Tải bản đầy đủ (.pdf) (4 trang)

Đề kiểm tra 45 phút toán 11 chương 4 trường THPT Quỳnh Lưu 1 – Nghệ An

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (317.05 KB, 4 trang )

ĐỀ KIỂM TRA 45’

SỞ GD&ĐT NGHỆ AN

CHƯƠNG 4- GIỚI HẠN

TRƯỜNG THPT QUỲNH LƯU 1

Thời gian làm bài : 45 phút không kể thời gian phát đề

Mã đề thi
132

Họ, tên thí sinh:..................................................................... Số báo danh: .............................
u1  1

n
Câu 1: Cho dãy số  un  xác định bởi 
. Tìm lim un .
1
un 1  un    , n  *
2

A. 2.
B. 1.
C. 0.
D. 2.
4x 1
Câu 2: Tính giới hạn lim
x 1 5 x  1
5


4
A. .
B. .
C. 0 .
D. 1
5
4
x2  4 x  3
Câu 3: Tính giới hạn lim
x 3
x2  9
1
1
A. .
B.
.
C. 1
D. 1 .
3
3
Câu 4: Cho hàm số f ( x) xác định trên đoạn [a, b] . Trong các mệnh đế sau, mệnh đề nào đúng?
A. Nếu phương trình f ( x)  0 có nghiêm trong khoảng (a, b) thì hàm số f ( x) phải liên tục trên
khoảng (a, b) .
B. Nếu hàm số f ( x) liên tục trên đoạn [a, b] và f (a) f (b)  0 thì phương trình f ( x)  0 không có
nghiệm trong khoảng (a, b) .
C. Nếu hàm số f liên tục, tăng trên đoạn [a, b] và f (a) f (b)  0 thì phương trình f ( x)  0 không thể
có nghiệm trong khoảng (a, b) .
D. Nếu f (a) f (b)  0 thì phương trình f ( x)  0 có ít nhất một nghiệm trong khoảng (a, b) .
Câu 5: Trong các khẳng định sau, khẳng định nào sai?
A. Phương trình cos2 x  x  0 vô nghiệm.

B. Phương trình 2 x  6 3 1  x  3 có đúng 3 nghiệm phân biệt thuộc khoảng  4;7  .
C. Phương trình x5  5x3  4 x  1  0 có đúng 5 nghiệm thuộc khoảng  2;3 .
D. Phương trình 2 x3  10 x  7  0 có nghiệm.
Câu 6: Cho lim

x 

A. 0.

x2  2  x 2

 a 2  b 3  c 6  d  a, b, c, d 
x2  3  x 3
B. 3.
C. 1.

Câu 7: Tính giới hạn lim

x 

A. 0.





.

Tính ab  cd .
D. 2.


x100  2017.x50  32  x50 .

1
B.  .
2

C. 

2017
.
2

D. .

 1

1
1

 ... 
Câu 8: Tính giới hạn lim 
.
(2n  1)(2n  1) 
 1.3 3.5
Trang 1/6 - Mã đề thi 132


A.


1
.
3

2
.
3

B.

C.

1
.
2

D. 1

  x2  x  2
, x  2

Câu 9: Hàm số f ( x)   x 2  4
. Hàm số liên tục tại x  2 khi
a
, x  2

1
3
1
3

A. a 
B. a 
.
C. a  .
D. a  .
4
4
4
4
Câu 10: Cho các hàm số f , g có giới hạn hữu hạn khi x dần tới x0 . Khẳng định nào sau đây đúng?

A. lim f ( x)  g ( x)  lim f ( x)  lim g ( x) .

B. lim f ( x)  g ( x)  lim  f ( x)  g ( x)

C. lim f ( x)  g ( x)  lim f ( x)  lim g ( x) .

D. lim f ( x)  g ( x)  lim  f ( x)  g ( x) .

x  x0

x  x0

x  x0

x  x0

x  x0

x  x0


Câu 11: Có bao nhiêu giá trị của tham số m 
A. 0.

x  x0

x  x0

x  x0

x  x0

thỏa mãn lim

3

x 0

C. 1.

B. 2.

xm  3 xm
 1.
x
D. 3.

3x3  2 x  1
.
x 

4 x  x2
3
A. 3 .
B. .
C.  .
D. 
4
Câu 13: Trong bốn giới hạn sau, giới hạn nào bằng 0 ?
2n  3
(2n  1)(n  3) 2
1  n3
2n  1
A. lim 2
.
B. lim
.
C.
.
D.
lim
lim
1  2n
n  2n
n  2n 3
3.2n  3n
Câu 12: Tính giới hạn lim

Câu 14: Tính giới hạn lim

x 


A. 





x 2  x  10  x .

B.  .

C. 0 .

D.

1
1


Câu 15: Tính giới hạn lim  2
 2
.
x 2 x  3 x  2
x  5x  6 

A. 1.
B. 2.
C. 1 .

n  3n

2n3  5n  2
3
1
A.
.
B. .
2
2
Câu 17: Dãy số nào sau đây có giới hạn bằng 0
2

1
.
2

D. 2.

3

Câu 16: Tính giới hạn lim
x 1

A.  0,919  .

A. 0 .
Câu 19: Tính giới hạn lim

1
.
5


D.

 2 .
n

C. 1,101

x3  8
.
x2  4
B. 3 .

C.  .

D. 1

C. 0 .

D.

n

x 2

D.

B.  1,101 .

n


Câu 18: Tính giới hạn lim

C. 0



A. 1



n

4n 2  2n  2n .

B.

1
.
2

1
.
4

Câu 20: Chọn mệnh đề sai
A. lim(4 x  5 x  x)  0
6

x 1


5

x2  4x  3
B. lim
 2.
x 3
x 3
Trang 2/6 - Mã đề thi 132


C. lim
x 2

x2  x  6 5
 .
4
x2  4

D. lim
x 4

x 2  16
9
 .
2
x  x  20 8

 x3  8
khi x  2


Câu 21: Với giá trị nào của a hàm số f  x    x  2
liên tục trên ?
5 x  a khi x  2

A. a  1.
B. a  2.
C. a  1.
D. a  2.

 x2  4
khi x  2

Câu 22: Với giá trị nào của a hàm số f  x    x  2  2
liên tục tại x  2 ?
a  2 x
khi x  2

A. a  5.
B. a  20.
C. a  10.
D. a  12.

5  x3  3 x 2  7
.
x 1 2017 x 2  2017
11
11
A. 
B.

.
.
48408
48408
1  2  ...  n
Câu 24: Tính giới hạn lim
n2  1
1
A. .
B. 1 .
2
Câu 23: Tính giới hạn lim

x2  5x  1  x
Câu 25: Tính giới hạn lim
.
x 
3x  1
2
A. 0.
B. .
3

C. 

C.

11
.
48409


3
2

2
C.  .
3

D. 

11
.
46391

D. 0 .

D.

1
.
3

-----------------------------------------------

----------- HẾT ----------

Trang 3/6 - Mã đề thi 132


ĐÁP ÁN

made
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132
132

cautron
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dapan
A
C
B
B
D

C
A
A
C
C
C
A
B
D
D
B
D
A
C
D
B
B
A
D
A

made
209
209
209
209
209
209
209
209

209
209
209
209
209
209
209
209
209
209
209
209
209
209
209
209
209

cautron
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

dapan
D
D
B
C
C
A
D
C
D
C
B
D
B
A

A
A
A
C
B
B
D
A
D
C
B

made
357
357
357
357
357
357
357
357
357
357
357
357
357
357
357
357
357

357
357
357
357
357
357
357
357

cautron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

dapan
B
A
B
C
D
C
C
D
C
B
D
D
A
B
A
D
C
B
A
A
A
D
B

C
C

made
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485
485


cautron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dapan
D
A

C
C
C
C
B
C
B
D
C
A
B
A
A
A
B
D
B
C
D
D
D
B
A



×