Tải bản đầy đủ (.pdf) (227 trang)

Solution manual vector mechanics engineers dynamics 8th beer chapter 04

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (17.53 MB, 227 trang )

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 1.
Free-Body Diagram:

(a)

ΣM B = 0:

− Ay ( 3.6 ft ) − (146 lb )(1.44 ft ) − ( 63 lb )( 3.24 ft ) − ( 90 lb )( 6.24 ft ) = 0

Ay = − 271.10 lb
(b)

ΣM A = 0 :

or A y = 271 lb

By (3.6 ft ) − (146 lb)(5.04 ft ) − (63 lb)(6.84 ft ) − (90 lb)(9.84 ft ) = 0
By = 570.10 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or B y = 570 lb


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 2.


Free-Body Diagram:

(a)

ΣM C = 0:

( 3.5 kips ) (1.6 + 1.3 + 19.5cos15o ) ft  − 2FB (1.6 + 1.3 + 14 ) ft  + ( 9.5 kips )(1.6 ft ) = 0
2FB = 5.4009 kips
or FB = 2.70 kips

(b)
ΣM B = 0:

( 3.5 kips ) (19.5cos15o − 14 ) ft  − ( 9.5 kips ) (14 + 1.3) ft  + 2 FC (14 + 1.3 + 1.6 ) ft  = 0
2FC = 7.5991 kips, or
or FC = 3.80 kips

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 3.
Free-Body Diagram:

(a)

ΣM K = 0:


( 25 kN )( 5.4 m ) + ( 3 kN )( 3.4 m ) − 2FH ( 2.5 m ) + ( 50 kN )( 0.5 m ) = 0
2FH = 68.080 kN

(b)

ΣM H = 0:

or FH = 34.0 kN

( 25 kN )( 2.9 m ) + ( 3 kN )( 0.9 m ) − ( 50 kN )( 2.0 m ) + 2FK ( 2.5 m ) = 0
2FK = 9.9200 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or FK = 4.96 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 4.
Free-Body Diagram: (boom)

(a)

ΣM B = 0:

( 25 kN )( 2.6 m ) + ( 3 kN )( 0.6 m ) − ( 25 kN )( 0.4 m ) − TCD ( 0.7 m ) = 0

TCD = 81.143 kN

(b)

ΣFx = 0:

Bx = 0 so that B = By

ΣFy = 0:

( −25 − 3 − 25 − 81.143) kN + B = 0
B = 134.143 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or TCD = 81.1 kN

or B = 134.1 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 5.
Free-Body Diagram:

a1 = ( 20 in.) sin α − ( 8 in.) cos α
a2 = ( 32 in.) cos α − ( 20 in.) sin α
b = ( 64 in.) cos α

From free-body diagram of hand truck

ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0

(1)

ΣFy = 0: P − 2w + 2B = 0

(2)

α = 35°

For

a1 = 20sin 35° − 8cos 35° = 4.9183 in.
a2 = 32 cos 35° − 20sin 35° = 14.7413 in.

b = 64cos 35° = 52.426 in.
(a)

From Equation (1)

P ( 52.426 in.) − 80 lb (14.7413 in.) + 80 lb ( 4.9183 in.) = 0
∴ P = 14.9896 lb
(b)

or P = 14.99 lb

From Equation (2)


14.9896 lb − 2 ( 80 lb ) + 2 B = 0
∴ B = 72.505 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or

B = 72.5 lb


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 6.

a1 = ( 20 in.) sin α − ( 8 in.) cos α

Free-Body Diagram:

a2 = ( 32 in.) cos α − ( 20 in.) sin α
b = ( 64 in.) cos α
From free-body diagram of hand truck

ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0 (1)
ΣFy = 0: P − 2w + 2B = 0

(2)

α = 40°


For

a1 = 20sin 40° − 8cos 40° = 6.7274 in.
a2 = 32 cos 40° − 20sin 40° = 11.6577 in.

b = 64cos 40° = 49.027 in.
(a)

From Equation (1)

P ( 49.027 in.) − 80 lb (11.6577 in.) + 80 lb ( 6.7274 in.) = 0
P = 8.0450 lb
or P = 8.05 lb
(b)

From Equation (2)

8.0450 lb − 2 (80 lb ) + 2 B = 0
B = 75.9775 lb
or B = 76.0 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 7.

Free-Body Diagram:

(a) a = 2.9 m

ΣFx = 0:

ΣM B = 0:

Ax = 0

− (12 m ) Ay + (12 − 2.9 ) m  ( 3.9 kN ) + (12 − 2.9 − 2.6 ) m  ( 6.3 kN )
+ ( 2.8 + 1.45 ) m  ( 7.9 kN ) + (1.45 m )( 7.3 kN ) = 0

or

ΣFy = 0:
or

Ay = 10.0500 kN

or A = 10.05 kN

10.0500 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0
By = 15.3500 kN

or B = 15.35 kN

(b) a = 8.1 m

ΣM B = 0:


− (12 m ) Ay + (12 − 8.1) m  ( 3.9 kN ) + (12 − 8.1 − 2.6 ) m  ( 6.3 kN )
+ ( 2.8 + 4.05 ) m  ( 7.9 kN ) + ( 4.05 m )( 7.3 kN ) = 0

or

ΣFy = 0:
or

Ay = 8.9233 kN

or A = 8.92 kN

8.9233 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0
By = 16.4767 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or B = 16.48 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 8.
Free-Body Diagram:

(a)


ΣFx = 0:

ΣM B = 0:

Ax = 0

− (12 m ) Ay + (12 m − a )( 3.9 kN ) + (12 − 2.6 ) m − a  ( 6.3 kN )
a
a

+  2.8 m +  ( 7.9 kN ) + ( 7.3 kN ) = 0
2
2


or

(12 m ) Ay

= 128.14 kN ⋅ m − (10.2 kN ) a + (15.2 kN ) a
2

(12 m ) Ay

= 128.14 kN ⋅ m − ( 2.6 kN ) a

Thus Ay is maximum for the smallest possible value of a:

a=0
(b) The corresponding value of Ay is


( Ay )max = 10.6783 kN, and
ΣFy = 0:

or A = 10.68 kN

10.6783 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0
By = 14.7217 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

or B = 14.72 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 9.
Free-Body Diagram:

For (TC )max , TB = 0

ΣM O = 0:

(TC )max ( 4.8 in.) − (80 lb )( 2.4 in.) = 0
(TC )
= 40 lb  > [Tmax = 36 lb ]
max



(TC )max

= 36.0 lb

For (TC )min , TB = Tmax = 36 lb
ΣM O = 0:

(TC )min ( 4.8 in.) + ( 36 lb )(1.6 in.) − (80 lb )( 2.4 in.) = 0
(TC )min

= 28.0 lb

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

28.0 lb ≤ TC ≤ 36.0 lb


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 10.
Free-Body Diagram:

For Qmin , TD = 0
ΣM B = 0:


( 7.5 kN )( 0.5 m ) − Qmin ( 3 m ) = 0
Qmin = 1.250 kN

For Qmax , TB = 0
ΣM D = 0:

( 7.5 kN )( 2.75 m ) − Qmax ( 0.75 m ) = 0
Qmax = 27.5 kN

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

1.250 kN ≤ Q ≤ 27.5 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 11.
Free-Body Diagram:

ΣM D = 0:

( 7.5 kN )( 2.75 m ) − TB ( 2.25 m ) + ( 5 kN )(1.5 m ) − Q ( 0.75 m ) = 0
Q = ( 37.5 − 3TB ) kN

ΣM B = 0:


(1)

( 7.5 kN )( 0.5 m ) − ( 5 kN )( 0.75 m ) + TD ( 2.25 m ) − Q ( 3 m ) = 0
Q = ( 0.75 TD ) kN

(2)

For the loading to be safe, cables must not be slack and tension must not exceed 12 kN.
Thus, making 0 ≤ TB ≤ 12 kN in. (1), we have
1.500 kN ≤ Q ≤ 37.5 kN

(3)

And making 0 ≤ TD ≤ 12 kN in. (2), we have
0 ≤ Q ≤ 9.00 kN
(3) and (4) now give:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

(4)
1.500 kN ≤ Q ≤ 9.00 kN


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 12.
Free-Body Diagram:


For (WA )min , E = 0
ΣM F = 0:

(WA )min ( 7.5 ft ) + ( 9 lb )( 4.8 ft ) + ( 28 lb )( 3 ft ) − ( 90 lb )(1.8 ft ) = 0
(WA )min

= 4.6400 lb

For (WA ) max , F = 0
ΣM E = 0:

(WA )max (1.5 ft ) − ( 9 lb )(1.2 ft ) − ( 28 lb )( 3 ft ) − ( 90 lb )( 7.8 ft ) = 0

(WA )max

= 531.20 lb

Thus

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

4.64 lb ≤ WA ≤ 531 lb


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 13.
Free-Body Diagram:


ΣM D = 0:

( 750 N )( 0.1 m − a ) − ( 750 N )( a + 0.075 m − 0.1 m ) − (125 N )( 0.05 m ) + B ( 0.2 m ) = 0
 87.5 N + 0.2 B 
a=

1500 N



(1)

Using the bounds on B:

B = − 250 N (i.e. 250 N downward) in (1) gives amin = 0.0250 m
B = 500 N (i.e. 500 N upward) in (1) gives amax = 0.1250 m

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

25.0 mm ≤ a ≤ 125.0 mm


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 14.

Free-Body Diagram:

Note that W = mg is the weight of the crate in the free-body diagram, and that

0 ≤ E y ≤ 2.5 kN
ΣFx = 0:
ΣM A = 0:
or
ΣFy = 0:
or

Ax = 0
− (1.2 m )(1.2 kN ) − ( 2.0 m )(1.6 kN ) − ( 3.8 m ) E y + ( 6 m )W = 0

6W = 4.64 kN + 3.8E y

(1)

Ay − 1.2 kN − 1.6 kN − E y + W = 0
Ay = 2.8 kN + E y − W

(2)

Considering the smallest possible value of E y :
For

E y = 0, W = Wmin = 0.77333 kN

From (2) the corresponding value of Ay is:


Ay = 2.02667 kN ≤ 2.5 kN, which satisfies the constraint on Ay .
For the largest allowable value of E y :

E y = 2.5 kN , W = Wmax = 2.3567 kN
From (2) the corresponding value of Ay is:

Ay = 2.9433 kN ≥ 2.5 kN which violates the constraint on Ay .
Thus

( Ay )max = 2.5 kN. Solving (1) and (2) for W with ( Ay )max = 2.5 kN,
W = Wmax = 1.59091 kN

Therefore:

773.33 N ≤ W ≤ 1590.91 N, or
773.33 N ≤ m(9.81 m/s 2 ) ≤ 1590.91 N, and
78.8 kg ≤ m ≤ 162.2 kg

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 15.
Free-Body Diagram:

Calculate lengths of vectors BD and CD:


BD = (11.2) 2 + (21.0) 2 ft = 23.8 ft
CD =
(a)

(11.2) + (8.4)2 ft = 14.0 ft

 11.2 ft 
 11.2 ft 
(221 lb )(24 ft ) + 
TCD (11.4 ft ) = 0
− (161 lb )(24 ft ) + 
 23.8 ft 
 14.0 ft 

ΣM A = 0 :

TCD = 150.000 lb

(b)

ΣFx = 0:

 11.2 ft 
 11.2 ft 
161 lb − 
 ( 221 lb ) − 
 (150 lb ) + Ax = 0
 23.8 ft 
 14.0 ft 
Ax = 63.000 lb


ΣFy = 0:

or

A x = 63.000 lb

 21.0 ft 
 11.2 ft 
(221 lb) − 
Ay − 

 (150 lb) = 0
 23.8 ft 
 14.0 ft 

Ay = 285.00 lb

A=

TCD = 150.0 lb

Ax2 + Ay2 =

or

A y = 285.00 lb

(63)2 + (285) 2 = 291.88 lb


( 63 )

θ = tan −1 285 = 77.535°
Therefore

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

A = 292 lb

77.5°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 16.
Free-Body Diagram:

(a)

Equilibrium for ABCD:

ΣM C = 0:

( A cos 60° )(1.6 in.) − ( 6 lb )(1.6 in.) + ( 4 lb )( 0.8 in.) = 0
A = 8.0000 lb

(b)


ΣFx = 0:

or

C x = 8.0000 lb

C y − 6 lb + ( 8 lb ) sin 60° = 0

or C y = −0.92820 lb
C =

60°

Cx + 4 lb + ( 8 lb ) cos 60° = 0
or C x = − 8.0000 lb

ΣFy = 0:

A = 8.00 lb

C x2 + C y2 =

or

(8)2 + ( 0.92820 )2

C y = 0.92820 lb
= 8.0537 lb

 − 0.92820 

 = 6.6182°
−8



θ = tan −1 
Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

C = 8.05 lb

6.62°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 17.
Free-Body Diagram:

Equations of equilibrium:

− ( 330 N )( 0.25 m ) + B sin α ( 0.3 m ) + B cos α ( 0.5 m ) = 0

ΣΜ Α = 0:

(1)


Ax − B sin α = 0

ΣFx = 0:

(2)

Ay − ( 330 N ) + B cos α = 0

ΣFy = 0:

(3)

(a) Substitution α = 0 into (1), (2), and (3) and solving for A and B:

B = 165.000 N, Ax = 0, Ay = 165.0 N
or A = 165.0 N , B = 165.0 N
(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:

B = 275.00 N, Ax = 275.00 N, Ay = 330.00 N

A=

Ax2 + Ay2 =

θ = tan −1

Ay
Ax

(275)2 + (330) 2 = 429.56 N


= tan −1

330
= 50.194°
275

∴ A = 430 N

50.2°, B = 275 N

(c) Substituting α = 30° into (1), (2), and (3) and solving for A and B:

B = 141.506 N, Ax = 70.753 N, Ay = 207.45 N, ⇒

A=

Ax2 + Ay2 =

θ = tan −1

Ay
Ax

(70.753) 2 + (207.45) 2 = 219.18 N

= tan −1

207.45
= 71.168°

70.753
∴ A = 219 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

71.2°, B = 141.5 N

60°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 18.
Free-Body Diagram:

Equations of equilibrium:

ΣΜ Α = 0 :

− (82.5 N ⋅ m ) + B sin α (0.3 m ) + B cos α (0.5 m ) = 0

(1)

ΣFx = 0:

Ax − B sin α = 0

(2)


ΣFy = 0:

Ay + B cos α = 0

(3)

(a) Substituting α = 0 into (1), (2), and (3) and solving for A and B:

B = 165.000 N, Ax = 0, Ay = −165.0 N
or A = 165.0 N , B = 165.0 N
(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:

B = 275.00 N, Ax = 275.00 N, Ay = 0
∴ A = 275 N

, B = 275 N

(c) Substituting α = 30° into (1), (2), and (3) and solving for A and B:

B = 141.506 N, Ax = 70.753 N, Ay = −122.548 N
A = Ax2 + A y2 = (70.753) 2 + (−122.548) 2 = 141.506 N

θ = tan −1

Ay
Ax

= tan −1


122.548
= 60.000°
70.753
∴ A = 141.5 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

60.0°, B = 141.5 N

60°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 19.
Free-Body Diagram:
(a) From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0
∴ TAB = 300
(b) From free-body diagram of lever BCD

ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0
∴ C x = −380 N

or

C x = 380 N


ΣFy = 0: C y + 0.8 ( 300 N ) = 0

∴ C y = −240 N
C x2 + C y2 =

Then

C =

and

θ = tan −1 

or

C y = 240 N

( 380 )2 + ( 240 )2

= 449.44 N

 Cy 
− 240 
 = tan −1 
 = 32.276°

 − 380 
 Cx 


or C = 449 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

32.3°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 20.
Free-Body Diagram:
From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − P ( 75 mm ) = 0
∴ TAB = 1.5P

(1)

ΣFx = 0: 0.6TAB + P − C x = 0
∴ C x = P + 0.6TAB

(2)

Cx = P + 0.6 (1.5P ) = 1.9 P

From Equation (1)

ΣFy = 0: 0.8TAB − C y = 0

∴ C y = 0.8TAB

(3)

C y = 0.8 (1.5P ) = 1.2 P

From Equation (1)
From Equations (2) and (3)

C = C x2 + C y2 =

(1.9 P )2 + (1.2 P )2

= 2.2472 P

Since Cmax = 500 N,

∴ 500 N = 2.2472Pmax
or

Pmax = 222.49 lb
or P = 222 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System


Chapter 4, Solution 21.
Free-Body Diagram:

(a)

ΣΜ Βx = 0 :
or Fsp =

 2.4 in. 
−
 A − (0.9 in.)Fsp = 0
 cosα 

8
lb = kx = k (1.2 in.)
cos 30°

Solving for k:

k = 7.69800 lb/in.

k = 7.70 lb/in.

(b)

8 lb 
=0
 cos30° 

( 3 lb ) sin 30° + Bx + 


ΣFx = 0:

Bx = −10.7376 lb

or

− ( 3 lb ) cos 30° + B y = 0

ΣFy = 0:

By = 2.5981 lb

or
B=

( −10.7376 )2 + ( 2.5981)2

θ = tan −1

= 11.0475 lb, and

2.5981
= 13.6020°
10.7376

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell

© 2007 The McGraw-Hill Companies.

B = 11.05 lb

13.60°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 22.
Free-Body Diagram:

(a)

ΣΜ Βx = 0:
or

 2.4 in. 

 ( 3.6 lb ) − ( 0.9 in.)(12 lb ) = 0
 cosα 

α = 36.9°

cosα = 0.80000, or α = 36.870°

(b)

ΣFx = 0:


( 3 lb ) sin 36.870° + Bx + (12 lb ) = 0

or

Bx = −14.1600 lb

ΣFy = 0:

− ( 3.6 lb ) cos 36.870° + By = 0

or

By = 2.8800 lb
B=

( −14.1600 )2 + ( 2.8800 )2

θ = tan −1

= 14.4499 lb, and

2.8800
= 11.4966°
14.1600

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


B = 14.45 lb

11.50°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 23.
Free-Body Diagram:

From free-body diagram for (a):

− B ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0

ΣΜ A = 0:

Β = −187.50 Ν

ΣFx = 0:

or B = 187.5 N

−187.5 N − 50 N + Ax = 0
Ax = 237.50 N

ΣFy = 0:

Ay − 100 N = 0
Ay = 100.000 N

A=

and:

Ax2 + Ay2 =

θ = tan −1

Ay
Ax

( 237.5)2 + (100 )2

= tan −1

= 257.69 N

100
= 22.834°
237.5

∴ A = 258 N

22.8°

From For (b)

ΣΜ A = 0:

− B cos 45° ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0

Β = 265.17 Ν

or B = 265.17 N

45°

− ( 265.17 N ) cos 45° − 50 N + Ax = 0

ΣFx = 0:

Ax = 237.50 N

Ay + ( 265.17 ) sin 45° − 100 N = 0

ΣFy = 0:

Ay = −87.504 N
and:

A=

Ax2 + Ay2 =

θ = tan −1

Ay
Ax

(237.50)2 + (−87.504)2 = 253.11 N


= tan −1

87.504
= 20.226°
237.50

∴ A = 253 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

20.2°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 24.
Free-Body Diagram:

From free-body diagram for (a):

− (100 N )( 0.3 m ) + A ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0

ΣΜ B = 0:

A = 237.50 Ν
ΣFx = 0:

or A = 238 N


Bx + 237.5 N − 50 N = 0
Bx = −187.50 N

ΣFy = 0:

By − 100 N = 0
By = 100.000 N

and:

B=

Bx2 + By2 =

( −187.5)2 + (100 )2

By

100
= 28.072°
187.5

θ = tan −1

= tan −1

Bx

= 212.50 N


∴ B = 213 N

28.1°

From free-body diagram or (b):

− (100 N )( 0.3 m ) + A cos 45° ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0

ΣΜ B = 0:

A = 335.88 Ν
ΣFx = 0:

or A = 336 N

45°

Bx + ( 335.88 N ) cos 45° − 50 N = 0
Bx = −187.503 N

ΣFy = 0:

B y + ( 335.88 N ) sin 45° − 100 N = 0

By = −137.503 N
and:

B=


Bx2 + B y2 =

θ = tan −1

By
Bx

(−187.503) 2 + (−137.503)2 = 232.52 N

= tan −1

137.503
= 36.254°
187.503

∴ B = 233 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

36.3°


COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 25.
Free-Body Diagram:

Geometry:


x AC = ( 8 in.) cos 20° = 7.5175 in.
y AC = ( 8 in.) sin 20° = 2.7362 in.
⇒ yDA = 9.6 in. − 2.7362 in. = 6.8638 in.

 yDA 
−1  6.8638 
 = tan 
 = 42.397°
x
 7.5175 
 AC 

α = tan −1 

β = 90° − 20° − 42.397° = 27.603°
Equilibrium for lever:
(a)

TAD cos 27.603° ( 8 in.) − ( 60 lb ) (12 in.) cos 20° = 0

ΣM C = 0:

TAD = 95.435 lb

(b)

TAD = 95.4 lb

Cx + ( 95.435 lb ) cos 42.397° = 0


ΣFx = 0:

C x = −70.478 lb

C y − 60 lb − ( 95.435 lb ) sin 42.397° = 0

ΣFy = 0:

C y = 124.348 lb

Cx2 + C y2 =

Thus:

C =

and

θ = tan −1

Cy
Cx

(−70.478) 2 + (124.348) 2 = 142.932 lb

= tan −1

124.348
= 60.456°

70.478
∴ C = 142.9 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

60.5°


×