Tải bản đầy đủ (.pdf) (670 trang)

Name reactions 3ed 2006 li

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (6.17 MB, 670 trang )

@jgi6aYZg
&.%'Ã&.*CdWZaEg^oZ!&.*%

:YjVgY7jX]cZg
&-+%Ã&.&,
CdWZaEg^oZ!&.%,

6Yda[kdc7VZnZg
&-(*Ã&.&,
CdWZaEg^oZ!&.%*

:a^Vh?VbZh8dgZn
&.'-Ã
CdWZaEg^oZ!&..%

9ZgZ`=#G#7Vgidc
&.&-Ã&...
CdWZaEg^oZ!&.+.

DiidEVja=ZgbVcc9^Zah
&-,+Ã&.*)
CdWZaEg^oZ!&.*%


Name Reactions


Jie Jack Li

Name Reactions
A Collection


of Detailed Reaction Mechanisms

Third Expanded Edition

123


Jie Jack Li, Ph.D.
Pfizer Global Research and Development
Chemistry Department
2800 Plymouth Road
Ann Arbor, MI 48105
USA
e-mail: jack.li@pfizer.com

3rd. expanded ed.
ISBN-10 3-540-30030-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30030-4 Springer Berlin Heidelberg New York
e-ISBN 3-540-30031-7
ISBN-10 3-540-40203-9 2nd ed. Springer Berlin Heidelberg New York
Library of Congress Control Number: 2006925628

This work is subject to copyright. All rights reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.
Springer is a part of Springer Science+Business Media

springer.com
© Springer-Verlag Berlin Heidelberg 2003, 2006
Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
Typesetting: By the Author
Production: LE-TEX, Jelonek, Schmidt & Vöckler GbR, Leipzig
Coverdesign: KünkelLopka, Heidelberg
Printed on acid-free paper 2/3100 YL – 5 4 3 2 1 0


Dedicated to
Professor E. J. Corey


Foreword

I don't have my name on anything that I don't really do.
–Heidi Klum
Can the organic chemists associated with so-called “Named Reactions” make the
same claim as supermodel Heidi Klum? Many scholars of chemistry do not hesitate to point out that the names associated with “name reactions” are often not the
actual inventors. For instance, the Arndt-Eistert reaction has nothing to do with
either Arndt or Eistert, Pummerer did not discover the “Pummerer” rearrangement, and even the famous Birch reduction owes its initial discovery to someone
named Charles Wooster (first reported in a DuPont patent). The list goes on and
on…
But does that mean we should ignore, boycott, or outlaw “named reactions”? Absolutely not. The above examples are merely exceptions to the rule. In
fact, the chemists associated with name reactions are typically the original discoverers, contribute greatly to its general use, and/or are the first to popularize the
transformation. Regardless of the controversial history underlying certain named
reactions, it is the students of organic chemistry who benefit the most from the cataloging of reactions by name. Indeed, it is with education in mind that Dr. Jack

Li has masterfully brought the chemical community the latest edition of Name
Reactions.
It is clear why this beautiful treatise has rapidly become a bestseller
within the chemical community. The quintessence of hundreds of named reactions is encapsulated in a concise format that is ideal for students and seasoned
chemists alike. Detailed mechanistic and occasionally even historical details are
given for hundreds of reactions along with key references. This “must-have” book
will undoubtedly find a place on the bookshelves of all serious practitioners and
students of the art and science of synthesis.

Phil S. Baran
La Jolla, March 2006


Preface
Confucius said: “Reviewing old knowledge while learning new old knowledge, is
that not, after all, a pleasure?” Indeed, name reactions are not only the fruit of
pioneering organic chemists, but also our contemporaries whose combined discoveries have resulted in organic chemistry today. Since publication of this book,
Barry Sharpless and Ryoji Noyori, whose name reactions have been included
since the first edition, went on to win the Nobel Prizes in 2001. Recently, Richard
Schrock, Robert Grubbs, and Yves Chauvin shared the 2005 Nobel Prize in chemistry for their contributions to metathesis, a name reaction that has been also included since the first edition. Therefore, I intend to keep up with the new developments in the field of organic chemistry while retaining the collection of name
reactions that have withheld test of time.
The third edition contains major improvements over the previous two editions.
I have updated references. Each reaction is now supplemented with two to three
representative examples in synthesis to showcase its synthetic utility. As Emil Fischer stated: “Science is not an abstraction; but as a product of human endeavor it
is inseparably bound up in its development with the personalities and fortunes of
those who dedicate themselves to it.” To that end, I added biographical sketches
for most of the chemists who discovered or developed those name reactions.
Furthemore, I have significantly beefed up the subject index to help the reader navigate the book more easily.
In preparing this manuscript, I have incurred many debts of gratitude to Prof.
Reto Mueller of Switzerland, Prof. Robin Ferrier of New Zealand, and Prof. James

M. Cook of the University of Wisconsin, Milwaukee; Dr. Yike Ni of California
Institute of Technology, and Dr. Shengping Zheng of Columbia University for invaluable suggestions. I also wish to thank Dr. Gilles Chambournier, Prof. Phil S.
Baran of Scripps Research Institute and his students, Narendra Ambhaikar, Ben
Hafensteiner, Carlos Guerrero, and Dan O’Malley, Prof. Brian M. Stoltz of California Institute of Technology and his students, Kevin Allan, Daniel Caspi, David
Ebner, Andrew Harned, Shyam Krishnan, Michael Krout, Qi Charles Liu, Sandy
Ma, Justin Mohr, John Phillips, Jennifer Roizen, Brinton Seashore-Ludlow, Nathaniel Sherden, Jennifer Stockdill, and Carolyn Woodroofe for proofreading the
final draft of the manuscript. Their knowledge and time have tremendously enhanced the quality of this book. Any remaining errors are, of course, solely my
own responsibility.
I welcome your critique.

Jack Li
Ann Arbor, Michigan, March 2006


Table of Contents
Abbreviations .................................................................................................. XVIII
Alder ene reaction ................................................................................................... 1
Aldol condensation.................................................................................................. 3
Algar–Flynn–Oyamada reaction ............................................................................. 5
Allan–Robinson reaction......................................................................................... 8
Appel reaction ....................................................................................................... 10
Arndt–Eistert homologation .................................................................................. 12
Baeyer–Villiger oxidation ..................................................................................... 14
Baker–Venkataraman rearrangement .................................................................... 16
Bamberger rearrangement ..................................................................................... 18
Bamford–Stevens reaction .................................................................................... 20
Barbier coupling reaction ...................................................................................... 22
Bargellini reaction ................................................................................................. 24
Bartoli indole synthesis ......................................................................................... 26
Barton radical decarboxylation ............................................................................. 28

Barton–McCombie deoxygenation........................................................................ 30
Barton nitrite photolysis ........................................................................................ 32
Barton–Zard reaction ............................................................................................ 34
Batcho–Leimgruber indole synthesis .................................................................... 36
Baylis–Hillman reaction........................................................................................ 39
Beckmann rearrangement...................................................................................... 41
Beirut reaction....................................................................................................... 43
Benzilic acid rearrangement.................................................................................. 45
Benzoin condensation ........................................................................................... 47
Bergman cyclization.............................................................................................. 49
Biginelli pyrimidone synthesis.............................................................................. 51
Birch reduction...................................................................................................... 53
Bischler–Möhlau indole synthesis......................................................................... 55
Bischler–Napieralski reaction ............................................................................... 57
Blaise reaction....................................................................................................... 59
Blanc chloromethylation ....................................................................................... 61
Blum aziridine synthesis ...................................................................................... 63
Boekelheide reaction ............................................................................................. 65
Boger pyridine synthesis ....................................................................................... 67
Borch reductive amination .................................................................................... 69
Borsche–Drechsel cyclization ............................................................................... 71
Boulton–Katritzky rearrangement......................................................................... 73
Bouveault aldehyde synthesis ............................................................................... 75
Bouveault–Blanc reduction ................................................................................... 77
Boyland–Sims oxidation ....................................................................................... 79
Bradsher reaction .................................................................................................. 81
Brook rearrangement............................................................................................. 83
Brown hydroboration ............................................................................................ 85



XII

Bucherer carbazole synthesis ................................................................................ 87
Bucherer reaction .................................................................................................. 90
Bucherer–Bergs reaction....................................................................................... 92
Büchner–Curtius–Schlotterbeck reaction.............................................................. 94
Büchner method of ring expansion ....................................................................... 96
Buchwald–Hartwig C–N bond and C–O bond formation reactions...................... 98
Burgess dehydrating reagent ............................................................................... 100
Cadiot–Chodkiewicz coupling ............................................................................ 102
Camps quinolinol synthesis................................................................................. 104
Cannizzaro dispropotionation ............................................................................. 107
Carroll rearrangement ......................................................................................... 109
Castro–Stephens coupling................................................................................... 112
Chan alkyne reduction......................................................................................... 114
Chan–Lam coupling reaction .............................................................................. 116
Chapman rearrangement ..................................................................................... 118
Chichibabin pyridine synthesis ........................................................................... 120
Chugaev reaction................................................................................................. 123
Ciamician–Dennsted rearrangement ................................................................... 125
Claisen condensation........................................................................................... 127
Claisen isoxazole synthesis ................................................................................. 129
Claisen rearrangement......................................................................................... 131
Abnormal Claisen rearrangement............................................................... 133
Eschenmoser–Claisen amide acetal rearrangement.................................... 135
Ireland–Claisen (silyl ketene acetal) rearrangement .................................. 137
Johnson–Claisen (orthoester) rearrangement ............................................. 139
Clemmensen reduction........................................................................................ 141
Combes quinoline synthesis ................................................................................ 144
Conrad–Limpach reaction ................................................................................... 147

Cope elimination reaction ................................................................................... 149
Cope rearrangement ............................................................................................ 151
Oxy-Cope rearrangement ............................................................................ 152
Anionic oxy-Cope rearrangement ............................................................... 153
Corey–Bakshi–Shibata (CBS) reduction............................................................. 154
CoreyChaykovsky reaction ............................................................................... 157
Corey–Fuchs reaction ......................................................................................... 160
Corey–Kim oxidation.......................................................................................... 162
Corey–Nicolaou macrolactonization................................................................... 164
Corey–Seebach dithiane reaction ........................................................................ 166
Corey–Winter olefin synthesis ............................................................................ 168
Criegee glycol cleavage ...................................................................................... 171
Criegee mechanism of ozonolysis....................................................................... 173
Curtius rearrangement......................................................................................... 175
Dakin oxidation................................................................................................... 177
Dakin–West reaction........................................................................................... 179
Danheiser annulation........................................................................................... 181
Darzens glycidic ester condensation ................................................................... 183


XIII

Davis chiral oxaziridine reagent.......................................................................... 185
Delépine amine synthesis .................................................................................... 187
de Mayo reaction................................................................................................. 189
Demjanov rearrangement .................................................................................... 191
Tiffeneau–Demjanov rearrangement........................................................... 193
Dess–Martin oxidation ........................................................................................ 195
Dieckmann condensation .................................................................................... 197
Diels–Alder reaction ........................................................................................... 199

Dienone–phenol rearrangement .......................................................................... 202
Di-S-methane rearrangement .............................................................................. 204
Doebner quinoline synthesis ............................................................................... 206
Dötz reaction ....................................................................................................... 208
Dowd–Beckwith ring expansion ......................................................................... 210
ErlenmeyerPlöchl azlactone synthesis .............................................................. 212
Eschenmoser–Tanabe fragmentation .................................................................. 214
Eschweiler–Clarke reductive alkylation of amines ............................................. 216
Evans aldol reaction ............................................................................................ 218
Favorskii rearrangement and quasi-Favorskii rearrangement ............................. 220
Feist–Bénary furan synthesis .............................................................................. 222
Ferrier carbocyclization....................................................................................... 224
Ferrier glycal allylic rearrangement .................................................................... 227
Fiesselmann thiophene synthesis ........................................................................ 230
Fischer indole synthesis ...................................................................................... 233
Fischer oxazole synthesis .................................................................................... 235
Fleming–Tamao oxidation .................................................................................. 237
TamaoKumada oxidation .......................................................................... 239
Friedel–Crafts reaction........................................................................................ 240
Friedländer quinoline synthesis........................................................................... 243
Fries rearrangement............................................................................................. 245
Fukuyama amine synthesis.................................................................................. 247
Fukuyama reduction............................................................................................ 249
Gabriel synthesis ................................................................................................. 251
Ing–Manske procedure................................................................................ 253
Gabriel–Colman rearrangement .......................................................................... 255
Gassman indole synthesis.................................................................................... 257
Gattermann–Koch reaction ................................................................................. 259
Gewald aminothiophene synthesis ...................................................................... 261
Glaser coupling ................................................................................................... 263

Eglinton coupling ........................................................................................ 265
Gomberg–Bachmann reaction............................................................................. 267
Gould–Jacobs reaction ........................................................................................ 269
Grignard reaction ................................................................................................ 271
Grob fragmentation ............................................................................................. 273
Guareschi–Thorpe condensation ......................................................................... 275
Hajos–Wiechert reaction ..................................................................................... 277
Haller–Bauer reaction ......................................................................................... 279


XIV

Hantzsch dihydropyridine synthesis.................................................................... 281
Hantzsch pyrrole synthesis.................................................................................. 283
Heck reaction ...................................................................................................... 285
Heteroaryl Heck reaction ............................................................................ 287
Hegedus indole synthesis .................................................................................... 289
Hell–Volhard–Zelinsky reaction ......................................................................... 291
Henry nitroaldol reaction .................................................................................... 293
Hinsberg synthesis of thiophene derivatives ....................................................... 295
Hiyama cross-coupling reaction.......................................................................... 297
Hiyama–Denmark cross-coupling reaction ................................................. 299
Hofmann rearrangement...................................................................................... 302
Hofmann–Löffler–Freytag reaction .................................................................... 304
Horner–Wadsworth–Emmons reaction ............................................................... 306
Houben–Hoesch synthesis .................................................................................. 308
Hunsdiecker–Borodin reaction............................................................................ 310
Hurd–Mori 1,2,3-thiadiazole synthesis ............................................................... 312
Jacobsen–Katsuki epoxidation ............................................................................ 314
Japp–Klingemann hydrazone synthesis .............................................................. 316

Jones oxidation.................................................................................................... 318
Julia–Kocienski olefination................................................................................. 321
Julia–Lythgoe olefination.................................................................................... 323
Kahne–Crich glycosidation ................................................................................. 325
Keck macrolactonization..................................................................................... 327
Knoevenagel condensation.................................................................................. 329
Knorr pyrazole synthesis..................................................................................... 331
Paal–Knorr pyrrole synthesis ...................................................................... 333
Koch–Haaf carbonylation ................................................................................... 335
Koenig–Knorr glycosidation ............................................................................... 337
Kolbe–Schmitt reaction....................................................................................... 339
Kostanecki reaction............................................................................................. 341
Kröhnke pyridine synthesis................................................................................. 343
Kumada cross-coupling reaction......................................................................... 345
Lawesson’s reagent ............................................................................................. 348
Leuckart–Wallach reaction ................................................................................. 350
Lossen rearrangement ......................................................................................... 352
McFadyen–Stevens reduction ............................................................................. 354
McMurry coupling .............................................................................................. 356
MacMillan catalyst.............................................................................................. 358
Mannich reaction................................................................................................. 361
Marshall boronate fragmentation ........................................................................ 363
Martin’s sulfurane dehydrating reagent .............................................................. 365
Masamune–Roush conditions ............................................................................. 367
Meerwein–Ponndorf–Verley reduction............................................................... 369
Meisenheimer complex ....................................................................................... 371
[1,2]-Meisenheimer rearrangement..................................................................... 372
[2,3]-Meisenheimer rearrangement..................................................................... 374



XV

Meth–Cohn quinoline synthesis .......................................................................... 376
Meyers oxazoline method ................................................................................... 378
Meyer–Schuster rearrangement........................................................................... 380
Michael addition.................................................................................................. 382
Michaelis–Arbuzov phosphonate synthesis ........................................................ 384
Midland reduction ............................................................................................... 386
Mislow–Evans rearrangement............................................................................. 388
Mitsunobu reaction.............................................................................................. 390
Miyaura borylation.............................................................................................. 392
Moffatt oxidation ................................................................................................ 394
Montgomery coupling ......................................................................................... 396
Morgan–Walls reaction ...................................................................................... 399
Pictet–Hubert reaction ................................................................................ 400
Mori–Ban indole synthesis.................................................................................. 401
Mukaiyama aldol reaction................................................................................... 403
Mukaiyama Michael addition.............................................................................. 405
Mukaiyama reagent ............................................................................................. 406
MyersSaito cyclization...................................................................................... 408
Nazarov cyclization............................................................................................. 410
Neber rearrangement ........................................................................................... 412
Nef reaction......................................................................................................... 414
Negishi cross-coupling reaction .......................................................................... 416
Nenitzescu indole synthesis ................................................................................ 418
Nicholas reaction................................................................................................. 420
Nicolaou dehydrogenation .................................................................................. 422
Nicolaou hydroxy-dithioketal cyclization ........................................................... 424
Nicolaou hydroxy-ketone reductive cyclic ether formation ................................ 426
Nicolaou oxyselenation ....................................................................................... 428

Noyori asymmetric hydrogenation...................................................................... 430
Nozaki–Hiyama–Kishi reaction .......................................................................... 432
Oppenauer oxidation ........................................................................................... 434
Overman rearrangement...................................................................................... 436
Paal thiophene synthesis...................................................................................... 438
Paal–Knorr furan synthesis ................................................................................. 440
Parham cyclization .............................................................................................. 442
Passerini reaction ................................................................................................ 444
Paternó–Büchi reaction ....................................................................................... 446
Pauson–Khand cyclopentenone synthesis ........................................................... 448
Payne rearrangement ........................................................................................... 450
Pechmann coumarin synthesis ............................................................................ 452
Perkin reaction .................................................................................................... 454
Petasis reaction.................................................................................................... 456
Peterson olefination............................................................................................. 458
Pictet–Gams isoquinoline synthesis .................................................................... 460
Pictet–Spengler tetrahydroisoquinoline synthesis ............................................... 462
Pinacol rearrangement......................................................................................... 464


XVI

Pinner reaction .................................................................................................... 466
Polonovski reaction............................................................................................. 468
Polonovski–Potier rearrangement ....................................................................... 470
Pomeranz–Fritsch reaction.................................................................................. 472
Schlittler–Müller modification.................................................................... 473
Prévost trans-dihydroxylation............................................................................. 475
Woodward cis-dihydroxylation................................................................... 476
Prins reaction ...................................................................................................... 478

Pschorr cyclization .............................................................................................. 480
Pummerer rearrangement .................................................................................... 483
Ramberg–Bäcklund reaction ............................................................................... 485
Reformatsky reaction .......................................................................................... 487
Regitz diazo synthesis ......................................................................................... 489
Reimer–Tiemann reaction ................................................................................... 492
Reissert aldehyde synthesis................................................................................. 494
Reissert indole synthesis ..................................................................................... 497
Ring-closing metathesis ...................................................................................... 499
Ritter reaction...................................................................................................... 501
Robinson annulation ........................................................................................... 503
Robinson–Gabriel synthesis................................................................................ 505
Robinson–Schöpf reaction .................................................................................. 507
Rosenmund reduction ......................................................................................... 509
Rubottom oxidation............................................................................................. 511
Rupe rearrangement ............................................................................................ 513
Saegusa oxidation ............................................................................................... 515
Sakurai allylation reaction................................................................................... 518
Sandmeyer reaction............................................................................................. 520
Schiemann reaction ............................................................................................. 522
Schmidt reaction ................................................................................................. 524
Schmidt’s trichloroacetimidate glycosidation reaction ....................................... 526
Shapiro reaction .................................................................................................. 529
Sharpless asymmetric amino hydroxylation........................................................ 531
Sharpless asymmetric epoxidation ..................................................................... 533
Sharpless asymmetric dihydroxylation ............................................................... 536
Sharpless olefin synthesis ................................................................................... 540
Simmons–Smith reaction ................................................................................... 543
Skraup quinoline synthesis.................................................................................. 545
Doebner–von Miller reaction ...................................................................... 547

Smiles rearrangement.......................................................................................... 549
NewmanKwart reaction ............................................................................ 551
TruceSmile rearrangement ........................................................................ 553
Sommelet reaction............................................................................................... 555
Sommelet–Hauser rearrangement ....................................................................... 557
Sonogashira reaction ........................................................................................... 559
Staudinger ketene cycloaddition ......................................................................... 561
Staudinger reduction ........................................................................................... 563


XVII

Sternbach benzodiazepine synthesis ................................................................... 565
Stetter reaction .................................................................................................... 567
Still–Gennari phosphonate reaction .................................................................... 569
Stille coupling ..................................................................................................... 571
Stille–Kelly reaction............................................................................................ 573
Stobbe condensation............................................................................................ 575
Stork enamine reaction........................................................................................ 577
Strecker amino acid synthesis ............................................................................. 579
Suzuki coupling................................................................................................... 581
Swern oxidation .................................................................................................. 583
Takai iodoalkene synthesis.................................................................................. 585
Tebbe olefination ................................................................................................ 587
Petasis alkenylation ..................................................................................... 587
TEMPO-mediated oxidation ............................................................................... 589
ThorpeZiegler reaction...................................................................................... 592
Tsuji–Trost allylation .......................................................................................... 594
Ugi reaction......................................................................................................... 596
Ullmann reaction................................................................................................. 599

van Leusen oxazole synthesis ............................................................................. 601
Vilsmeier–Haack reaction ................................................................................... 603
Vilsmeier mechanism for acid chloride formation .............................................. 605
Vinylcyclopropanecyclopentene rearrangement ............................................... 606
von Braun reaction .............................................................................................. 608
Wacker oxidation ................................................................................................ 610
Wagner–Meerwein rearrangement ...................................................................... 612
Weiss–Cook reaction .......................................................................................... 614
Wharton oxygen transposition reaction............................................................... 616
Willgerodt–Kindler reaction ............................................................................... 618
Wittig reaction..................................................................................................... 621
Schlosser modification of the Wittig reaction ............................................ 622
[1,2]-Wittig rearrangement.................................................................................. 624
[2,3]-Wittig rearrangement.................................................................................. 626
Wohl–Ziegler reaction ........................................................................................ 628
Wolff rearrangement ........................................................................................... 630
Wolff–Kishner reduction..................................................................................... 632
Yamaguchi esterification..................................................................................... 634
Zincke reaction.................................................................................................... 637
Subject Index....................................................................................................... 641


XVIII

Abbreviations and Acronyms
polymer support
A
Ac
AIBN
Alpine-borane®

Ar
B:
9-BBN
[bimim]Cl•2AlCl3
BINAP
Bn
Boc
t-Bu
Bz
Cbz
m-CPBA
CuTC
DABCO
dba
DBU
DCC
DDQ
DEAD
'


(DHQ)2-PHAL
(DHQD)2-PHAL
DIAD
DIBAL
DIPEA
DMA
DMAP
DME
DMF

DMFDMA
DMS
DMSO
DMSY
DMT
dppb
dppe
dppf
dppp

adenosine
acetyl
2,2’-azobisisobutyronitrile
B-isopinocampheyl-9-borabicyclo[3.3.1]-nonane
aryl
generic base
9-borabicyclo[3.3.1]nonane
1-butyl-3-methylimidazolium chloroaluminuminate
(a Lewis acid ionic liquid)
2,2’-bis(diphenylphosphino)-1,1’-binaphthyl
benzyl
tert-butyloxycarbonyl
tert-butyl
benzoyl
benzyloxycarbonyl
m-chloroperoxybenzoic acid
copper thiophene-2-carboxylate
1,4-diazabicyclo[2.2.2]octane
dibenzylideneacetone
1,8-diazabicyclo[5.4.0]undec-7-ene

1,3-dicyclohexylcarbodiimide
2,3-dichloro-5,6-dicyano-1,4-benzoquinone
diethyl azodicarboxylate
solvent heated under reflux
1,4-bis(9-O-dihydroquinine)-phthalazine
1,4-bis(9-O-dihydroquinidine)-phthalazine
diisopropyl azodidicarboxylate
diisobutylaluminum hydride
diisopropylethylamine
N,N-dimethylacetamide
4-N,N-dimethylaminopyridine
1,2-dimethoxyethane
N,N-dimethylformamide
N,N-dimethylformamide dimethyl acetal
dimethylsulfide
dimethylsulfoxide
dimethylsulfoxonium methylide
dimethoxytrityl
1,4-bis(diphenylphosphino)butane
1,2-bis(diphenylphosphino)ethane
1,1’-bis(diphenylphosphino)ferrocene
1,3-bis(diphenylphosphino)propane


XIX

DTBAD
DTBMP
E1
E2

E1cB
EAN
EDDA
ee
Ei
Eq
Et
EtOAc
HMDS
HMPA
HMTTA
Imd
KHMDS
LAH
LDA
LHMDS
LTMP
M
Mes
Ms
MVK
NBS
NCS
NIS
NMP
Nos
Nu
N-PSP
N-PSS
PCC

PDC
Piv
PMB
PPA
PPTS
PyPh2P
Pyr
Red-Al
Salen
SET
SM

di-tert-butylazodicarbonate
2,6-di-tert-butyl-4-methylpyridine
unimolecular elimination
bimolecular elimination
2-step, base-induced E-elimination via carbanion
ethylammonium nitrate
ethylenediamine diacetate
enantiomeric excess
two groups leave at about the same time and bond to
each other as they are doing so.
equivalent
ethyl
ethyl acetate
hexamethyldisilazane
hexamethylphosphoramide
1,1,4,7,10,10-hexamethyltriethylenetetramine
imidazole
potassium hexamethyldisilazide

lithium aluminum hydride
lithium diisopropylamide
lithium hexamethyldisilazide
lithium 2,2,6,6-tetramethylpiperidide
metal
mesityl
methanesulfonyl
methyl vinyl ketone
N-bromosuccinimide
N-chlorosuccinimide
N-iodosuccinimide
1-methyl-2-pyrrolidinone
nosylate (4-nitrobenzenesulfonyl)
nucleophile
N-phenylselenophthalimide
N-phenylselenosuccinimide
pyridinium chlorochromate
pyridinium dichromate
pivaloyl
para-methoxybenzyl
polyphosphoric acid
pyridinium p-toluenesulfonate
diphenyl 2-pyridylphosphine
pyridine
sodium bis(methoxy-ethoxy)aluminum hydride (SMEAH)
N,N´-disalicylidene-ethylenediamine
single electron transfer
starting material



XX

SMEAH
SN1
SN2
SNAr
TBABB
TBAF
TBDMS
TBDPS
TBS
TEA
TEOC
Tf
TFA
TFAA
TFP
THF
TIPS
TMEDA
TMG
TMP
TMS
TMSCl
TMSCN
TMSI
TMSOTf
Tol
Tol-BINAP
TosMIC

Ts
TsO
UHP

sodium bis(methoxy-ethoxy)aluminum hydride (Red-Al)
unimolecular nucleophilic substitution
bimolecular nucleophilic substitution
nucleophilic substitution on an aromatic ring
tetra-n-butylammonium bibenzoate
tetra-n-butylammonium fluoride
tert-butyldimethylsilyl
tert-butyldiphenylsilyl
tert-butyldimethylsilyl
triethylamine
trimethysilylethoxycarbonyl
trifluoromethanesulfonyl (triflyl)
trifluoroacetic acid
trifluoroacetic anhydride
tri-2-furylphosphine
tetrahydrofuran
triisopropylsilyl
N,N,N’,N’-tetramethylethylenediamine
tetramethylguanidine
tetramethylpiperidine
trimethylsilyl
trimethylsilyl chloride
trimethylsilyl cyanide
trimethylsilyl iodide
trimethylsilyl triflate
toluene or tolyl

2,2’-bis(di-p-tolylphosphino)-1,1’-binaphthyl
(p-tolylsulfonyl)methyl isocyanide
tosyl
tosylate
urea-hydrogen peroxide


1

Alder ene reaction
Addition of an enophile to an alkene via allylic transposition. Also known as hydroallyl addition.

O

O
'

O

O

O

O
enophile

O
O

O

O

ene

H

O

reaction
O

Example 113

H2N N

O

KOH, Pt/Clay, 35%
O
(Kishner reduction)

H

H

O
H

O


O

O
0 oC, CH2Cl2, 89%
(Alder ene reaction)

O

O
OH

Example 214
O
O

H

Tol., reflux

N

O
N

5 h, 95%
O

H



2

References
1.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Alder, K.; Pascher, F.; Schmitz, A. Ber. Dtsch. Chem. Ges. 1943, 76, 27. Kurt Alder
(Germany, 19021958) shared the Nobel Prize in Chemistry in 1950 with his teacher
Otto Diels (Germany, 18761954) for development of the diene synthesis.
Oppolzer, W. Pure Appl. Chem. 1981, 53, 1181. (Review).
Oppolzer, W. Angew. Chem. 1984, 96, 840.
Mackewitz, T. W.; Regitz, M. Synthesis 1998, 125138.
Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325335. (Review).
Stratakis, M.; Orfanopoulos, M. Tetrahedron 2000, 56, 15951615.
Mikami, K.; Nakai, T. In Catalytic Asymmetric Synthesis; 2nd edn.; Ojima, I., ed.;
WileyVCH: New York, 2000, 543568. (Review).
Leach, A. G.; Houk, K. N. Chem. Commun. 2002, 1243.

Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 8198.
Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003, 268.
Suzuki, K.; Inomata, K.; Endo, Y. Org. Lett. 2004, 6, 409.
Brummond, K. M.; McCabe, J. M. The Rhodium(I)-catalyzed Alder-ene Reaction. In
Modern Rhodium-Catalyzed Organic Reactions 2005, 151172. (Book chapter).
Miles, W. H.; Dethoff, E. A.; Tuson, H. H.; Ulas, G. J. Org. Chem. 2005, 70, 2862.
Pedrosa, R.; Andres, C.; Martin, L.; Nieto, J.; Roson, C. J. Org. Chem. 2005, 70, 4332.


3

Aldol condensation
Condensation of a carbonyl with an enolate or an enol. A simple case is addition
of an enolate to an aldehyde to afford an alcohol, thus the name aldol.
2

O
R

R OH O

1. base

R3

R1

O

2.


R
3

2

R

R

O

O
R

R1

R

deprotonation

R1

R

H

condensation

R1

R2

3

O

B:

R2 O O
1

R3

R2 OH O

acidic
R

workup

R3

R1
R

R
Example 13

o


O

LDA, THF, then MgBr2, 110 C, then
OTMS
OHC
OH

BnO

O

O

OBn

O
OTMS

85% yield


4

Example 212

LDA, THF, 78 to 40 oC, then
aldehyde, 1 h, 83%, 3:2 de
O

CO2H

OTBS
H
O

HO

O

CO2H
OTBS

References
1.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Wurtz, C. A. Bull. Soc. Chim. Fr. 1872, 17, 436. Charles Adolphe Wurtz
(18171884) was born in Strasbourg, France. After his doctoral training, he spent a

year under Liebig in 1843. In 1874, Wurtz became a chair of organic chemistry at the
Sorbonne, where he educated many illustrous chemists such as Crafts, Fittig, Friedel,
and van’t Hoff. The Wurtz reaction is no longer considered synthetically useful,
although the aldol reaction that Wurtz discovered in 1872 has become a staple in organic synthesis.
Nielsen, A. T.; Houlihan, W. J. Org. React. 1968, 16, 1438. (Review).
Still, W. C.; McDonald, J. H., III. Tetrahedron Lett. 1980, 21, 1031, 1035.
Mukayama, T. Org. React. 1982, 28, 203331. (Review).
Mukayama, T.; Kobayashi, S. Org. React. 1994, 46, 1103. (Review on Tin(II)
enolates).
Saito, S.; Yamamoto, H. Chem. Eur. J. 1999, 5, 19591962. (Review).
Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325335. (Review).
Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432440. (Review).
Nicolaou, K. C.; Ritzén, A.; Namoto, K. Chem. Commun. 2001, 1523.
Palomo, C.; Oiarbide, M.; García, J. M. Chem. Eur. J. 2002, 8, 3644. (Review).
Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 15951601. (Review).
Wei, H.-X.; Hu, J.; Purkiss, D. W.; Paré, P. W. Tetrahedron Lett. 2003, 44, 949.
Bravin, F. M.; Busnelli, G.; Colombo, M.; Gatti, F.; Manzoni, L.; Scolastico, C. Synthesis 2004, 353.
Mahrwald, R. (ed.) Modern Aldol Reactions, WileyVCH: Weinheim, Germany,
2004. (Book).


5

AlgarFlynnOyamada Reaction
Conversion of 2’-hydroxychalcones to 2-aryl-3-hydroxy-4H-1benzopyran-4-ones
(flavonols) by alkaline hydrogen peroxide oxidation.

R1

OH


Ar

R1

H2O2, NaOH

O

Ar
OH

O

R2

O

R2

R1

O

Ar
OH

R2
OH


O
O

HO, H2O2

E-attack

D

O

O

E
O

O
O

O

OH
O

OH
O

flavonol

A side reaction:


O
D
O

E
O

D-attack
then dehydration

O

O
aurone


6

Example 15

OH
1. PhCHO, NaOH, EtOH, rt

O

O

2. H2O2, 15 to 50 oC, 54%


Ph
OH

O

Example 25

CHO
, aq. NaOH, EtOH

1.
O

OH

O

OMe
2. aq. NaOH, 30% H2O2
47% for two steps
OMe

O

O
OH
O

References
Algar, J.; Flynn, J. P. Proc. Roy. Irish. Acad. 1934, 42B, 1.

Oyamada, T. J. Chem. Soc. Japan 1934, 55, 1256.
Oyamada, T. Bull. Chem. Soc. Jpn. 1935, 10, 182.
Wheeler, T.S. Rec. of Chem. Prog. 1957, 18, 133. (Review)
Smith, M. A.; Neumann, R. M.; Webb, R. A. J. Heterocycl. Chem. 1968, 5, 425.
Rao, A. V. S.; Rao, N. V. S. Current Science 1974, 43, 477.
Cullen, W. P.; Donnelly, D. M. X.; Keenan, A. K.; Kennan, P. J.; Ramdas, K. J. Chem.
Soc., Perkin Trans. 1 1975, 1671.
8. Wagner, H.; Farkas, L. In The Flavonoids; Harborne, J. B.; Mabry, T. J.; Mabry H.,
Eds.; Academic Press: New York, 1975; p 127. (Review).
9. Wollenweber, E. In The Flavonoids: Advances in Research; Harborne, J. B.; Mabry,
T. J., Eds; Chapman and Hall: New York, 1982; p 189. (Review).
10. Jain, A. C.; Gupta, S. M.; Sharma, A. Bull. Chem. Soc. Jpn. 1983, 56, 1267.
11. Prasad, K. J. Rajendra; Iyer, C. S. Rukmani; Iyer, P. R. Indian J. Chem., Sect. B 1983,
22B, 693.
1.
2.
3.
4.
5.
6.
7.


7

12. Wollenweber, E. In The Flavonoids: Advances in Research since 1986; Harborne, J.
B., Ed.; Chapman and Hall: New York, 1994, p 259. (Review).
13. Bennett, M.; Burke, A. J.; O'Sullivan, W. I. Tetrahedron 1996, 52, 7163.
14. Sobottka, A. M.; Werner, W.; Blaschke, G.; Kiefer, W.; Nowe, U.; Dannhardt, G.;
Schapoval, E. E. S.; Schenkel, E. P.; Scriba, G. K. E. Arch. Pharm. 2000, 333, 205.

15. Bohm, B. A.; Stuessy, T. F. Flavonoids of the Sunflower Family (Asteraceae);
Springer-Verlag: New York, 2001. (Review).


8

Allan–Robinson reaction
Synthesis of flavones or isoflavones.

O

OH
R1
R
O

O
R1

O

R

R1CO2Na, '

O

OH R1

OH


O

enolization
R

R
O

R1

O

H

acylation

O

O
R1

O

1

R CO2
OH R1

OH R1

O
OCOR1
R

enolization

 O2CR

O

O
H

O: R1

O

1

R

H
O2CR1
O

R1
OH

O
R

O

R
OH

H
O2CR1

O

R1
R

O


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×