Tải bản đầy đủ (.pdf) (418 trang)

Springer fremond m maceri f (eds) mechanical modelling and computational issues in civil engineering (LNACM 23 springer 2005)(ISBN 3540255672)(418s)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (320 KB, 418 trang )

Lecture Notes in Applied
and Computational Mechanics
Volume 23
Series Editors
Prof. Dr.-Ing. Friedrich Pfeiffer
Prof. Dr.-Ing. Peter Wriggers


Lecture Notes in Applied and Computational Mechanics
Edited by F. Pfeiffer and P. Wriggers

Vol. 22: Chang C.H.
Mechanics of Elastic Structures with Inclined Members:
Analysis of Vibration, Buckling and Bending of X-Braced
Frames and Conical Shells
190 p. 2004 [3-540-24384-4]
Vol. 21: Hinkelmann R.
Efˇcient Numerical Methods and Information-Processing
Techniques for Modeling Hydro- and Environmental
Systems
305 p. 2005 [3-540-24146-9]
Vol. 20: Zohdi T.I., Wriggers P.
Introduction to Computational Micromechanics
196 p. 2005 [3-540-22820-9]
Vol. 19: McCallen R., Browand F., Ross J. (Eds.)
The Aerodynamics of Heavy Vehicles:
Trucks, Buses, and Trains
567 p. 2004 [3-540-22088-7]
Vol. 18: Leine, R.I., Nijmeijer, H.
Dynamics and Bifurcations
of Non-Smooth Mechanical Systems


236 p. 2004 [3-540-21987-0]
Vol. 17: Hurtado, J.E.
Structural Reliability: Statistical Learning Perspectives
257 p. 2004 [3-540-21963-3]
Vol. 16: Kienzler R., Altenbach H., Ott I. (Eds.)
Theories of Plates and Shells:
Critical Review and New Applications
238 p. 2004 [3-540-20997-2]
Vol. 15: Dyszlewicz, J.
Micropolar Theory of Elasticity
356 p. 2004 [3-540-41835-0]
Vol. 14: FrÃemond M., Maceri F. (Eds.)
Novel Approaches in Civil Engineering
400 p. 2003 [3-540-41836-9]
Vol. 13: Kolymbas D. (Eds.)
Advanced Mathematical and Computational
Geomechanics
315 p. 2003 [3-540-40547-X]
Vol. 12: Wendland W., Efendiev M. (Eds.)
Analysis and Simulation of Multiˇeld Problems
381 p. 2003 [3-540-00696-6]
Vol. 11: Hutter K., Kirchner N. (Eds.)
Dynamic Response of Granular and Porous Materials
under Large and Catastrophic Deformations
426 p. 2003 [3-540-00849-7]

Vol. 10: Hutter K., Baaser H. (Eds.)
Deformation and Failure in Metallic Materials
409 p. 2003 [3-540-00848-9]
Vol. 9: Skrzypek J., Ganczarski A.W. (Eds.)

Anisotropic Behaviour of Damaged Materials
366 p. 2003 [3-540-00437-8]
Vol. 8: Kowalski, S.J.
Thermomechanics of Drying Processes
365 p. 2003 [3-540-00412-2]
Vol. 7: Shlyannikov, V.N.
Elastic-Plastic Mixed-Mode Fracture Criteria
and Parameters
246 p. 2002 [3-540-44316-9]
Vol. 6: Popp K., Schiehlen W. (Eds.)
System Dynamics and Long-Term Behaviour
of Railway Vehicles, Track and Subgrade
488 p. 2002 [3-540-43892-0]
Vol. 5: Duddeck, F.M.E.
Fourier BEM: Generalization
of Boundary Element Method by Fourier Transform
181 p. 2002 [3-540-43138-1]
Vol. 4: Yuan, H.
Numerical Assessments of Cracks
in Elastic-Plastic Materials
311 p. 2002 [3-540-43336-8]
Vol. 3: Sextro, W.
Dynamical Contact Problems with Friction:
Models, Experiments and Applications
159 p. 2002 [3-540-43023-7]
Vol. 2: Schanz, M.
Wave Propagation in Viscoelastic
and Poroelastic Continua
170 p. 2001 [3-540-41632-3]
Vol. 1: Glocker, C.

Set-Valued Force Laws:
Dynamics of Non-Smooth Systems
222 p. 2001 [3-540-41436-3]


Mechanical Modelling
and Computational Issues
in Civil Engineering
Michel Fr´emond
Franco Maceri (Eds.)


Professor Dr. Michel FrÃemond
Laboratoire Lagrange
Laboratoire Central des Ponts et Chauss´ees
75732 Paris cedex 15
France

Professor Dr. Franco Maceri
Dipartimento di Ingegneria Civile
Universit`a di Roma “Tor Vergata”
Via del Politecnico, 1
00133 Roma
Italy


With 236 Figures

ISSN 1613-7736
ISBN-


3-540-25567-2 Springer Berlin Heidelberg New York

ISBN-

978-3-540-25567-3 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2005923656
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com
c Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Typesetting: Data conversion by the editors.
Final processing by PTP-Berlin Protago-TEX-Production GmbH, Germany
Cover-Design: design & production GmbH, Heidelberg
Printed on acid-free paper
62/3020/Yu - 5 4 3 2 1 0


Preface


This book collects some papers of Italian and French engineers, mechanicians
and mathematicians, all associated within a European research network, the
Lagrange Laboratory. Many topics are covered, such as monumental dams,
soil mechanics and geotechnics, granular media, contact and friction problems, damage and fracture, new structural materials, vibration damping.
Modelling and computational aspects are both dealt with. The Lagrange Laboratory met plenarily twice, at Le Mont-Saint-Michel in 2001 and at Ravello
in 2002, and many individual exchanges took place meanwhile as a result of
the activities of a true community, sharing scientific culture and a common
understanding of modern civil engineering. In our opinion, this book offers a
good example of cooperation between Italian and French scientists, and we
believe that it will be of great interest for the reader.
Rome,
December 20, 2004

Michel Fr´emond
Franco Maceri


Contents

Monumental Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ruggiero Jappelli
1 Monuments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Archaeology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Abandonment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Approach of Mechanical Behaviour and Rupture
of Cohesive Granular Media. Validation on a Model Medium .
Jean-Yves Delenne, Moulay Sa¨ıd El Youssoufi, Jean-Claude B´enet
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Mechanical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Experimental characterisation of cohesion . . . . . . . . . . . . . . . . . . . . . . .
4 Comparison between numerical and experimental behaviour
of a cohesive granular medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Change of Volatile Organic Compounds
in Soil Remediation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ali Chammari, Bruno Cousin, Jean-Claude B´enet
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Phase Change of a Volatile Organic Compound in Soil . . . . . . . . . . . .
3 Self-removal of a contaminant in a soil . . . . . . . . . . . . . . . . . . . . . . . . . .
4 VOC Removal by venting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
1
4
11
20
27
44
52
67
75

89
94
103
103
104
107
109
111
113
113
114
116
120
122

Thermo-mechanical Behaviour of a Soil. Yield Surface Evolution125
Moulay Sa¨ıd El Youssoufi, Christian Saix, Fr´ed´eric Jamin
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2 Yield surface model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3 Studied soil, experimental device and procedure . . . . . . . . . . . . . . . . . . 128
4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133


VIII

Contents

Water Transport in Soil with Phase Change . . . . . . . . . . . . . . . . . .
Ali Chammari, B´etaboal´e Naon, Fabien Cherblanc, Jean-Claude B´enet

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Water Transport Model in a Non Saturated Soil . . . . . . . . . . . . . . . . .
3 Experimental Study of the Phase Change . . . . . . . . . . . . . . . . . . . . . . .
4 Self Drying of a Soil at Low Water Content . . . . . . . . . . . . . . . . . . . . .
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135
135
136
137
138
140

Tunnels in Saturated Elasto-plastic Soils:
Three-dimensional Validation of a Plane Simulation Procedure 143
Carlo Callari, Stefano Casini
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2 Procedure for plane simulation of tunneling in saturated ground . . . 145
3 The poro-elastoplastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4 Finite element formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5 Numerical simulations of tunneling in a saturated ground . . . . . . . . . 149
6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A Plasticity Model and Hysteresis Cycles . . . . . . . . . . . . . . . . . . . . .
Nelly Point, Denise Vial
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 The plasticity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Uniaxial tensile test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Cyclic loading and unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Description of the hardening tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Analysis of the plastic evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Computation of hysteritic responses . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Identification through hysteresis cycles . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

165

Computational Analysis of Isotropic Plasticity Models . . . . . . . .
Nunziante Valoroso, Luciano Rosati
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Problem set up. Continuum formulation . . . . . . . . . . . . . . . . . . . . . . . .
3 Discrete formulation and return map. 3D case . . . . . . . . . . . . . . . . . . .
4 The GH tensor and its inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Consistent tangent. 3D case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 The plane stress problem. Formulation and return map solution . . . .
7 Consistent tangent. Plane stress case . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Some tensor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B Coefficients for the 3D consistent tangent . . . . . . . . . . . . . . . . . . . . . . .
C Coefficients for the 2D consistent tangent . . . . . . . . . . . . . . . . . . . . . . .

173

165
166
166
168
169
169
170

171
172

173
174
177
179
181
184
188
189
195
197
198
200


Contents

A Non-linear Hardening Model Based
on Two Coupled Internal Hardening Variables:
Formulation and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nelly Point, Silvano Erlicher
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Thermodynamic formulation of a plasticity model
with linear kinematic/isotropic hardening . . . . . . . . . . . . . . . . . . . . . . .
3 A generalization of the four-parameter model . . . . . . . . . . . . . . . . . . . .
4 Implementation and some numerical results . . . . . . . . . . . . . . . . . . . . .
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparison between Static and Dynamic Criteria

of Material Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Antonio Grimaldi, Raimondo Luciano
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 A one-dimensional example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Static criteria of material stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Dynamic criteria of material stability . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Some connections among material stability criteria . . . . . . . . . . . . . . .
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IX

201
201
202
204
205
207
211
211
213
217
223
225
232

Material Damage Description via Structured Deformations . . .
Marc Fran¸cois, Gianni Royer-Carfagni
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Micromechanically-motivated kinematical description
via structured deformation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Structured deformations in a thermodynamical framework . . . . . . . .
4 Response of compressive/tensile panels under shear . . . . . . . . . . . . . .
5 Proposal for an experimental calibration of the model . . . . . . . . . . . .

235

Singular equilibrated stress fields for no-tension panels . . . . . . .
Massimiliano Lucchesi, Miroslav Silhavy, Nicola Zani
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Rectangular panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

255

Damage of Materials: Damaging Effects
of Macroscopic Vanishing Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Elena Bonetti, Michel Fr´emond
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 The variational problem and the weak existence result . . . . . . . . . . . .
4 Passage to the limit for vanishing external forces . . . . . . . . . . . . . . . . .
5 Balance of the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

235
238
241
244
249

255

256
259
267
267
269
271
272
273


X

Contents

A Numerical Method for Fracture of Rods . . . . . . . . . . . . . . . . . . . .
Maurizio Angelillo, Enrico Babilio, Antonio Fortunato
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Preliminaries on known mathematical results on free discontinuity
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 The one-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

277

Softening Behavior of Reinforced Cementitious Beams . . . . . . . .
Sonia Marfia, Elio Sacco
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Cross-section beam equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


293

An Experimental and Numerical Investigation on the Plating
of Reinforced Concrete Beams with FRP Laminates . . . . . . . . . .
L. Ascione, V. P. Berardi, E. Di Nardo, L. Feo, G. Mancusi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Mechanical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Experimental tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reliability of CFRP Structural Repair
for Reinforced Concrete Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Antonio Bonati, Giovanni Cavanna
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Experimental survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Adhesion between composite and cementitious materials . . . . . . . . . .
Elastic Plates with Weakly Incoherent Response . . . . . . . . . . . . . .
G. Lancioni
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Weakly Incoherent Transversally Isotropic Plates . . . . . . . . . . . . . . . . .
3 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Plate Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Free-wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Finite Element for the Analysis
of Monoclinic Laminated Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ferdinando Auricchio, Elio Sacco, Giuseppe Vairo
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 First-Order Laminate Theory (FSDT) . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Mixed-Enhanced Finite-Element Formulation . . . . . . . . . . . . . . . . . . . .
4 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

277
278
281
288

293
294
296
297
303
303
304
308
310
315
315
316
317
319
320
323
323
324
325
326
328

333
333
334
336
337
342


Contents

A Mixed FSDT Finite-Element Formulation for the Analysis
of Composite Laminates Without Shear Correction Factors . . .
Ferdinando Auricchio, Elio Sacco, Giuseppe Vairo
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 FSDT Laminate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Evaluation of the Shear Stress Profile . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 The Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On the use of Continuous Wavelet Analysis
for Modal Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pierre Argoul, Silvano Erlicher
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Theoretical background for the continuous wavelet analysis . . . . . . . .
3 Modal analysis and modal identification with CWT . . . . . . . . . . . . . .

XI

345

345
346
348
349
351
353
356
359
359
360
363

Propagation of Phase Change Front in Monocrystalline SMA .
Andr´e Chrysochoos, Christian Licht, Robert Peyroux
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 A convenient thermomechanical framework . . . . . . . . . . . . . . . . . . . . .
3 Experimental analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Modelling and numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

369

Entropy balance versus energy balance . . . . . . . . . . . . . . . . . . . . . . .
Pierluigi Colli, Elena Bonetti, Michel Fr´emond
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 The two laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 An equivalent formulation. The entropy balance . . . . . . . . . . . . . . . . .
4 An example. Heat conduction with the entropy balance . . . . . . . . . . .
5 The Stefan problem with the entropy balance . . . . . . . . . . . . . . . . . . . .
6 A sophisticated phase change with thermal memory . . . . . . . . . . . . . .

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

379

On the Choice of the Shunt Circuit
for Single-mode Vibration Damping
of Piezoactuated Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paolo Bisegna, Giovanni Caruso, Franco Maceri
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 The electromechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Optimization of the shunt circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

369
370
371
373
377

379
380
382
383
384
387
387

389
389
390

392
397

Authors Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401


Monumental Dams
Ruggiero Jappelli
Dipartimento di Ingegneria Civile
Universit`
a di Roma “Tor Vergata”,
via del Politecnico, 1
00133 Roma, Italy
Abstract. Like silent witnesses to the past, large dams built to create manmade
reservoirs often deserve the privilege of monument status for their age, function,
performance, grandeur and even solemnity. Due to their amazing architectural characteristics and to both their appurtenant temporary and permanent works for diversion, use, and release of water, well-designed dams and reservoirs integrate themselves into the environment, positively changing the features of the surrounding
landscape and the liveability of the area. Although designed for a long duration,
dams, like other monuments, require constant and careful inspection and both ordinary and extra-ordinary maintenance in order to safeguard their safety. In some
cases, after more than 50 years of distinguished service, it was necessary to abandon
plants that no longer conform to modern standards. In other cases, the abandonment is expected. Amid the interesting and varied set of existing large dams in Italy
(more than 500), one can find examples of both the causes and the effects of aging,
which require a watchful surveillance and courageous measures for restoration, improvement and/or refurbishment. The appeal of Italian dams is often increased by
the proximity to sites of important monuments of the past.

1

Monuments

Michel Fr´emond and Franco Maceri have given me the honour of opening
this book with an unconventional attempt to approach two apparently very

distant topics to which I have dedicated more than half a century of work:
monuments and dams. Therefore, perhaps too boldly, I have entitled this discourse: “Monumental Dams” (“Les barrages monumentaux”), which I hope
is going to be an easily digestible presentation, as if it were but an appetizer
or an ouverture, preceding deeper treatments of other subjects.
I remember one stormy winter’s day, when, from afar, I first saw the
Doric Greek temple at Segesta that towers all alone in the deserted and
barren landscape of western Sicily, elegant in its simplicity of structure and
slenderness of line. I remember to this day how the sight moved me. Drawing
ever closer, I began excitedly snapping the photos that I now present to
you (Fig. 1), accompanied by the following romantic description by Rose
Macaulay: “... Segesta towered lonely on its wild mountain over a desert...”
[87] and another written by an enthusiastic French traveller: “...C’est au
d´etour du chemin, que, soudainement ´eclose au sommet d’une colline, surgit


2

R. Jappelli

Fig. 1. The Segesta temple (photos by R. Jappelli, 1955)

une suite ferm´ee de colonnes, composant un accord aussi pur que le cri qu’il
suscite en toi: apparition rapide d’un temple perdu dans la solitude abrupte
que brˆ
ule le soleil du Midi...” [8].
Monuments are important buildings, which, either by some intrinsic, historic or artistic trait, or by an acquired value, become inimitable witnesses

Fig. 2. A definition of “Monument” by Umberto Eco [38]



Monumental Dams

3

a)

b)
Fig. 3. Examples of ancient and modern “monumental” structures: a) Saint Angelo’s Castle, Rome; b) The headquarter of the Post Office, Naples

to the past; or, according to a prosaic definition given by Umberto Eco, in
one of his pieces entitled “La Bustina di Minerva” (Fig. 2).
If Segesta’s temple is fascinating mainly because of its slenderness of form,
other monuments are equally imposing due to the compactness of their great
mass (Fig. 3). However, both types possess a common “monumental quality”
which I intend to include architectural beauty (grandiose or slender according
to the case) along with sturdiness, historical background, survival, and even
a sort of solemnity, which arises from a three-dimensional appearance in
solitary sites (Fig. 4).
Monuments are always marked by their close relationship with man and
both happy and sad events. Therefore, in order to fully appreciate their


4

R. Jappelli

Fig. 4. Remains of Monuments in Piranesi’s visions

grandeur and importance, accessibility must be guaranteed so that mankind
can benefit from these sites.


2

Dams

A dam is a great feat of workmanship, built with various materials across
a selected section of a river in order to regulate its flow and to create an
artificial reservoir (Fig. 5)
The main function of such a reservoir is to regulate the accumulation of
rainfall, which, in the catchments, is irregularly distributed in space and time.
This regulation consists of collecting water in the reservoir during the rainy
seasons and releasing it for different uses during the dry seasons. In economic


Monumental Dams

5

Fig. 5. The ROOSVELT dam on the Salt River, Colorado, U.S.A. [136]

terms, this function can be compared to savings, which allow man to face
difficult times by turning to funds accumulated in better times.
According to the dictionary of the International Committee on Large
Dams [53], a “large dam” is one that reaches a height of more than 15 m and
that meets at least one of the following conditions:
• the crest length is not less than 500 m;
• the capacity of the reservoir formed by the dam is not less than one
million cubic metres;
• its spillway is proportionate to a flood not less than 2000 m3 /s
• the geotechnical conditions at the site are particularly difficult;

• the dam is of unusual design.


6

R. Jappelli

Fig. 6. The TARBELA dam on the Indo River, Pakistan [59]

The dams of Italy, like those in the rest of Europe, cannot compare in
dimension to those recognized as the largest dams in the world1 but that does
not mean that they are less interesting. The MONTE COTUGNO dam near
Potenza, Italy, on the Sinni River (Fig. 7) between Basilicata and Calabria, is
a homogeneous embankment dam with a facing of bituminous concrete and
a volume of 12 · 106 m3 , the largest in Europe [17]. The reservoir’s capacity
is 500 · 106 m3 and a huge aqueduct conveys its water to the far ends of
Puglia. The ANCIPA dam near Enna, Italy, is a hollow gravity structure
with buttresses and reaches a height of 110 m. It is among the top of its class
1

ROOSVELT, U.S.A. (Fig. 5): TARBELA, Pakistan: V = 121 · 106 m3 (Fig. 6);
FORT PECK, U.S.A.: V = 100 · 106 m3 , reservoir V = 25 · 109 m3 ; ROGUN,
Russia: H = 320 m


Monumental Dams

7

Fig. 7. The MONTE COTUGNO embankment dam on the Sinni River near

Potenza, Italy [17]

in the world (Fig. 8 [2]). The PLACE MOULIN, an arch gravity dam (Fig.
9) across the Buthier River, is a gigantic structure in Val d’Aosta.
Dam design is strictly dictated by several factors: the hydrological characteristics of the catchments; the morphology of the selected site and the
regime of the river; the mechanical properties of the ground and the construction materials prevailing at the site; the climate; and, finally, the time
schedule given for completion.
For each structure, the final specifications concerning height, foundation,
and waterproofing are quite various. Figures 10 and 11 represent only a few
of the typically employed solutions in terms of workmanship and materials.


8

R. Jappelli

Fig. 8. The ANCIPA near Enna, Italy, is a gravity dam with hollow buttresses [64]

Fig. 9. The PLACE MOULIN is an arch gravity dam on the Buthier River in Val
d’Aosta, Italy [64]

In the past, dam classifications have been proposed according to different building features, by type of material (concrete, earth) or by the design
solution for the dam body (gravity, hollow, embankment,...). Today these


Monumental Dams

9

Fig. 10. The evolution of masonry dams in the U.S.A. [136]


classification criteria are found to be insufficient or defective because of intermediate solutions that are now available. In fact, on one hand, earth can be
reinforced with different materials and acquires qualities resembling concrete;
on the other, concrete can be placed with methods used for earth embankment construction. One can also find composite dams, consisting partly of
concrete and partly of earth or rock materials.
There are presently more than 40,000 large dams in the world; according
to 1997 statistics, Italy boasts among the most interesting and varied large
dams, which amount to a total of 551 [33].
Whoever looks at one of these remarkable works for the first time is
greatly impressed, as if he were before an historic monument. This is due
to the uniqueness, solemnity and grandeur of the fabric, especially if the
structure is old. Dams, like monuments, have a close relationship with man,
linked to his primordial need to control nature and to his increasing demand
of water. Both dams and monuments possess the intrinsic character that can
be defined by the word “monumentality”.
“Dams usually impress people as feats of engineering, fulfilling important
functions as drinking water reservoirs and in flood control. In many cases they
are major tourist attractions as well... Most people surely are less inclined to
view a dam as a cultural monument which testifies to the past and so reflects


10

R. Jappelli

Fig. 11. Types of embankment dams. 1. slope; 2. facing; 3. diaphragm; 4. slope
protection; 5. berm; 6. upstream blanket; 7. shoulder or shell; 8. toe weight; 9. core;
10. core wall; 11. filter; 12. transition zone; 13. pervious zone; 14. chimney drain;
15. drainage layers; 16. blanket drain; 17. toe drain [53]


the particular economic and historic situation of a country. But exactly that
is characteristic of many of the dams in Saxony” (Kurt Biedenkopf,2 2001).
As stated in the 1998 INCOLD Symposium on the Rehabilitation of
Dams, regarding the 226 m high BHAKRA concrete gravity dam constructed
in India in the 1950s: “The world’s most formidable, Bhakra dam, unique in
many ways with intricate construction features and ranked as the second
highest concrete gravity dam in the world, has a very prestigious place in
the “World Register of Large Dams”. It is a silent majestic monument built
across the river Sutley at the village of Bhakra in India, providing irrigation
to millions of hectares of parched land and lighting millions of houses by
rendering service round-the-clock” [106].
Today, in Italy, as perhaps in much of the world, the primary task of
the engineer is not so much to design new dams, but rather to maintain the
functionality of existing structures, a far more difficult task.
2

Minister President of Saxony


Monumental Dams

11

Fig. 12. In memory of Sabatino Moscati [99]

Fig. 13. Sites of the most important Pre-Roman (white) and Roman (black) dams
in the Mediterranean basin [121,80]

3


Archaeology

In order to understand the sense of the relation of dams to Archaeology it
would help to read a few texts.
The romantic sight of ruins, their irresistible attraction and their impact
upon the soul of both poets and travellers alike are described with extraordinary depth and richness of imagery and prose in the classic book by Rose
Macaulay [87].


12

R. Jappelli

Fig. 14. A section of the ancient FARIMAN dam in Iran (approximately 1000 years
old), recently waterproofed, reinforced and raised [110]

The close relationship between Archaeology and man is described briefly
and simply by Vincenzo Tusa [135].
Sabatino Moscati gives a glimpse into the unique bond between Archaeology and Italy’s history at a conference he held near the conclusion of his
academic career at the University of Rome Tor Vergata in 1997 [99] (Fig. 12).
The relationship between archaeological remains and the ground they rest
upon is well known; less-known, but certainly not new, is their relationship
with water. One such example would be the ruins of ancient Sibari, where in
the Parco del Cavallo site, a large system of well points has been in operation
for dozens of years to lower the ground water level and allow the exploration
of the archaeological site for the benefit of visitors [70].
In the world, there are a number of so-called “archaeological dams”; so
many, in fact, that Jean Kerisel reports a map which indicates sites of ancient
dams in the Mediterranean area (Fig. 13), including FARIMAN (Fig. 14),
MARIB, JAWA and SADD-El-KAFARA [121].

The MARIB dam on the Danah River in Yemen was 20 m high and 700 m
long. The earth embankment, with its very steep slopes, was constructed in
layers parallel to the facing. At the abutment, two large spillways are still
visible. This great work was partially destroyed on more than one occasion
by recurring floods every 50 years or so. It was reconstructed and perhaps
even raised. It was finally destroyed after 1300 years of service and the 50,000
local inhabitants it served were transferred to other areas.
The JAWA dam in Jordan is formed by an earth fill protected by masonry
revetment. J. Kerisel mentions it as being the oldest dam in the Mediterranean basin [80].
The same Author reports that the SADD-EL-KAFARA dam on the Wadi
Garawi River in Egypt (Fig. 15) is the oldest known large dam. It was built
under the IV Dynasty (2600 BC) and was discovered roughly 100 years ago


Monumental Dams

13

a)

b)

c)
Fig. 15. a) A section of the SADD-EL-KAFARA dam in Egypt (IV Dynasty, 2600
b.c.) on a tributary of the Nilo, 39 km south of Cairo; b) A comparison with a
modern embankment dam [80]; c) remains of the dam after erosion of its core
caused by the river’s stream; the upstream slope is protected by hand-placed dry
masonry [45]

among the ruins at Garaw. It was 14 m in height and had a length at the crest

of 113 m. It was designed to regulate floods, which were rare, but violent. This
great construction was probably built without having deviated the course
of the river and was then destroyed immediately upon its completion. The
consequences were so severe that the Egyptians did not build any other dam
for at least the next eight centuries. Nevertheless, the builders of the SADDEL-KAFARA deserve the utmost respect for the sheer genius of the project.
Figure 15a shows a typical section, formed by a gravel and silt core between
rock shells, protected by square-block masonry. In Fig. 15b, Kerisel compares


14

R. Jappelli

Fig. 16. The pond in which the Fawara or Maredolce Castle was reflected and the
weir built by the Arabs in Palermo, Italy

this rudimental construction to a modern earth dam with a central core.
Figure 15c looks inside the ruins of the dam whose core has been eroded by
the stream.
There are no such “archaeological” large dams in Italy. However, a littleknown fact is that the ruins of the old Arab castle called “Maredolce” in the
middle of a poor neighbourhood of Palermo stands on an ancient weir built
by the Arabs to create a little pond, known as “Fawara”, in which the image
of the castle was reflected (Fig. 16–19) [15].
Architectural scholars [32] report that “very little is now left of the monuments from the Arab age due to the Norman conquest of the island. The
Normans were zealous keepers of the Christian religion and thus, all the structures of the “unfaithful” were destroyed by them. The only Arab architecture
that has survived, enclosed in the later Norman one, is a small structure on
the site of the hot springs near the capital at Cefal`
a Diana and, in Palermo,
part of the mosque of Saint John of the Hermits and some remains of the
Emiris Palace and of the Fawara castle (cf. Pietro Laura’s, “About the Arabs

and their sojourn in Palermo, Sicily, 1832”).
S. Braida reports in 1988: “This pleasant view and this enchanting park
where the world smiles, recalling the memories of the past, was probably first
used by the hermits of Palermo and then later renovated by the Normans...
Within this city, sprung the greatest fount of all time, which was surrounded


Monumental Dams

15

Fig. 17. The bottom outlet of the Maredolce pond (photo by C. Gambino, 2002)

Fig. 18. The remains of the Fawara or Maredolce Castle in Palermo (photo by C.
Gambino, 2002)

by a wall and formed an enclosed garden, which was called “Albehira” by
the Arabs. Fish of many types were closed therein and the lake was adorned
with little ornate boats decorated with gold and silver in which the King
and his wife often entertained for their own personal amusement. It has been
passed down from the chronicles of those times, that King Roggerious, who in
peaceful times could not remain idle, commanded that a marvellous structure


×