Tải bản đầy đủ (.pdf) (276 trang)

SDHLT 02986 electric machines modeling, condition monitoring, and fault diagnosis

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (28.28 MB, 276 trang )

ELECTRIC

MACHINES
MODELING, CONDITION MONITORING,
AND FAULT DIAGNOSIS

r- '



(

^

-—

j

I ^ E y e W '^

^

'

^ Wo u n d s t a t o r

r = '"

In s u la tio n

^



^

''

-

yCi

End Shield

f'

\

I

.

'

Lam inations

S

Shaft Slinger

Gasket
To Fram e


Protection
To inner

HAMID A. TOLIYAT •SUBHASIS NANDI
SEUNGDEOG CHOI • HOMAYOUN MESHGIN-KELK
CRC Press ,
Taylor & Francis Croup



ELECTRIC

MACHINES

MODELING, CONDITION MONITORING,
AND FAULT DIAGNOSIS



ELECTRIC

MACHINES

MODELING, CONDITION MONITORING,
AND FAULT DIAGNOSIS

HAMID A. TOLIYAT
SUBHASIS NANDI
SEUNGDEOG CHOI
HOMAYOUN MESHGIN-KELK


-^-1 hÀ\G HAI V ê \AM

TÀI LI£llTHL(■VIÊ^
CRC Press
Taylor &i Francis Group
Boca Raton London N e w York
C R C Press is an im p rin t of the
Taylor & Francis C ro u p , an in fo r m a business


C R C Press
Taylor & Francis G ro u p
6 0 0 0 B r o k e n S o u n d P a r k w a y N\X', S u i t e 3 0 0
B o c a R a t o n , FL 3 3 48 7 - 2 7 4 2
© 2 0 1 3 by T a y l o r & F r a n c i s G r o u p , LLC
C R C P r e s s is a n i m p r i n t o f T a y l o r & F r a n c i s G r o u p , a n I n t o r m a b u s i n e s s
\ ' o c l a i m t o o r i g i n a l U.S. G o v e r n m e n t w o r k s

\ e r s i o n D at e : 2 0 1 2 0 6 1 2
I n t e r n a t i o n a l S t a n d a r d Bo o k N u m b e r : 97 8 - 0 - 8 4 9 3 - 7 0 2 7 - 4 ( H a r d b a c k l
T h is bo o k c o n ta in s in fo rm a tio n o b ta in e d from a u th e n tic a n d highly re g a rd e d so u rces. R e a so n a b lf efforts
h a v e b e e n m a d e t o p u b l i s h r e l ia b l e d a t a a n d i n f o r m a t i o n , b u t t h e a u t h o r a n d p u b l i s h e r c a n n o t a s s u m e
r e s p o n s i b i l i t y for t h e v a l i d i t y o f all m a t e r i a l s o r t h e c o n s e q u e n c e s o f t h e i r use. T h e a u t h o r s a n d p u b l i s h e r s
h a v e a t t e m p t e d t o t r a c e t h e c o p y r i g h t h o l d e r s o f all m a t e r i a l r e p r o d u c e d in t h i s p u b l i c a t i o n a n d a p o l o g i z e to
c o p y r i g h t h o l d e r s if p e r m i s s i o n t o p u b l i s h in t h i s f o r m h a s n o t b e e n o b t a i n e d . If a n y c o p y r i g h t m a t o r i a l h as
n o t b e e n a c k n o w l e d g e d p l e a s e w r i t e a n d let u s k n o w so w e m a y r e c t i f y in a n y f u t u r e r e p r i n t .
E x c e p t a s p e r m i t t e d u n d e r U.S. C o p y r i g h t Law, n o p a r t o f t h i s b o o k m a y be r e p r i n t e d , r e p r o d u c e d , t r a n s m i t ­
t e d , o r u t i l i z e d in a n y f o r m by a n y e l e c t r o n i c , m e c h a n i c a l , o r o t h e r m e a n s , n o w k n o w n o r h e r e a f t e r i n v e n t e d ,
i n c l u d i n g p h o t o c o p y i n g , m i c r o f i l m i n g , a n d r e c o r d i n g , o r in a n y i n f o r m a t i o n s t o r a g e o r r e t r i e v a l s y s t e m ,

w ith o u t w ritte n p e rm issio n from the publishers.
F o r p e r m i s s i o n t o p h o t o c o p y o r u s e m a t e r i a l e l e c t r o n i c a l l y f r o m t h i s w o r k , p le as e ac c e s s w w w . c o p y r i g h t .
c o m ( h t t p : / / w w w . c o p y r i g h t . c o m / ) o r c o n t a c t t h e C o p y r i g h t C l e a r a n c e C e n t e r , Inc. (C C C ) , 2 2 2 R o s e w o o d
D r iv e , D a n v e r s , M A 0 1 9 2 3 , 9 7 8 - 7 5 0 - 8 4 0 0 . C C C is a n o t - f o r - p r o f i t o r g a n i z a t i o n t h a t p r o v i d e s l i c e n s e s .ind
r e g i s t r a t i o n for a v a r i e t y o f u s e r s . F or o r g a n i z a t i o n s t h a t h a v e b e e n g r a n t e d a p h o t o c o p y li c e n s e by t h e C C C ,
a s ep arate system o f p ay m en t has been arranged.
T r a d e m a r k N o t ic e : P r o d u c t o r c o r p o r a t e n a m e s m a y be t r a d e m a r k s o r r e g i s t e r e d t r a d e m a r k s , a n d a r e u s e d
o n l y fo r i d e n t i f i c a t i o n a n d e x p l a n a t i o n w i t h o u t i n t e n t t o in f r i n g e .

L ib ra r y o f C o n g r e s s C a t a lo g in g - in - P u b lic a t io n D a ta
E l e c t r i c m a c h i n e s : m o d e l i n g , c o n d i t i o n m o n i t o r i n g , a n d f au lt d i a g n o s i s / H a m i d A.
T o li ya t ... [et al.].
p. cm .
Includes bibliographical references a n d index.
I S BN 9 7 8 - 0 - 8 4 9 3 - 7 0 2 7 - 4 ( h a r d b a c k )
1. E l e c t r i c m a c h i n e r y - - R e l i a b i l i t y . 2. M a c h i n e r y - - M o n i t o r i n g . 3. M a c h i n e
p a r t S ' - F a i l u r e s . I. To l iy at , H a m i d A.
T K 2 3 1 3 . E 4 4 20 12
6 2 1 .3 1 ’0 4 2 - d c 2 3

V is it t h e T a y lo r & F r a n c is W e b s it e at
h t t p : //w w w .t a y lo r a n d f r a n c is .c o m
a n d t h e C R C P r e s s W e b s it e at
h t t p : //w w w .c r c p r e s s .c o m

20i2 t)2 1 3 5 0


Contents
P re fa c e ...................................................................................................................................xi

1

In tr o du c ti o n ................................................................................................................1
Seun gdeog Choi

R e f e re n c e s ..................................................................................................................... 8
2

F a u lts in I n d u c t i o n a n d S y n c h r o n o u s M o t o r s ...............................................9
Bilal A kin an d M ina M . Rahim ian

2.1

In tro d u c tio n of Induction M otor Favilt..................................................... 9
2.1.1 B earing F au lts.....................................................................................9
2.1.2 Stator F a u l t s ...................................................................................... 11
2.1.3 Broken Rotor Bar F a u lt.................................................................. 13
2.1.4 Eccentricity Fault..............................................................................15
2.2
I n tro d u c tio n of S y n c h ro n o u s M otor Fault D ia g n o s is ........................16
2.2.1 D a m p e r W in d in g F a u lt................................................................. 17
2.2.2 D e m a g n e tiz a tio n Fault in P e rm a n e n t M ag n e t
S y n c h ro n o u s M a c h in e s (PMSM s)............................................. 18
2.2.3 Eccentricity F ault............................................................................. 19
2.2.4
Stator Inter-Turn F a u lt..................................................................20
2.2.5
Rotor Inter-Turn F au lt................................................................... 21
2.2.6 Bearing Fault..................................................................................... 22
R e fe r e n c e s ...................................................................................................................23

3

M o d e l i n g o f E lectric M a c h in e s U sin g W i n d i n g a n d M o d if ie d
W i n d i n g F u n c tio n A p p r o a c h e s ..........................................................................27
Su bhasis N andi

3.1
3.2

I n t r o d u c t i o n .................................................................................................... 27
W in d in g a n d M odified W in d in g F un ctio n A p p ro a c h e s
(WFA a n d M W F A )....................................................................................... 28
3.3
In d u c ta n c e C alculatio ns U sing WFA a n d M W F A .............................33
.3.4
Validation of Inductance Calculations U sing WFA a n d M W F A ...... 39
R e f e r e n c e s ................................................................................................................... 45


Contents

vi

4 M o d e lin g of Electric M a c h i n e s U s in g M a g n e tic E q u iv a le n t
C ir c u it M e t h o d .......................................................................................................47
H om ayoun M eshgin-K elk

4.1
4.2


In tro c iu c tio n ...................................................................................................47
In direct A pplication of M agnetic E qui\'alent Circuit for
A nalysis of Salient Pole S y n c h ro n o u s M a c h i n e s ............................... 52
4.2.1 M agnetic Equivalent C ircuit of a Salient Pole
S y n c h ro n o u s M a c h in e ..................................................................53
4.2.2 In d u c ta n c e Relations of a Salient Pole S y n c h ro n o u s
M a c h in e ............................................................................................ 55
4.2.3 C alcu lation of In d u c ta n c e s for a Salient Pole
S y n c h ro n o u s M a c h in e ..................................................................58
4.2.4 E x p e rim en ta l M e a s u r e m e n t of I n d u ctan c e s of a
Salient Pole S y n c h ro n o u s M a c h i n e ......................................... 63
4.3 In direct A pplication of M agnetic E quivalent C ircuit for
A nalysis of In d u c tio n M a c h i n e s ............................................................. 66
4.3.1 A Simplified M ag netic E q u i\’alent Circuit of
In d u c tio n M a c h in e s ...................................................................... 66
4.3.2 In d uctance Relations of Indu ctio n M a c h i n e s ........................ 68
4.3.3 C alculation of In d u c ta n c e of an In d u c tio n M a c h i n e ......... 70
4.4 D irect A pplication of M agnetic E quivalent Circuit
C o n sid e rin g N o n lin e a r M ag netic C haracteristic for M a c h in e
A n a ly s is ........................................................................................................... 73
A p p e n d ix A: Induction M achine P a r a m e t e r s .................................................. 77
A p p e n d ix B: N o d e Perm e an c e M a trice s............................................................78
R e f e re n c e s ................................................................................................................... 79
5 A n a l y s i s o f F a u lt y I n d u c t i o n M o t o r s U s in g F i n i te E le m e n t
M e t h o d ........................................................................................................................ 81
Bashir M alidi Ebrahim i

5.1
5.2
5.3

5.4

5.5

I n tr o d u c t io n .....................................................................................................81
G eom e tric a l M o d e lin g of Faulty In d u c tio n M otors U sing
T im e-S tep ping Finite E lem ent M e th o d (TSFEM ).............................. 82
C o u p lin g of Electrical C ircuits a n d Finite Elem ent A r e a ................ 83
M o d e lin g Internal Faults U sing Finite Elem ent M e t h o d ................ 85
5.4.1
M o d e lin g Broken Bar F ault.........................................................85
5.4.2
M o d e lin g Eccentricity F a u l t .......................................................87
5.4.2.1 Static E c c e n tric ity .......................................................... 87
5.4.2.2 D y n a m ic E c c e n tric ity .................................................. 89
5.4.2.3 M ixed E c c e n tric ity ........................................................90
Im p act of M agnetic S a tu ra tio n on A ccurate Fault D etection
in I n d u c tio n M o t o r s ..................................................................................... 91


Contents

5.5.1

A nalysis of A ir-G ap M agnetic Flux D ensity in
H ealthy a n d Faulty Indu ctio n M o to r .......................................94
5.5.1.1 Linear M a g n e tiz a tio n C ha ra c te ristic ....................... 94
5.5.1.2 N o n lin e a r M a g n e tiz a tio n C h a ra c te ris tic ............... 95
R e fe re n c e s...................................................................................................................96


6 Fault D i a g n o s i s of Electric M a chi ne s U si ng Techni ques Based
on Frequency D o m a i n ........................................................................................... 99
Subhasis N andi

6.1
6.2

6.3

I n tr o d u c tio n ....................................................................................................99
Som e D efinitions a n d Exam ples Related to Signal Processing.... 100
6.2.1 C o n tin u o u s v e rsu s Discrete or Digital or S am p led
S i g n a l .................................................................................................100
6.2.2 C o n tin u o u s, D iscrete Fourier Transform s, a n d
N o n p a r a m e tr ic Pow er S p e c tr u m E stim a tio n ........................101
6.2.3 Param etric Pow er S p e c tr u m E s tim a ti o n .................................105
6.2.4 Pow er S p e c tr u m E stim a tio n Using H ig h e r-O rd e r
Spectra (H O S ).................................................................................107
6.2.5 Pow'er S p e c tr u m E stim atio n U sing Sw ept Sine
M e a s u re m e n ts or Digital Frequency Locked Loop
T echnique (D FLL )......................................................................... 110
D iag nosis of M a c hine Faults U sing Freq uen cy -D om ainBased T e c h n iq u e s ......................................................................................... I l l
6.3.1
D etection of M otor B earing F a u l t s ...........................................I l l
6.3.1.1 M ech anical Vibration Frequency A n alysis
to Detect Bearing F a u l t s .............................................I l l
6.3.1.2 Line C u r re n t Frequ en cy A n alysis to D etect
Bearing F a u lts ............................................................... 115
6.3.2
D etection of Stator F a u lts................................................... 116

6.3.2.1
Detection of Stator Faults U sing External
Flux S e n s o r s .................................................................. 116
6.3.2.2 D etection of Stator Faults U sing Line
C u rre n t H a r m o n i c s .....................................................117
6.3.2.3 Detection of Stator Faults Using T erm inal
Voltage H a rm o n ic s at S w itc h - O f f .......................... 119
6.3.2.4 Detection of Stator Faults Using Field
C u rr e n t a n d Rotor Search Coil H a rm o n ic s
in S y n c h ro n o u s M a c h in e s .........................................121
6.3.2.5 D etection of Stator Faults U sing Rotor
C u r r e n t a n d Search Coil Voltages
H a rm o n ic s in W o u nd Rotor Ind uction
M a c h in e s .........................................................................124
6.3.3
D etection of Rotor F a u l t s ................................................... 129


C.antcnts

viii

6.3.3.1

Detection of Rotor Faults in Stator l.ine
C urrent, Speed, Torque, a n d P o w e r ...................... 130
6.3.3.2 D etection of Rotor Faults in E xternal and
Internal Search C o i l ................................................... 134
6.3.3.3
Detection of Rotor Faults Using T erm in al

Voltage H a rm o n ic s at S w itc h -O ff ..........................134
6.3.3.4 D etection of Rotor Faults at S t a r t - U p .....................134
6.3.3.5 D etection of Rotor Faults in Presence of
In terbar C u r r e n t U sing Axial Vibration
S ig n a ls............................................................................. 135
6.3.4 D etection of Eccentricity F a u lts ................................................ 136
6.3.4.1 D etectio n of Eccentricity Faults U sin g Line
C u rr e n t Signal S p e c t r a .............................................. 136
6.3.4.2 D etection of Eccentricity Faults Based on
N a m e p la te P a r a m e t e r s .............................................. 142
6.3.4.3 D etection of Eccentricity Faults U sing
M e c hanical Vibration Signal S p e c t r a ................... 147
6.3.4.4 D etection of Inclined Eccentricity F a u lts ..............147
6.3.5
Detection of Faults in Inverter-Fed Induction M a c h i n e s ... 148
R e f e re n c e s .................................................................................................................. 149
Fa u lt D ia g n o s is of E lectric M a c h i n e s U s in g M o d e l-B a s e d
T e c h n i q u e s ................................................................................................................ 155
Siibhasis N andi

7.1
7.2
7.3

I n tr o d u c tio n ................................................................................................... 155
Model of H ealthy Three-Phase Squirrel-Cage Induction M o to r ... 158
M odel of T h re e -P h ase S quirrel-C age In duction M otor w ith
Stator Inter-Turn Faults.............................................................................. 165
7.3.1
M odel w ith o u t S a tu ra tio n .......................................................... 165

7.3.2
M odel w ith S a t u r a t i o n ................................................................169
7.4 M odel of S quirrel-C age Indu c tion M otor w ith Incipient
Broken Rotor Bar a n d E nd-R ing F a u lts................................................ 175
7.5 M odel of S quirrel-C age In d u c tio n M otors w ith Eccentricity
F a u lts................................................................................................................177
7.6
M odel of a S y n c h ro n o u s Reluctance M otor w ith Stator F a u lt.... 179
7.7 M odel of a Salient Pole S y n c h ro n o u s M otor w ith D y n a m ic
Eccentricity F a u lts ........................................................................................]8l
R e f e re n c e s .................................................................................................................. 183
A p p lic a tio n o f P a tte r n R e c o g n itio n to F a u lt D i a g n o s i s ............................. 185
M asou d H ajiaghajani

8.1
8.2
8.3

I n tr o d u c tio n ................................................................................................... ] 85
Bayesian T h e o ry a n d Classifier D e s i g n ................................................ 186
Simplified Form for a N o r m a l D is tr i b u ti o n ........................................ 189


ix

Cotiteiits

8.4
F eature Extraction for O u r Fault D iag nosis S y s t e m ....................... 190
8.5

Classifier T ra in in g ......................................................................................192
8.6
Im p l e m e n t a tio n .......................................................................................... 194
R e fe re n c es................................................................................................................. 198
9 I m p l e m e n ta t io n of M o to r C u r r e n t S i g n a tu r e A n a ly s is F ault
D ia g n o s is Based on D ig ita l S ig n a l P r o c e s s o r s .......................................... 199
Seungdeog Choi and Bilal Akin

9.1

I n t r o d u c tio n .................................................................................................199
9.1.1 C ross-C orrelation Schem e D erived from O p tim a l
D etector in A dditive W h ite G a ussian Noise (AWGN)
C h a n n e l ...........................................................................................200
9.2
Reference Fram e T h e o r y ..........................................................................201
9.2.1 Reference Fram e T h e o ry for C o n d itio n M o n ito r in g .......... 202
9.2.2 (Fault) H a rm o n ic A n alysis of M u ltip h a se S y stem s.............202
9.2.3 O n-L ine Fault D etection R esu lts...............................................204
9.2.3.1 v/f C ontrolled Inverter-Fed M otor Line
C u rre n t A n a l y s i s ........................................................ 204
9.2.3.2 Field-O riented C ontrol Inverter-Fed M otor
Line C u r r e n t A n a l y s i s .............................................. 206
9.2.3.3 In s ta n ta n e o u s Fault M o n ito rin g in TimeFreq uency D o m a in a n d T ransient A n a ly s is...... 206
9.3
Phase-Sensitive Detection-Based Fault D ia g n o s is ............................ 210
9.3.1 I n tr o d u c ti o n ..................................................................................... 210
9.3.2 Phase-Sensitive D e te c tio n ............................................................210
9.3.3 O n-L ine E xp erim en tal R e su lts.................................................. 212
R e fe re n c es ................................................................................................................. 218

10 I m p le m e n ta ti o n of F ault D ia g n o s is in H y b r id Electric V ehicles
Based o n R e fe re n c e F ra m e T h e o r y .................................................................. 221
Bilal A kin

10.1
10.2

I n tr o d u c tio n ................................................................................................. 221
O n-B o ard Fault D iagnosis (OBD) for H y b rid Electric
Vehicles (H E V s)........................................................................................... 221
10.3 D rive Cycle A n alysis for O B D ............................................................... 224
10.4 Rotor A s y m m e tr y D etection at Z ero S p e e d .......................................226
R e fe re n c e s................................................................................................................. 233
11 R o b u st S ig n a l P r o c e s s in g T e c h n iq u e s for th e I m p le m e n ta tio n of
M o to r C u r r e n t S ig n a tu r e A n a ly s is D ia g n o s is B a se d o n D ig ita l
S ig n a l P r o c e s s o r s ...................................................................................................235
Seungdeog Choi

11.1

I n tr o d u c tio n .................................................................................................235
11.1.1 C o he re nt D e te c tio n .......................................................................236


Electric Machines: Fault Diagnosis a n d Condition M ointcring

11.1.2 N o n c o h e re n t D etection (Phase A m b ig u ity
C o m p e n s a t io n ) .............................................................
11.1.3 Fault Frequ ency O ffset C o m p e n s a t i o n ................
11.2 D ecision-M ak in g S c h e m e .......................................................

11.2.1 A da p tive T h re sh o ld D esign (N o ise A m b ig u ity
C o m p e n s a tio n ) .............................................................
11.2.2 Q - F u n c tio n .....................................................................
11.2.3 N oise E s tim a tio n ..........................................................
11.3 S im ulation a n d E xpe rim en ta l R e s u l t ..................................
11.3.1 M o deled MATLAB S im u la tio n R e s u l t .................
11.3.2 Off-Line E x p e rim e n ts .................................................
11.3.2.1 Off-Line Results for E c c e n tr ic ity ..........
11.3.2.2 Off-Line Results for B roken Rotor Bar
11.3.3 O n-L ine E x p e rim e n ta l R e s u lts................................
R e f e re n c e s ................................................................................................

237
237
240
240
242
243
244
244
245
246
247
248
251

I n d e x .................................................................................................................................. 253


P refa ce


Tilt' d e v e lo p m e n t of th e electric m o to r is one of the greatest a c h ievem ents of
th e m t)d e rn e n e r g y c onv e rsion industry. C o u n tle ss electric m o to rs are b e in g
u s e d in o u r daily lives for critical service a p plications such as tran sp o rtatio n ,
m e d ic a l tre a tm e n t, m ilita r y o p eration, ancl c o m m u n ic atio n . H owever, d u e to
th e f u n d a m e n ta l limitaticins of m aterial lifetime, deterioraticin, c o n ta m in a ­
tion, m a n u f a c t u r i n g defects, or d a m a g e s in o perations, an electrical m o to r
w ill e\ e n tu a lly go into fa ilu re mode. A n u n e x p e c te d failure m ig h t lead to the
loss of valuab le h u m a n life or a costly sta n d still in in du stry , w'hich n e e d s to
b e p re v e n te d b y precisely d e te c tin g or c o n tin u o u sly m o n ito rin g the w'orking
c o n d itio n of a motor.
T his b o o k w a s w r i t t e n to p rtw id e a full review of d ia g n o s is technologies
a n d as a n application g u i d e for g r a d u a te a n d senior u n d e r g r a d u a te s tu d e n ts
in the p tiw e r electronics disc ip lin e w'ho w a n t to research, develop, a n d im p le ­
m e n t a fault d ia g n o s is a n d con dition m o n ito rin g sc h e m e for b etter safety
a n d i m p r o v e d re liability in electric m o to r operation. F u rth e rm o re , electrical
a n d m e c h a n ic a l e n g i n e e r s in the in d u s tr y are also e n c o u ra g e d to use portitins of th is b o o k as a reference to u n d e r s ta n d th e f u n d a m e n ta ls of fault
c a u s e a n d effect a n d to fulfill successful im plem en tation .
T his b o o k a p p ro a c h e s th e fault d ia g n o sis of electrical moftirs th r o u g h th e
p ro c e s s of th eoretical a n a ly sis a n d th e n practical application. First, the analysi.s of the f u n d a m e n ta l s of m a c h in e failure is p re s e n te d th r o u g h the w i n d ­
in g f u n c tio n s m e th o d , th e m a gn etic e q u iv a le n t circuit m e th o d , a n d finite
t'le m e n t analysis. Sectind, th e im p le m e n ta tio n of fault d ia g n o s is is review'ed
w ith t e c h n iq u e s s u c h as the m o to r c u rr e n t s i g n a tu re analysis (MCSA)
m e t h o d , fret]uency d o m a i n m ethtid, m o de l-b a se d techniques, a n d p attern
re c o g n itio n scheme, hi particu la r, the MCSA im p le m e n ta tio n m e th o d is pre.sented in detail in th e last c h a p te rs of the book, w hich d is c u s s robu st sig­
nal p ro c e s s in g te c h n iq u e s a n d referen ce-fram e-th eo ry -b ased fault d ia g n o sis
im p le m e n ta tio n fcir h y b rid vehicles as a n exam ple. T hese theoretical analysis
a n d p ractical im p le m e n ta tio n strategies are based on m a n y ye a rs of research
a n d deN-ekipment at th e Electrical M a c h in e s & Ptiwer Electronics (EMPE)
i-a b o ra to ry at Texas A & M University.

Hami d Toliyat
Texas A &M LIniversit}/
College Station, Texas

.VI



1
Introduction

S e u n g d e o g C h o i, Ph.D .
T oshiba In te rn a tio n a l

1 he p o p u la tio n of electric m otors h a s greatly in creased in recent years, not
only in the U nited States b u t also in the w orld m a r k e t as s h o w n in Table 1.1
a n d Table 1.2. The w orld m a rk e t is ex p e cte d to be a r o u n d $16.1 billion in
2011, w h ic h is as su m e d m o re th a n 507o g r o w th just w ith in 5 years [1]. Electric
m otors have been app lied to alm ost e\'ery place in o u r daily life, su ch as
m a n u f a c tu r in g system s, air tra n sp o rta tio n s, g r o u n d tra n sp o rta tio n s, b u ild ­
ing air-co nditio ner systems, h o m e e n e rg y conversion system s, v a rio u s cool­
ing .systems in electrical devices, a n d even cell p h o n e x'ibration systems.
it is also a well-known fact that the electric motors consum e more than 507o of
whole electrical energy d e m a n d in the United States. The an n u al electrical energy
d em a n d in the United States w a s 3,873 billion kilowatt-hours in 2008, w h ich is
expected to be further increased in e\'ery year dep e n d in g on population a n d eco­
nomic g ro w th [11]. This data indicates that more th a n 1,900 billion kilowatt-hours
is l on su m e d by electric motors annually in the United States, w'hich is the biggest
energy consum ption by any single electric device in m odern society.
With the rapidly increased p o p u la tio n a n d h u g e electric e n e rg y c o n s u m p ­

tion, sop histicated control a n d reliability of m o to r o p e ra tio n s from a h a rsh
in d u stria l env iro n m e n t has n o w been a m ajor re q u ire m e n t in m a n y in d u s ­
trial applications. It is especially im p o r ta n t w h e re a n u n e x p e c te d s h u td o w n
m ig h t result in the in te rru p tio n of critical services such as m edical, tr a n s ­
portation , o r m ilitary operations. In those application s w h e re c o n tin u o u s
proc ess is n e e d e d a n d w h e re d o w n tim e is not tolerable, a n u n e x p e c te d fail­
ure« of a m o to r m igh t result in costly m a in te n a n c e or loss of life.
A s sh o w n in Figure 1.1, the electrical m otor consists of m a n y m e c h a n ic al
a n d electrical parts, such as a rotor bar, rotor m ag n e t, stator w in d in g , endring, bearin g, a n d g ear box. D u e to the c o m m o n ly h a r s h in d u stria l e m i r o n mc'nts, each p a rt of electric m o to rs is poten tially e x p o se d to the h ig h risk of
unex p e cte d mechanical, chemical, a n d electrical system failures. The reason s
w h y electric m o to rs fail in in d u s try have been c o m m o n ly re p o rte d as follows:
1. Post th e s ta n d a rd lifetime
2. V\'rong-rated power, voltage, a n d c u rre n t


E lectric M a ch in es: M oileling, C on dition M onitorin g, an d Fault D iag ’osis

TABLE 1.1
N u m b e r of M o to rs by A p p licatio n
Application
F ans a n d p u m p s

Population
3,847,161

A ir co m p re sso r

12,434,330

TOTAL

Source:

632,731
7 ,93 4 ,4 3 8

O th e rs

U S D e p a r tm e n t n f E n ergy (2002). h t t p : / /
w w u T .e e r e .e n e r g y .g o v /m a n u fa c tu r in g /
t e c h _ d e p lo y m e n t/p c if s /m tr m k t.p c if

3. U nstable s u p p ly voltage or c u rr e n t source
4. O v erload or u n b a la n c e d load
5. Electrical stress from fast sw itc h in g inverters or u n sta b le g r o u n d
6. Residual stress from m a n u f a c tu r in g
7. M istakes d u r in g re p a irs
8. H a rsh application e n v ir o n m e n t (dust, w a te r leaks, e n v ir o n m e n til
\ ibration, chem ical c o n ta m in a tio n , h ig h tem p e ra tu re)
F ig ure 1.2 show's an exam p le of a w'ell know'n electrical m o to r fault such as
b e a rin g ball d a m a g e . T he b e a rin g ball is tak en from the b e a r in g m o d u le that
h a d b e e n d ia g n o s e d as faculty for 6 m on th s. The m a in ty p e s of m o to r fiults
are c o m m o n ly categ orized as electrical faults, m e ch a n ic al faults, a n d cuter
driv e system defects, w h ic h are as follow's [2-5]:
1. Electrical faults
a.

O p e n or sho rt circuit in m o to r w in d in g s (m ainly d u e to w i n d i r g
insu la tio n failure)

b.


W ro ng c o nn e ction of w in d in g s

c.

H ig h resistance contact to c o nd u c to r

d.

W ro ng or u n stab le g ro u n d
TABLE 1.2
M o to r S y stem E n erg y U sage by A p p lica tio n
Application
F an s a n d p u m p s
A ir co m p re sso r

GW h /Yr
22 1,4 17
9 1 ,0 50

O th e rs

262,961

TOTAL

575,428

Source:


U S D e p a r tm e n t o f E n e rg y (2 002). h t t p : / /v v \v w U e e r e .
e n e r g y .g o v /m a n u f a c t u r in g /t e c h _ d e p lo y m e n t /p d f s /
m tr m k t.p d f


hitnniiiction

FIC.URE 1.1
20(W H iin d a FCX C la r ity Fuel C ell V e h ic le te st d r i \ e p h o to g a lle r y . From C h r is tin e a n d S co tt
Ciable, h t tp : //a lt e r n a t iy e f u e ls .a b o u t .c o m /o d /f u e lc e llv e h ic le r e v ie w s /ig / 0 9 -H o n d a - FC X -C laritvlu ,.1 - C e ll/

2. M echanical faults
a.

Broken rotor ba rs

b.

Broken m a g n e t (or partial d e m a g n e tiz atio n )

c.

C racked e n d -rin g s

d.

Bent shaft

e.


Bolt loosening

f.

Bearing failure

g.

G earb ox failure

h.

A ir-gap irre g u la rity

3. O u te r m o to r drive s ystem failures
a.

l n \ ’e rter system failure

b.

Unstable x’o lta g e /c u rre n t source

c.

S h orted or o p e n e d su p p ly line

HC;iJRE 1.2
He.irii'.g b a ll fa u lt a n d s u b s e c iu e n t fa t ig u e d a m a g e . V ib r a tio n
il> r.itio n co n su ltan tb .co .n 7 /f a u lt"i,2 0 D iag n o sis.h tm l


c o n s u lta n t,

h ttp ://w w w .


Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

The b e a r in g fault is k n o w n to m a k e u p alm ost 40%, stator related about 3cS"o,
rotor related ab o u t 10%, a n d o th e rs m a k e u p 12% of w h ole electrical m otor
fault [2-6],
The electric m o to r d e sig n is c o m m o n ly in te n d e d to have electrical a n d
m e c h a n ic al s y m m e tr y in th e stator a n d the rotor for b e tte r c oup ling a n d
h ig h e r efficiency. Fault con dition in a m o to r d e sc rib e d earlier is s u p p o se d to
d a m a g e the sy m m e tric a l p r o p e rty w'here fa u lt-d e p e n d e n t m o to r operation
indu c e s a n a b n o rm a l s y m p to m d u r in g m o to r o peration, w h ic h is described
as follows [2-5]:
1. M echanical vibration
2. T e m p e ra tu re increase
3. I rr e g u la r air-gap torque
4. I n s ta n ta n e o u s o u tp u t p o w e r variation
5. A coustic noise
6. Line voltage c h a n g e s
7. Line c u rr e n t cha n g e s
8. S p ee d variatio ns
M o st a b n o rm a l s y m p to m s have b e e n k n o w n to have specific p a tte rn s
p e r ta i n in g to the m o to r fault c o nditio ns a n d severity, such as p a rtic u la r fre­
quency, d ura tion , a m p litu d e , variance, degree, a n d phase. Based on m o n i­
toring a n d a n a ly z in g th e e xp ected s y m p to m s a n d their specific patterns,
m a n y m o to r fault d ia g n o se s have b e e n suggested, a n d there hav'e been sev­

eral c o m m ercial solutions in the in d u s tr y m a r k e t as s h o w n in Figure 1.3. In
particu lar, the vib ratio n s p e c tr u m in Figure 1.3a is from th e b e a r in g m o d u le
w ith defect ball iii figure 1.2. Based on the s p e c tr u m m o n ito r in g technique,
the b e a r in g m o d u le is d ia g o n o se d faculty a n d safely re m o v e d before the s y s­
te m falls into c atastrop hic failure mode.
The v a rio u s d ia g n o sis te c h n iq u e s a d o p te d in in d u s tr y ha v e been p e r ­
fo rm e d m a in ly th ro u g h the follow ing strategies [2-5].
1. S ignal-based fault d ia g n o sis
a.

M echanical v ibration analysis

b.

Shock p u ls e m o n ito rin g

c.

T e m p e ra tu re m e a s u re m e n t

d.

A coustic n oise analysis

e.

E lectrom ag netic field m o n ito rin g th r o u g h in s e rte d coil

f.


I n s ta n ta n e o u s o u tp u t p o w e r v a riation analysis

g.

I n f ra r e d analysis

h.

G as analysis


Introduction

F r e q u e n c y (Hz)

(a)

FIG URE 1.3
(.1) V ib r a tio n s p e c t r u m m o n ito r in g for b e a r in g in F ig u r e 1.2. h ttp ://w v v w .v ib r a tio n c o n s u lta n t s .
co .n //H a u it" 'l,2 0 D ia g n o s is .h t m l. (b) GE m o to r c u r r e n t a n a ly s is d e v ic e (from g e d ig it a le n e r g y .
c o m ). h t tp ://v \ w \v ,g e d ig it a le n e r g y .c o m /m u lt ilin /c a t a lo g /m 6 0 .h t m

Oil analysis
R ad io -frequ en cy (RF) em issio n m o n ito rin g
Partial d isc h a rg e m e a s u r e m e n t
M otor c u r re n t s ig n a tu r e analysis (MCSA)
m

Statistical analysis of relevant signals



6

Electric Machines: Modeling, Condition Monitoring, and Fault Diagiu'sis

2. M odel-based fault d ia gn osis
a.

N e u ra l n e tw o rk

b.

F u z z y logic analysis

c.

G enetic a lg o rith m

d.

Artificial intelligence

e.

Finite-elem ent (FE) m a g n e tic circuit e q uivalents

f.

L inear-circuit-theory-based m a th e m atic al m o de ls


3. M a c h in e -th e o ry -b a se d fault analysis
a.

W in d in g fun ctio n a p p ro a c h (WFA)

b.

M odified w in d in g fu n c tio n a p p ro a c h (MWFA)

c.

M ag netic e q u iv a le n t circuit (MEC)

4. Sim u la tio n s-b ase d fault analysis
a.

Finite-elem ent analy sis (FEA)

b.

T im e-step co up led finite elem ent state space a nalysis (TSCFE-SS)

The d ifferent ty p e s of fault d ia g n o sis m e th o d s have been sim u lta n e o u sly
a p p lie d to fine-tun e the de tection in industry. The fault d ia g n o sis of electri­
cal m o to rs is exp e c te d to p ro vide w a r n i n g of im m in e n t failures, d ia g n o s in g
s c h e d u lin g in fo rm a tio n for fu tu re preventive m ainten ance.
The im p lem entation of fault d iagn osis h a s be e n d o ne w ith the following
routine:
L Fault detection
a.


T im e -d o m a in -b a s e d detection (mostly for p o w e r system fault
diagnosis)

b.

Frecjuency d o m a in - b a s e d d etection (mostly for sig nal-b ased
m a c h in e fault diagnosis)

c.

A c c u m u la te d d ata -b a se d d etection (mostly for m o d e l-b a se d fault
diagnosis)

2. Fault decision m a k in g
a.

D ecide fault existence

b.

Decide fault severity

3. Feedback to m o to r controller or h u m a n mterface
a.

L imit m o to r o p e ra tio n b a s e d on fault severity

b.


Schedu le m a in te n a n c e

Figure 1.4 sh ow s the inc rea se d convergence b e tw e e n the e n e r g y system
a n d m o d e r n n e tw o r k sy stem in m o d e r n industry. The electrical m o to rs in a
car, ship, aircraft, b u ild in g , road, or in a p o w e r system can be a s s u m e d to be


hU roduciion

I'eedhack
th n iiig h C D ttyenlional
c o p p e r H'frc

• Individuai system control
' W hole system m anagement
' HeaWi monitoring

Digital processor
(ControUer)

7

F eed b a c k
ih r o iig h ivireless n e tw o r k
/le ir tn fo n n a tu m h ig lm a x i

C o n x e r g o n c t' o i e n e r g y s y s te m an ci m o d e m n e tw o r k s y s te m

FIG URE 1.4
C'unv e r g e n c e o f e n e r g v s y s te m a n d m o d e r n n e tw o r k s y s te m . (F rom S. C h o i, " R o b u st C o n d itio n

M o n ito r in g a n d F au lt D ia g n o s is o f V a ria b le S p e e d D r iy e o f I n d u c tio n M otor," P h D d is s e r t a ­
tio n , T ex as A & M U n iy e r sity , 2010. W ith p e r m is s io n .)

m ostly c o n n e c te d to a c o m m itte d se n so r or w i r e d /w ir e le s s se n so r ne tw ork.
Tlu)se s e n se d sig n a ls such as vibration, c u rre n t, voltage, a n d sp e e d are for­
w a r d e d to a close or rem o te m icro con tro ller or digital pro cessor of w h ic h the
controller p e r fo r m s in d iv id u a l system control, w h ole system m a n a g e m e n t,
or health m o n ito rin g [9].
T he fault d ia g n o sis ha s b e g u n to be efficiently im p le m e n te d w ith relatively
low cost by u tiliz in g the available se n so rs a n d digital signal pro cessor (DSP)
in th e w i r e d / w i r e l e s s n e tw o rk w ith o u t extra h a r d w a r e cost a n d w ith sim ple
softv\’are im p le m en ta tio n , w h ic h f u r th e r p ro v id e s the p rotection to m id d l e /
low p o w e r m o to r d r i \’e system. For exam ple, by u sin g the c u rr e n t sen sor
feedback, the new tre n d for low-cost protection applications of MCSA fault
d ia g n o sis se e m s to be d rive -in te g ra ted fault d ia g n o sis s y ste m s w ith in m o to r
driv e DSP w i th o u t u sin g a n y external h a r d w a r e [8].
T h is b o o k is i n te n d e d to p ro v id e f u n d a m e n ta ls of v a rio u s m o to r fault con ­
ditions, adx a n c ed fault m o d e lin g theory, diverse fault d ia g n o sis techniques,
a n d low cost DSP-based fault d ia g n o s is im p le m e n ta tio n strategies.
T he follou'ing c h a p te rs of this b o o k are o rg a n iz e d as follows;
• Ind uction of m o to r a n d s y n c h r o n o u s m o to r faults in C h a p te r 2
• Electric m o to r fault m o d e lin g based on d iverse theories in C h a p te rs
3 and 4
• N'arious electric m otor fault d ia g n o sis te c h n iq u e s in C h a p te r s 5, 6,
and 7
• MCSA im p le m e n ta tio n on a m icroco ntroller in C h a p te r s 8, 9, a n d 10


8


Electric Machines: Modeling, Condition Monitoring, and Vault Diagnosis

References
[1] H .A . Toliyat a n d S.G. C am p b e ll, D SP -B ased E lectrom echan ical M otion Control,
Boca R aton, FL: CRC P ress, 2003.
[2] G.B, K lim an, R.A. K o eg l,].S tein , R.D. E n d ic o tt,a n d M.W. M a d d e n , "X o n in v a s iv e
d e te c tio n of b ro k en ro to r b a rs in o p e ra tin g in d u c tio n m o to rs," IEEE Trniisiiclioii>
on E nergy C onversion s, vol. 3, p p . 873-879, D ecem b er 1988.
[3] S. N a n d i, H .A . Toliyat, a n d X. Li, " C o n d itio n m o n ito rin g a n d fau lt d ia g n o s is of
electrical m a ch in es— A rev iew ," IEEE T ransactions on Encr^^y C onversion , \ ol. 20,
no. 4, p p . 719-729, D ecem b er 2005.
[4] A. Siddic]ue, G.S. Y ada\ a, a n d B. S in g h , "A review of sta to r fau lt m o n ito rin g
te c h n iq u e s o f in d u c tio n m o to rs," IEEE Trans, on E nergy C onversion , \'ol. 20, p p .
106-114, M arch 2005.
[5] M. El H ach em i B en b o u zid , "A rev iew o f in d u c tio n m o to rs sig n a tu re a n a ly sis as
a m e d iu m for fau lts d e te c tio n ," IEEE Transactions on Indu strial E lectronics, vol.
47, p p . 984-993, O cto b er 2000.
[6] Y.E. Z h o n g m in g a n d W.L'. Bin, "A rev iew o n in d u c tio n m o to r o n lin e fault d ia g ­
n o sis," IEEE IPEM COO, vol. 3, p p . 1353-1358, 2000.
[7] B. A kin, U. O rg u n er, H . Toliyat, a n d .M. R ayner, "P h a se sen sitiv e d e te c tio n of
m o to r fau lt sig n a tu re s in th e p resen ce o f n o ise," IEEE Trniisaclions on Indu strial
E lectronics, \ ol. 55, no. 6, Ju n e 2008.
[8] B. A kin, U. O rg u n e r, H. Toliyat, a n d M. R ayner, "L ow o rd e r PW.M in v e rte r h.u'm o n ics c o n trib u tio n s to th e in v e rte r fed IM fau lt d ia g n o sis," IEEE T ransaclions
on Indu strial E lectronics, vol. 55, p p . 610-619, F e b ru a ry 2008.
[9] S. C hoi, "R o b u st C o n d itio n M o n ito rin g a n d F ault D iag n o sis o f V ariable S p eed
D rive of In d u c tio n .Motor," P h D d is se rta tio n , Texas A & M U niversity, 2010.
[10] W.T. T h o m so n a n d M. Fenger, " C u rre n t s ig n a tu re a n a ly sis to d e tec t in d u c tio n
m o to r fau lts," IEEE Industry A pplication s M agazine, vol. 7, no. 4, 2001.
[11] U.S. E nergy In fo rm a tio n A d m in istra tio n , "A n n u a l E n erg y O u tlo o k 2010: W ith
P ro jectio n s to 2035," W ash in g to n , DC, A p ril 2010.



2
Faults in Induction and Synchronous Motors

Bilal A k i n , Ph.D.
T cxai In stru m en ts

Mina M. R a hi mi an , Ph.D.
Texn< A & M U n iversiti/

2.1

I n t r o d u c t io n o f I n d u c t io n M o t o r Fault

This section briefly s u m m a r iz e s m o to r fault c o n d itio n s anci their cause, e s p e ­
cially for th e in d u c tio n motor. T he eccentricity related faults, b ro k e n rotor
b a r faults, b e a r in g faults, a n d stator faults, w h ic h account for m o re th a n 90%
of o\ erall in d u c tio n m o to r failures, are co nsid ere d [1-3].
2.1.1 Bearing Faults

B earin g faults account for m o re th a n 40°/o of all electric m o to r failures [5-7].
Most of the b e a rin g s in in d u s tria l facilities r u n u n d e r n o n id e al c o n d itio n s
a n d a r e subject to fatigue, a m b ien t m ec h a n ic al \'ibration, ov erloading, m is ­
a lig n m e n t, c o n ta m in a tio n , c u r re n t fluting, corrosion, a n d w r o n g lubrica­
tion. T h e se n o n id eal c o nd itions sta rt as m a r g in a l defects that s p re a d a n d
p ro p a g a te on the in n e r raceway, ou te r raceways, a n d ro lling e le m e n ts (see
Figure 2.1). A fter a w h ile the defect beco m es significant a n d g enerates
m ec h a n ic a l vibration c a u sin g acoustic noise. Basically, b e a rin g faults c an be
classified as o u te r raceway, in n e r raceway, ball defect, a n d cage defect, w h ic h

are the m a in so u rc e s of m a c h in e vibration. These m ec h a n ic al v ib ra tio n s in
the a ir g a p d u e to b e a rin g faults can be co nsid e re d as slight rotor d isp lac e ­
m en ts, w h ic h resu lt in in sta n t eccentricities. Therefore, the basic fault sig­
n a t u r e fre q u e n c y e q u a tio n of line c u r r e n t d u e to b e a rin g defects is a d o p te d
from eccentricity literatu re [10].
M e c h an ica l vibration, in fra re d or th e rm a l, a n d acoustic a n aly se s are som e
of the c o m m o n ly u se d pred ictive m a in te n a n c e m e th o d s to m o n ito r the
he.ilth of the b e a rin g s to p re v e n t m o to r failures.


10

Electric Machines: Modeling, Condition Monitoring, and Fault D ia^icsis

An a r h itia n

P itc h D ia m e te r (PD)

Ball D i a m e t e r (BI5)

FIG URE 2.1
A ty p ic a l b e a r i n g g e o m e tr\'.

Vibration a n d th e rm a l m o n ito rin g re q u ire a d d itio n a l se n so rs or tra n s ­
du cers to be fitted on the m achines. W hile som e large m o to rs m ay already
c om e w ith vibration a n d th e rm a l tra n sd u c e rs, it is not ec onom ically or ph\'sically feasible to p ro \ ide the s a m e for s m a lle r m achines. Therefore, small- to
m e d iu m -s iz e m otors are ch ecked pe riodically by m o \'in g po rtable e q u ip ­
m e n t from m a c h in e to m a c h in e in all th re e m e th o d s. Som e m o to rs used in
critical applications, su ch as nuclear reactor cooling p u m p m otors, m ay not
be easily accessible d u r in g reactor operation. The lack of c o n tin u o u s m o n ito r­

ing a n d accessibility are the sh o rtc o m in g s of the a fo re m e n tio n e d techniques.
A n altern ate a p p ro a c h b as e d on line c u r r e n t m o n ito rin g h a s re c e i\e d m u c h
rese a rc h attentio n in search of p ro v id in g a practical solution to con tinu ou s
m o n ito r in g a n d accessibility problem s. M otor c u r re n t m o n ito r in g provides
a n o n in tr u s iv e w’ay to c o n tin u o u sly m o n ito r m o to r reliability w ith m in im a l
a d d itio n a l cost.
B earing faults can b e classified as ou te r raceway, in n e r raceway, ball defect,
a n d cage defect. Each fault h a s specific m e c h a n ical vibration frequency c o m ­
p o n e n ts th at are ch aracteristic of each defect type, w'hich is a function of
b o th b e a r in g g e o m e tr y a n d sp eed . The m e c h an ical oscillations d u e to b e a r ­
ing faults c h a n g e th e air-gap s y m m e t r y a n d m a c h in e in d u c ta n c e s like eccen­
tricity faults. The m a c h in e in d u c ta n c e v a ria tio n s are reflected to the line
c u rr e n t in te rm s of c u r r e n t h a rm o n ics, w h ic h are the indic a to rs of bea rin g
fault associated w ith m e c h a n ic a l oscillations in th e air-gap.


f aults ill Induction and Synchro)wus Motors

11

A generic fault d ia g n o sis too! ba se d on d is c rim in a tiv e e n e rg y f u n c tio n s is
p r o p o s e d by Ilonen et al. [12]. T h ese e n e rg y fu n c tio n s reveal d isc rim in a tiv e
fre q u e n c y - d o m a in region s w h e re failures are identified. Schoen [13] im p le ­
m e n te d a n u n s u p e r v is e d , on-line system for in d u c tio n m o to r ba se d on m otor
line c u rre n t. A n a m p litu d e m o d u la tio n (AM) d ete c to r is d e v eloped to detect
the b e a r in g fault w h ile it is still in a n incipient stage of d e v e lo p m e n t in Stack
et al. [14]. O c ak [15] d e v elop ed a h id d e n M arkov m o d e lin g (H M M ) based
b e a r in g fault detection a n d fault diagnosis. Yazici a n d K lim a n [16] p ro p o s e d
an adaptiv'e statistical tim e-fre q u e n cy m e th o d for detection of b ro k e n rotor
b a rs a n d b e a rin g faults in m o to rs u s in g m o to r line c urrent.


2.1.2 Stator Faults
S tc\to r faults account for 30% to 40% of all electric m o to r failures [2,8,9]. The

sta to r fault can be b roa d ly classified as the la m in a tio n or fra m e fault (core
defect, c irculation cu rren t, or g r o u n d , etc.) a n d the stator w i n d i n g fault
( w in d in g in su la tio n da m a g e , d isp la c e m e n t of conductors, etc.).
T he m ajor fu nction of w i n d in g in su la tio n m a te ria ls n o rm a lly is to w i th ­
sta n d electric stress; how'ever, in m a n y cases it m u s t also e n d u r e other
stresse s su c h as m ec h a n ic al a n d e n v iro n m e n ta l stresses [19]. In a motor,
the to rq u e is the re sult of the force created by c u r r e n t in the c o n d u cto r a n d
s u r r o u n d i n g m a gn etic field. T his sh o w s th at w i n d in g in sulatio n m u s t have
electrical as well as m e c h a n ic al p ro p e rtie s to w ith s ta n d m e c h a n ic al stresses
[20], In a d d itio n , ele c tro m a g n etic v ibratio n at tw ice the p o w e r frequency, dif­
ferential ex p a n sio n forces d u e to the te m p e r a tu r e v aria tion s follow ing load
c h a n g e s , a n d im pact forces d u e to e le c tric al/m e c h a n ic a l a s y m m e trie s also
affect the a g in g process [21].
N o n u n if o r m te m pe rature distrib utio n in a m otor will also cause m echanical
d e stru c tio n d u e to dilation. The m a n u f a c tu r in g process itself m ay constitute
a tla m a g in g or aging action. The electrical w in d in g insulation m ust be strong
e n o u g h to w ith s ta n d the m ech an ical ab use w hile bein g w o u n d an d installed
in the motor. Thus, the initial m echanical stresses are often very severe com ­
p a r e d to the su bse qu e nt ab use the w in d i n g insulation gets in service [20].
Inc re a sed te m p e r a tu re s can cause a n u m b e r of effects. The m a te ria l m ay
be in h e r e n tly w e a k e r at elevated te m p e ra tu re s a n d a failure m a y o c c u r sim ­
ply b e c au s e of the m e ltin g of the material. T h is can be a v e ry sh o rt tim e fail­
ure, b e c a u se of the sh ort length of tim e r e q u ire d for the te m p e ra tu r e to rise
to th e m e ltin g point. O n the o th e r h a n d , long-term elevated te m p e r a tu r e can
c a u s e in te rn a l chem ical effects on m aterial [19].
T h e r m a l stress is probably the m ost recognized cause of w in d in g in su la ­

tion d e g ra d a tio n and ultim ate failure. The m a in sources of therm al stress in
electric m a c h in e r y are copper losses, e d d y current, a n d stray load losses in the
c o p p e r conductors, plus additional h eatin g d u e to core los.ses, w indage, a n d so
foi th [22]. H igh te m p e ratu re causes a chemical reaction that m ak es w 'inding
in su la tio n material brittle. A no th er problem is that due to s u d d e n tem p era ture


×