? . . . . . . . . . . . . . . . . . . . .
4.5.2
Recycling Attempts . . . . . . . . . . . . . . . . . . . .
4.5.3
Biodegradability . . . . . . . . . . . . . . . . . . . . . . .
4.6 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1
Applications of Purified Cellulose Substrates . . .
4.6.2
Applications of Native Biomass . . . . . . . . . . . .
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5

Catalysts in Thermochemical Biomass Conversion . . . . . . . .
5.1 Thermochemical Biomass Conversion . . . . . . . . . . . . . .
5.2 Types of Catalysts in the Thermochemical Biomass
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1
Known Catalyst Types for Biomass Gasification

5.2.2
Catalyst Types for Biomass Pyrolysis . . . . . . . .

xix

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

152
153
153

154
154
155
155
156
157
157
159
160

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.


.
.
.
.
.
.

160
161
163
165
165
165

....
....

167
168

....

169

....

169

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

170
171
171
171
173
173
173
174
177

177

....
....

187
187

....
....
....

188
188
191

.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.


xx

Contents

5.2.3
Nanocatalysts for Biomass Conversion . . . . . . . . . . .
5.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6

Fatty Acids-Derived Fuels from Biomass via Catalytic
Deoxygenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Deoxygenation Processes. . . . . . . . . . . . . . . . . . . . . . .
6.2.1
Hydrodeoxygenation of Fatty Acids . . . . . . . . .
6.2.2
Decarboxylation/Decarbonylation of Fatty Acids
6.2.3
Deoxygenation of Fatty Acids via Catalytic
Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.4
Comparison of Deoxygenation Methods . . . . . .
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194
196
196

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.

.
.

199
199
201
201
207

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

214

215
217
218

7

Biobutanol: The Future Biofuel. . . . . . . . . . . . . . . . . . . . . . . .
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Microbiology of ABE Fermentation . . . . . . . . . . . . . . . . .
7.3 Biomass as Feedstock . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Improvements in Fermentation Processes. . . . . . . . . . . . . .
7.4.1
Batch and Fed-Batch Fermentation Processes. . . . .
7.4.2
Continuous Fermentation Process . . . . . . . . . . . . .
7.5 Recovery Techniques Integrated with Fermentation Process.
7.6 Economic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.

221
221
223
223
225
226
229
229
231
232
232

8

Molecular Genetic Strategies for Enhancing Plant Biomass for
Cellulosic Ethanol Production . . . . . . . . . . . . . . . . . . . . . . . . .

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Strategies for Enhancement of Biomass. . . . . . . . . . . . . . .
8.2.1
Genetic Basis of Plant Architecture . . . . . . . . . . .
8.2.2
Phytohormone-Related Genes and Developmental
Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.3
Functional Genomics Approaches for Identification
of Useful Genes . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.4
Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.5
Biotechnological Approaches to Further Improve
Biofuel Crops. . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 Conclusions and Future Perspectives. . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.

.
.
.
.

237
237

239
239

..

241

..
..

244
244

..
..
..

245
246
247


Contents

9

Production of Bioethanol from Food Industry Waste:
Microbiology, Biochemistry and Technology . . . . . . . . . .
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.2.1
Wheat Straw . . . . . . . . . . . . . . . . . . . . . . .
9.2.2
Sugarcane Bagasse . . . . . . . . . . . . . . . . . . .
9.2.3
Rice Straw. . . . . . . . . . . . . . . . . . . . . . . . .
9.2.4
Fruit and Vegetable Waste. . . . . . . . . . . . . .
9.2.5
Coffee Waste . . . . . . . . . . . . . . . . . . . . . . .
9.2.6
Cheese Whey . . . . . . . . . . . . . . . . . . . . . . .
9.2.7
Spent Sulfite Liquor . . . . . . . . . . . . . . . . . .
9.2.8
Bioethanol from Algae . . . . . . . . . . . . . . . .
9.3 Microorganisms for Bioethanol Production . . . . . . . .
9.3.1
Microorganisms and Their Characteristics . . .
9.3.2
Substrate and Microorganisms . . . . . . . . . . .
9.3.3
Lignocellulosic Material for Ethanolic
Fermentation . . . . . . . . . . . . . . . . . . . . . . .
9.3.4
Fermentation of Syngas into Ethanol . . . . . .
9.4 Biochemistry of Fermentation . . . . . . . . . . . . . . . . .
9.4.1
Fermentation of Carbohydrates. . . . . . . . . . .
9.4.2

Efficiency of Ethanol Formation. . . . . . . . . .
9.4.3
Metabolic Engineering for the Production of
Advanced Fuels . . . . . . . . . . . . . . . . . . . . .
9.5 Genetically Modified Microorganisms for Bioethanol
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.1
Escherichia coli . . . . . . . . . . . . . . . . . . . . .
9.5.2
Zymomonas mobilis . . . . . . . . . . . . . . . . . .
9.5.3
Pichia stipitis . . . . . . . . . . . . . . . . . . . . . . .
9.5.4
Kloeckera oxytoca . . . . . . . . . . . . . . . . . . .
9.5.5
Saccharomyces cerevisiae . . . . . . . . . . . . . .
9.6 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.1
Fermentation Kinetics . . . . . . . . . . . . . . . . .
9.6.2
Fermentation Process for Bioethanol. . . . . . .
9.7 Technology of Bioethanol Production . . . . . . . . . . . .
9.7.1
Sugar Molasses . . . . . . . . . . . . . . . . . . . . .
9.7.2
Apple Pomace . . . . . . . . . . . . . . . . . . . . . .
9.7.3
Orange Waste . . . . . . . . . . . . . . . . . . . . . .
9.7.4
Banana Waste . . . . . . . . . . . . . . . . . . . . . .

9.7.5
Potato Waste . . . . . . . . . . . . . . . . . . . . . . .
9.7.6
Wheat Straw . . . . . . . . . . . . . . . . . . . . . . .
9.7.7
Rice Straw. . . . . . . . . . . . . . . . . . . . . . . . .
9.7.8
Rice Husk . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.9
Barley . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.10 Whey . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxi

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

251
251
254
254
255
256
256
259
259
259
260
260
260
260

.

.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.

.
.
.
.

261
263
263
263
271

......

272

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

275
276
276
277
277
278
279
279
283
286
286
287
289
290
291
291
291
292
292
292

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.


xxii

Contents

9.7.11 Cassava Roots . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.12 Hydrolysed Cellulosic Biomass . . . . . . . . . . . . . .
9.7.13 Recent Advances in Bioethanol Production Process .
9.7.14 Boiethanol Refinery . . . . . . . . . . . . . . . . . . . . . .
9.8 Future Perspectives and Conclusions. . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.


.
.
.
.
.
.

293
293
300
300
301
302

10 Enhancement of Biohydrogen Production by Two-Stage Systems:
Dark and Photofermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Dark Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1 Dark Fermentation with Pure Cultures . . . . . . . . . . .
10.2.2 Dark Fermentation with Mixed Cultures . . . . . . . . . .
10.2.3 Substrates for Dark Fermentation . . . . . . . . . . . . . . .
10.2.4 Factors Influencing Dark Fermentation . . . . . . . . . . .
10.2.5 Pre-treatment of Mixed Culture . . . . . . . . . . . . . . . .
10.2.6 pH and Temperature . . . . . . . . . . . . . . . . . . . . . . . .
10.2.7 Partial Pressure of Produced Hydrogen . . . . . . . . . . .
10.2.8 Reactor Configuration . . . . . . . . . . . . . . . . . . . . . . .
10.3 Photofermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.1 Substrates for Photofermentation . . . . . . . . . . . . . . .
10.3.2 Factors Influencing Photofermentation . . . . . . . . . . .

10.3.3 C/N Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.4 Inoculum Age . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.5 Light Source and Light Intensity . . . . . . . . . . . . . . .
10.3.6 pH and Temperature . . . . . . . . . . . . . . . . . . . . . . . .
10.3.7 Reactor Configuration . . . . . . . . . . . . . . . . . . . . . . .
10.4 Two-Stage Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

313
313
314
317
318
320
321
322
322
323
323
324
326
327
327
328
328
329
329
330
332

333

11 Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals
and Materials: A Biorefinery Processing Perspective . . . . . . . . . .
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Overview of Organosolv Fractionation . . . . . . . . . . . . . . . . .
11.3 Ethanol Fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.1 Effect of Treatment on the Structure of
Lignocellulosic Material . . . . . . . . . . . . . . . . . . . . .
11.3.2 Process of Ethanol Fractionation and Lignin
Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.3 Applications of the Products . . . . . . . . . . . . . . . . . .
11.4 Organic Acid Fractionation . . . . . . . . . . . . . . . . . . . . . . . . .

341
341
342
343
343
347
350
355


Contents

xxiii

11.4.1


Effect of Treatment on the Structure of
Lignocellulosic Material . . . . . . . . . . . . . . . . . .
11.4.2 Process of Organic Acid Fractionation and Lignin
Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4.3 Applications of the Products . . . . . . . . . . . . . . .
11.5 Other Fractionation Processes Using Organic Solvents . . .
11.5.1 Methanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.2 Ethylene Glycol . . . . . . . . . . . . . . . . . . . . . . . .
11.5.3 Ethanolamine . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.4 Acetone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.5 Dimethyl Formamide . . . . . . . . . . . . . . . . . . . .
11.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 Lignin as Source of Fine Chemicals: Vanillin
and Syringaldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 Lignin, a Fascinating Complex Polymer . . . . . . . . . . . .
12.2 Main Lignin Types: Origin, Producers, End Users
and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1 Kraft Lignins . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.2 Lignosulfonates . . . . . . . . . . . . . . . . . . . . . . .
12.2.3 Organosolv Lignins. . . . . . . . . . . . . . . . . . . . .
12.2.4 Other Lignins. . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Lignin as Source of Monomeric Compounds . . . . . . . . .
12.3.1 General Overview. . . . . . . . . . . . . . . . . . . . . .
12.3.2 Industrial Vanillin Production . . . . . . . . . . . . .
12.4 Production of Vanillin and Syringaldehyde by Lignin
Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4.1 Reaction Conditions . . . . . . . . . . . . . . . . . . . .
12.4.2 Evolution of Products and Temperature During
Lignin Oxidation . . . . . . . . . . . . . . . . . . . . . .

12.4.3 Influence of the Parameters in Lignin Oxidation
and Vanillin Oxidation . . . . . . . . . . . . . . . . . .
12.4.4 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4.5 The Continuous Process of Lignin Oxidation . . .
12.4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5 Separation Processes for Oxidation Products of Lignin . .
12.5.1 Conventional Process of Extraction. . . . . . . . . .
12.5.2 Ion Exchange Processes . . . . . . . . . . . . . . . . .
12.5.3 Membrane Processes . . . . . . . . . . . . . . . . . . . .
12.5.4 Supercritical Extraction and Crystallization . . . .
12.5.5 The Integrated Process for Vanillin Production .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

355

.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.

358
360
364
364
367
367
368
369
370
370

....
....

381
381

.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

383
384
385
388
390
390
390
390

....
....

394
394

....


399

.
.
.
.
.
.
.
.
.
.
.

400
405
406
408
408
409
409
410
410
411
413

.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.


xxiv

13 Liquefaction of Softwoods and Hardwoods in Supercritical
Methanol: A Novel Approach to Bio-Oil Production . . . . .
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 Supercritical Fluid Processing . . . . . . . . . . . .
13.2.2 Chemical Characterization . . . . . . . . . . . . . . .
13.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . .
13.3.1 Biochar Characterization . . . . . . . . . . . . . . . .
13.3.2 Bio-Oil Characterization . . . . . . . . . . . . . . . .
13.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.

421
421
423
423
424
424
425
427
431
432

14 Bioextraction: The Interface of Biotechnology
and Green Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.1 Disadvantages of Metal Extraction Process, its Environmental
Concerns and Need of Bioextraction . . . . . . . . . . . . . . . . . . .
14.2 Brief Description of Bioextraction Process . . . . . . . . . . . . . .

14.2.1 Phytoextraction . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.2 Biomining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Contribution of Microbes/Microorganisms in Bioextraction . . .
14.3.1 Role of Microbes in Biomining . . . . . . . . . . . . . . . .
14.3.2 Role of Fungi in Biomining . . . . . . . . . . . . . . . . . . .
14.4 Various Chemical Processes for Extraction
of Heavy Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4.1 Concentration of the Ore (Removal of Unwanted
Metals and Gangue to Purify the Ore). . . . . . . . . . . .
14.4.2 Conversion into Metal Oxide . . . . . . . . . . . . . . . . . .
14.4.3 Reduction of Metal Oxide to Metal . . . . . . . . . . . . .
14.4.4 Refining of Impure Metal into Pure Metals . . . . . . . .
14.5 Development of Metal Specific Chelating Resins
to Extract Metal Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6 Applications of Bioextraction. . . . . . . . . . . . . . . . . . . . . . . .
14.7 Economization of Bioextraction . . . . . . . . . . . . . . . . . . . . . .
14.8 Flow Diagram to Summarize the Chapter
and the Process of Bioextraction . . . . . . . . . . . . . . . . . . . . .
14.9 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

455
456
456

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

459

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


461

435
436
436
437
441
444
445
446
447
447
447
448
449
451
451
454


Contributors

Alok Adholeya Biotechnology and Management of Bioresources Division,
The Energy and Resources Institute, New Delhi 110003, India
J. Andres Soria Agricultural and Forestry Experiment Station, University of
Alaska Fairbanks, Palmer, AK 99645, USA; School of Engineering, University of
Alaska Anchorage, Palmer, AK 99645, USA, e-mail:
Ashok N. Bhaskarwar Department of Chemical Engineering, Indian Institute of
Technology, Hauz Khas, New Delhi 110016, India, e-mail:

Eduardo A. Borges da Silva Laboratory of Separation and Reaction Engineering—LSRE, Associate Laboratory LSRE/LCM, Department of Chemical
Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias
s/n, 4200-465 Porto, Portugal
Manab Das Biotechnology and Management of Bioresources Division, The
Energy and Resources Institute, New Delhi 110003, India
Kalyan Gayen Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad 382424, Gujarat,
India, e-mail:
Patrick C. Hallenbeck Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, QC H3C 3J7,
Canada, e-mail:
V. K. Joshi Department of Food Science and Technology, Dr. Y.S. Parmar
University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India,
e-mail:
Tugba Keskin Département de Microbiologie et Immunologie, Université de
Montréal, CP 6128 Succursale Centre-ville, Montréal, QC H3C 3J7, Canada;
Environmental Biotechnology and Bioenergy Laboratory, Bioengineering
Department, Ege University, 35100 Bornova, Izmir, Turkey

xxv


xxvi

Contributors

Manish Kumar Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad 382424, Gujarat,
India
Prakash P. Kumar Department of Biological Sciences and Temasek Life
Sciences Laboratory, National University of Singapore, 10 Science Drive 4,
Singapore 117543, Singapore, e-mail:
A. K. Kurchania Renewable Energy Sources Department, College of Technology

and Engineering, Maharana Pratap University of Agriculture and Technology,
Udaipur, India, e-mail:
Ming-Fei Li Institute of Biomass Chemistry and Technology, Beijing Forestry
University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China
Wujun Liu Dalian National Laboratory for Clean Energy, Dalian Institute of
Chemical Physics, CAS, Dalian 116023, People’s Republic of China
Marcel Lucas Chemistry Division, Los Alamos National Laboratory, Los
Alamos, NM 87545, USA
Päivi Mäki-Arvela Laboratory of Industrial Chemistry and Reaction Engineering,
Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo, Finland
Armando G. McDonald Renewable Materials Program, College of Natural Resources, University of Idaho, Moscow, ID 83844-1132, USA, e-mail:
Dmitry Yu. Murzin Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo,
Finland, e-mail:
Maneesha Pande Department of Chemical Engineering, Indian Institute of
Technology, Hauz Khas, New Delhi 110016, India
Aditi Puri Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India
Rengasamy Ramamoorthy Department of Biological Sciences and Temasek Life
Sciences Laboratory, National University of Singapore, 10 Science Drive 4,
Singapore 117543, Singapore
Neerja S. Rana Department of Basic Sciences, Dr. Y.S. Parmar University of
Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
Kirk D. Rector Chemistry Division, Los Alamos National Laboratory, Los
Alamos, NM 87545, USA, e-mail:
Alírio E. Rodrigues Laboratory of Separation and Reaction Engineering—LSRE,
Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200–465 Porto,
Portugal, e-mail:


Contributors


xxvii

Paula C. Rodrigues Pinto Laboratory of Separation and Reaction Engineering—
LSRE, Associate Laboratory LSRE/LCM, Department of Chemical Engineering,
Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200–465
Porto, Portugal
Bartosz Rozmysłowicz Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo,
Finland
Rakesh Kumar Sharma Green Chemistry Network Centre, Department of
Chemistry, University of Delhi, Delhi 110007, India, e-mail: rksharmagreenchem
@hotmail.com
Ali Sınag˘ Department of Chemistry, Science Faculty, Ankara University,
Besßevler-Ankara 06100, Turkey, e-mail:
Run-Cang Sun Institute of Biomass Chemistry and Technology, Beijing Forestry
University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China;
State Key Laboratory of Pulp and Paper Engineering, South China University of
Technology, Wushan Road No. 381, Tianhe District, 510640 Guangzhou, China,
e-mail: , e-mail:
Shao-Ni Sun Institute of Biomass Chemistry and Technology, Beijing Forestry
University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China
Gregory L. Wagner Chemistry Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
Abhishek Walia Department of Basic Sciences, Dr. Y.S. Parmar University of
Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
Haibo Xie Dalian National Laboratory for Clean Energy, Dalian Institute of
Chemical Physics, CAS, Dalian 116023, People’s Republic of China , e-mail:

Feng Xu Institute of Biomass Chemistry and Technology, Beijing Forestry
University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China

Zongbao K. Zhao Dalian National Laboratory for Clean Energy, Dalian Institute
of Chemical Physics, CAS, Dalian 116023, People’s Republic of China


Chapter 1

Biomass Conversion to Energy
Maneesha Pande and Ashok N. Bhaskarwar

Rapid depletion of fossil fuels, compounded by the accompanying environmental
hazards, has prompted the need for alternative sources of energy. Energy from
biomass, wind energy, solar energy, and geothermal energy are some of the most
promising alternatives which are currently being explored. Among these, biomass
is an abundant, renewable, and relatively a clean energy resource which can be
used for the generation of different forms of energy, viz. heat, electrical, and
chemical energy. There are a number of established methods available for the
conversion of biomass into different forms of energy which can be categorized into
thermochemical, biochemical, and biotechnological methods. These methods have
further been integrated into the concept of a biorefinery wherein, as in a petroleum
refinery, a variety of biomass-based raw materials can be processed to obtain a
range of products including biofuels, chemicals, and other value-added products.
We present here an overview of how biomass can be used for the generation of
different forms of energy and useful material products in an efficient and
economical manner.

1.1 Introduction
The current major source of energy/fuel is fossil fuel, which, for all practical
purposes can be considered to be nonrenewable. Fossil fuels are all petroleum
derivatives and the use of these fossil fuels leads to the generation of greenhouse
gases such as CO2, CH4, N2O. The transportation sector is responsible for the


M. Pande Á A. N. Bhaskarwar (&)
Department of Chemical Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi 110016, India
e-mail:

C. Baskar et al. (eds.), Biomass Conversion,
DOI: 10.1007/978-3-642-28418-2_1, Ó Springer-Verlag Berlin Heidelberg 2012

1


2

M. Pande and A. N. Bhaskarwar

Fig. 1.1 Sources of biomass for conversion to energy

highest rate of growth in greenhouse gas emissions (GHG) among all sectors. This
concern as well as the current concern over the rapid depletion of fossil fuel,
accompanied by the ongoing price increase of fossil resources and uncertain
availability, combined with environmental concerns such as global warming has
propelled research efforts toward generating alternative means of energy production using renewable resources. The solution to this problem seems to emerge in
the form of bioenergy, i.e., energy generated from biomass.
Biomass is the only renewable organic resource. It is also one of the most
abundant resources. It comprises all biological materials including living, or
recently living organisms, and is a huge storehouse of energy. The dead biomass or
the biological waste can be used as a direct source of energy like heat and electricity or as an indirect source of energy like various types of fuels. The living
biomass, or components thereof, like microorganisms, algae, and enzymes can be
used to convert one form of energy into another using biofuel cells. Figure 1.1

gives the various sources of biomass which can be used for biomass conversion
into energy. In the entire process of conversion of biomass into energy, a dual
purpose of energy generation and environmental clean-up is achieved.
Sunlight is an infinitely abundant source of energy on this earth and all energy
on this planet, in principle, is renewable. However, considering the factor of time
frame, the present sources of energy such as coal, oil, and natural gas take millennia to renew. Therefore, it is imperative that research in the field of energy
generation should focus on reducing this time frame by cutting short the time
required to turn sunlight into usable energy. Biomass is an excellent source of
renewable energy and serves as an effective carbon sink. Plants and trees which
constitute biomass can be considered as perpetual powerhouses capable of continuously tapping the energy from sunlight and converting it via photosynthesis


×