Tải bản đầy đủ (.pdf) (290 trang)

Solution manual vector mechanics engineers dynamics 8th beer chapter 09

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (22.18 MB, 290 trang )

COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 1.

First note:
Have

y=

b2 − b1
x + b1
a

I y = ∫ x 2dA
b2 − b1
x + b1
a
a
x 2d ydx
0 0

=∫ ∫

a
 b − b1

= ∫ 0 x2  2
x + b1  dx
 a

a



 1 b − b1 4 1 3 
= 2
x + b1x 
3
4 a
0
=

1 3
a ( b1 + 3b2 )
12
Iy =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

1 3
a ( b1 + 3b2 )
12


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 2.

At

5


x = a, y = b :

∴ y =

b
a

5
2

5

b = ka 2

x2

or

dI y =

1 3
x dy
3

=

Then

Iy =


x=

or

a
b

b
5

a2

2

2
5

y5

1 a3 65
y dy
3 b 65
1 a3 b 65
∫ y dy
3 b 65 0

1 5 a3 115
=
y

3 11 b 65
=

k =

b

0

5 a3 115
b
33 b 65
or I y =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

5 3
ab
33


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 3.
At x = 0:

First note:


At x = a :

a = k ( 2b − b )
k =
∴ x=

Have

2

c = −b

or

or

0 = k (b + c)

2

a
b2
a
2
y − b)
2(
b

I y = ∫ x 2dA
=∫


a
2
y − b)
2b b 2 (
0
0



x 2dxdy
3

=

1 2b  a
2
y − b )  dy

0  2(
3
b

2b

1 a3 1
7
=
× ( y − b)
6

3b
7
b
=

1 3
ab
21
Iy =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

1 3
ab
21


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 4.

y = kx 2 + c

Have

b = k ( 0) + c

x = 0, y = b :


At

c=b

or
At

x = 2a, y = 0:

or

k =−
y =−

Then

=
Then

I y = ∫ x 2dA,
2a

I y = ∫ a x 2dA =

2

0 = k ( 2a ) + b

b

4a 2

b 2
x +b
4a 2

b
4a 2 − x 2
4a 2

(

dA = ydx =

)
(

)

b
4a 2 − x 2 dx
4a 2

(

)

b 2a 2
2
2

∫ x 4a − x dx
4a 2 a
2a

b  2 x3 x5 
=
− 
 4a
3
5 a
4a 2 
=

b
b
8a3 − a3 −
32a5 − a5
2
3
20a

=

7a3b 31a3b

3
20

(


)

(

)

Iy =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

47 3
ab
60


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 5.

First note:
Have

y =

b2 − b1
x + b1
a


I x = ∫ y 2dA
=

b2 − b1
x + b1
a
a
0 0

∫ ∫

y 2d ydx
3

1 a  b − b1

= ∫0  2
x + b1  dx
3  a

4
1  1 a   b2 − b1

= ×
x + b1 

3  4 b2 − b1   a


a


0

=

1
a
b24 − b14
12 b2 − b1

=

1
a
( b2 + b1 )( b2 − b1 ) b22 + b12
12 b2 − b1

=

1
a ( b1 + b2 ) b12 + b22
12

(

)
(

(


)

)
Ix =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

1
a ( b1 + b2 ) b12 + b22
12

(

)


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 6.
SOLUTION

5

At x = a, y = b : b = ka 2
or k =

∴y =


b
5

a2

b
a

5

x2

5
2

I x = ∫ y 2dA
=

b

a


2
y 5 dy 
 b


2
∫0 y 


a

dA = xdy

2
5

5 175
= 2 ×
y
b 5 17

b

0

17

5a b 5
=
17 b 52

or I x =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

5 3

ab
17


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 7.
At x = 0: 0 = k ( b + c )

First note:
or

2

c = −b
At x = a : a = k ( 2b − b )

Have

or

k =

a
b2



x=


a
2
y − b)
2(
b

2

I x = ∫ y 2dA

=∫

a
2
y − b)
2b b 2 (
0
b



y 2dxdy

=

a 2b 2
2
y ( y − b ) dy
2 ∫b
b


=

a 2b 4
y − 2by 3 + b 2 y 2 dy
2 ∫b
b

=

a 1 5 1 4 1 2 3
 y − by + b y 
2
3
b2  5
b

=

a  1
1
1 2
1 2 3 
5
4
3
1 5 1
4
 ( 2b ) − ( 2b ) + b ( 2b )  −  b − b b + b b  
2

3
5
2
3
b 2   5
 


(

)

2b

( )

( )

8 1 1 1
 32
= ab3 
−8+ − + − 
3 5 2 3
 5
=

31 3
ab
30
Ix =


Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

31 3
ab
30


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 8.

Have

y = kx 2 + c

At

x = 0, y = b: b = k (0) + c

or

c=b

At

x = 2a, y = 0: 0 = k (2a) 2 + b


or

k =−

Then

y =

Now

dI x =
=

b
4a 2

b
4a 2 − x 2
4a 2

(

)

1 3
y dx
3
3
1 b3
4a 2 − x 2 dx

6
3 64a

(

)

continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Then

I x = ∫ dI x
=

3
1 b3 2 a
4a 2 − x 2 dx
6 ∫a
3 64a

=

b3

2a
64a 6 − 48a 4 x 2 + 12a 2 x 4 − x 6 dx
6 ∫a
192a

(

)

(

)

2a

b3 
12 2 5 x 7 
6
4 3
64
a
x
16
a
x
a x −
=

+



5
7 a
192a 6 
=

b3 
64a 7( 2 − 1) − 16a 7 ( 8 − 1)
192a 6 

+

=

12 7
1

a ( 32 − 1) − (128 − 1) 
5
7


ab3 
372 127 
3

 64 − 112 +
 = 0.043006ab
192 
5

7 

I x = 0.0430ab3

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 9.

x2
y2
+
=1
a 2 b2

x = a 1−

y2
b2

dA = xdy
dI x = y 2dA = y 2 xdy
b

b


I x = ∫ dI x = ∫ − b xy 2dy = a ∫ − b y 2 1 −
Set: y = b sin θ

y2
dy
b2

dy = b cosθ dθ

π

I x = a ∫ 2π b 2 sin 2 θ 1 − sin 2 θ b cosθ dθ


2

π

π





= ab3 ∫ 2π sin 2 θ cos 2 θ dθ = ab3 ∫ 2π
2

2

1 2

sin 2θ dθ
4
π

π

1
1
1
1

2
= ab3 ∫ 2π (1 − cos 4θ ) dθ = ab3 θ − sin 4θ 
− 2
4
8
4

−π
2

=

2

1 3  π  π  π 3
ab  −  −   = ab
8
 2  2  8


Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

Ix =

1
π ab3
8


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 10.

At

2a = kb3

x = 2a, y = b:

or

k =

2a
b3

Then


x=

2a 3
y
b3

or

y =

Now

dI x =

b

( 2a )

1

1
3

x3

1 3
1 b3
y dx =
xdx
3

3 2a
2a

Then

1 b3 2 a
1 b3 1 2
I x = ∫ dI x =
xdx
x
=

3 2a a
6 a 2 a
=

b3
4a 2 − a 2
12a

(

)
Ix =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

1 3

ab
4


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 11.
−a
At x = a : b = k 1 − e a 



First note:
or
Have

k =

b
1 − e−1

I x = ∫ y 2dA
b
a 1− e
0 0

=∫ ∫

−x


 1− e a


−1 

3






y 2dydx
3

=

−x
1  b  a
1 − e a  dx

−1  ∫ 0 
31 − e 



=

−x
−2 x

−3 x
1  b  a
1 − 3e a + 3e a − e a  dx

−1  ∫ 0 
31 − e 



3

3

a

−x
1 b  
 a  −2 x  a −3x  
x − 3( − a ) e a + 3 −  e a −  − e a 
= 
−1  
31 − e  
 2
 3
 0

3

1  b  
1

1 
 
= 
a + 3ae−1 − 1.5ae−2 + ae −3  −  3a − 1.5a + a  
−1  
3  1 − e  
3
3 
 

=

1
ab3
3 1 − e −1

(

)

3

11 

1.91723 − 
6


= 0.1107ab3


I x = 0.1107ab3

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 12.
x2
y2
+
=1
a 2 b2

y = b 1−

x2
a2

dA = 2 ydx
dI y = x 2dA = 2 x 2 ydx
a

a

I y = ∫ dI y = ∫ 0 2 x 2 ydx = 2b ∫ 0 x 2 1 −
x = a sin θ


Set:

x2
dx
a2

dx = a cosθ dθ

π

I y = 2b∫ 02 a 2 sin 2 θ 1 − sin 2 θ a cosθ dθ
3

π

2

2

3

π

= 2a b∫ sin θ cos θ dθ = 2a b∫ 02
2
0

π

1 2

sin 2θ dθ
4
π

1
1
1
1

2
= a3b∫ 02 (1 − cos 4θ ) dθ = a3b θ − sin 4θ 
2
2
4
4

0

=

1 3 π
 π
a b  − 0  = a3b
4
2
 8
Iy =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell

© 2007 The McGraw-Hill Companies.

1 3
πa b
8


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 13.

At

x = 2a, y = b : 2a = kb3
2a 3
y
b3

Then

x=

or

y =

Now

I y = ∫ x 2dA


Then

I y = ∫ a x2

b

( 2a )

=

=

=

1

b

( 2a )

1
3

x 3 dx

7

b

( 2a )


x3

dA = ydx

2a

=

1

1
3

1
3

b
1

( 2a ) 3

2a
∫ a x 3 dx

3 103
x
10

3b

10 ( 2a )

1
3

2a

a

 2a 103 − a 103 
( )



10
3ba3  103
2 − 1 3 
1 

10 ( 2 ) 3 

= 2.1619a3b
or I y = 2.16a3b

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System


Chapter 9, Solution 14.
First note:
or
Have

−a
At x = a : b = k 1 − e a 



k =

b
1 − e−1

I y = ∫ x 2dA
b
a 1− e
0 0

−x

1− e a


−1 




 2
 x d ydx

=

∫ ∫

=

∫ 0 x 1 − e−1 1 − e a   dx



a 2



b



−x



a



−x


2
 
b 1 3
e a  1  2
 1
x
x
2
x
2
=




+






3 
1 − e−1  3
 a
 
 1   a 
− 



 a

0
=

2

b   1 3
a
3 −1  a
3
+
a
a
e

 2 + 2 + 2   − a × 2
−1 
a
1 − e   3
a

 

=

a3b  1

+ 5e −1 − 2 

−1 
1− e 3


(



)


= 0.273a3b

I y = 0.273 a3b

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 15.

k1 =

or
Then

y1 =


and

x1 =

b 4
x
a4
a
b

1
4

b = k2a 4

b
a4

k2 =
b

y2 =

1
4

b
1


a4

1

x4

a
a
x2 = 4 y 4
b

1

y4

A = ∫ ( y2 − y1 ) dx = b∫

Now

1

b = k1a 4

x = a, y = b:

At

 x 14

a


0

a

1
4



x 4 
dx
a4 


a

 4 x 54 1 x5 
 = 3 ab
= b

5
 5 a 14 5 a 4 

0
I x = ∫ y 2dA

Then

dA = ( x1 − x2 ) dy


 a 1

a
b
I x = ∫ 0 y 2  1 y 4 − 4 y 4  dy
 4

b
b

b

 4 y 134
1 y 7 
= a

7 b4 
13 b 14

0

1
 4
= ab3  − 
 13 7 
or I x =

Now


kx =

Ix
=
A

15 3
ab
91
=
3
ab
5

15 3
ab
91

25 2
b = 0.52414b
91
or k x = 0.524b

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System


Chapter 9, Solution 16.
First note:

At x = a :

2b = k a

or
Straight line:
Now:

k=

2b
a

y1 =

b
x
a

∴ y2 =

2b
a

x

b 

a  2b 12
A = 2∫ 0 
x − x  dx
a 
 a
a

 4 x 23
1 2 
= 2b 

x
 3 a 2a 

0
=
Have

5
ab
3

I x = ∫ y 2dA
1

2b 2
x
a
a
0 bx

a

= 2∫ ∫

=

y 2dydx

2 a  8b3 32 b3 3 
x − 3 x  dx
∫ 

3 0  a 23
a

a


2b3  2
8 5
1
=
 × 3 x 2 − 3 x 4 
3  5 a2
4a
0

Ix =
And


kx =

=

59 3
ab
30

Ix
A
59 3
ab
30
5
ab
3

= b 1.18

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

k x = 1.086 b


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 17.
At


x = a, y = b:

k1 =

or
Then

Now

y1 =

1

b = k1a 4

b = k2a 4

b
a4

b

b 4
x
a4

k2 =

y2 =


and

A = ∫ ( y2 − y1 ) dx = b∫

1

a4

 x 14

a

0

a

1
4



b
a

1
4

1


x4

x 4 
dx
a4 


a

 4 x 54 1 x5 
 = 3 ab
= b

1
4
5
5 a4 5 a 

0

dA = ( y2 − y1 ) dx

Now

I y = ∫ x 2dA

Then

 b 1


b
a
I y = ∫ 0 x 2  1 x 4 − 4 x 4  dx
 4

a
a

= b∫

 x 94

a

0

a

1
4



x 6 
dx
a4 

a

 4 x 134

1 x 7 
= b

7 a4 
13 a 14

0

1 
 4
= b  a3 − a3 
7 
 13

or I y =

Now

ky =

Iy
A

=

15 3
ab
91
=
3

ab
5

15 3
ab
91

25
a = 0.52414a
91
or k y = 0.524a

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 18.
First note:

At x = a :

2b = k a

or

Straight line:


Now:

k=

2b
a

y1 =

b
x
a

∴ y2 =

2b
a

x

b 
a  2b 12
A = 2∫ 0 
x − x  dx
a 
 a
a

 4 x 23
1 2 

= 2b 

x
 3 a 2a 

0

=
Have

5
ab
3

I y = ∫ x 2dA
1

2b 2
x
a
a
b
0
x
a

= 2∫ ∫

x 2dydx


 2b 12 b 
a
x − x  dx
= 2∫ 0 x 2 
a 
 a
7

2 x2
1 x 4 

= 2b 2 ×


7 a 4 a 



=

a

0

9 3
ab
14

Iy =


9 3
ab
14
continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

And

ky =

=

=a

Iy
A

9 3
ab
14
5
ab
3


27
70

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

k y = 0.621 a


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 19.
First note:

At x = 0: b = c cos ( 0 )

c=b

or

At x = 2a : b = b sin k ( 2a )
2ka =

or

k=
Then

π

2

π
4a

π
π 
2a 
A = ∫ a  b sin
x − b cos
x  dx
4a
4a 

2a

π
4a
π 
 4a
= b  − cos
x−
sin
x
4a
π
4a  a
 π
=−
=

Have

4ab 
1 
 1
+
(1) − 

π 
2 
 2

4ab

π

(

)

2 −1

I x = ∫ y 2dA
π

2 a b sin 4a x

= ∫a ∫

b cos


=

π

4a

x

y 2dydx

1 2a  3 3 π

3
3 π
∫  b sin 4a x − b cos 4a x  dx
3 a 

2a

b3  4a
π
1 4a
π   4a
π
1 4a 3 π  
x+
cos3
x  −  sin
x−

sin
x 
=
 − cos
3  π
4a

4a   π
4a

4a   a
=

4ab3  
 −1 +
3π  


3
3
1  1
1 1 
1
1  1   




+


+
3   2 3  2 
3  2   
2



=

4ab3  5
2
2− 

3π  6
3
continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Ix =

2
ab3 5 2 − 4



(

)

= 0.217 ab3
And

kx =

=

I x = 0.217 ab3

Ix
A
2
ab3 5 2 − 4

4
ab 2 − 1

π

(
(

)

)


= 0.642b

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

k x = 0.642 b


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 20.
At x = 0: b = c cos ( 0 )

First note:

c=b

or

At x = 2a : b = b sin k ( 2a )
2ka =

or

k=

π
2


π
4a

π
π 
2a 
A = ∫ a  b sin
x − b cos
x  dx
4a
4a 


Then

2a

π
4a
π 
 4a
= b  − cos
x−
sin
x
4a
π
4a  a
 π
=−


=
Have

4ab 
1 
 1
+
(1) − 

π 
2 
 2

4ab

π

(

)

2 −1

I y = ∫ x 2dA
π

2 a b sin 4a x 2
x dydx
a b cos π x

4a

=

∫ ∫

=

2a 2 

∫ a x  b sin 4a x − b cos 4a x  dx

π



π



continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System






2
π
2
π
x
π 
 2x
= b 
+

sin
x
cos
x
cos
x
2
3

π 
4a
4a
4a 
π 
  π 








   4a 
 4a 

 4a 

2a





2
2x
π
2
π
x
π 
cos
x
sin
x
sin
x
−


+

3
  π 2
π 
4a
4a
4a  
π 
 



 

 4a 
 4a 
  4a 
  a

2a

64a3b 
π
π  π  
π
π 
π 2 2 
Iy =

sin
x
cos
x
x
sin
x
cos
x
2
x 

+
+








4a  2a  
4a
4a  
π 3  4a
16a 2  
a

=



64a3b  
π 2    1
1 
π 2   
1
π
1
2
2
+


+

(
)(
)
(
)






 





4    2
16   
π 3  
2  



I y = 1.482a3b

= 1.48228a3b
And

ky =

=

Iy
A
1.48228a3b
4ab
2 −1

π

(

)


= 1.676a

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

k y = 1.676a


COSMOS: Complete Online Solutions Manual Organization System

Chapter 9, Solution 21.

dI x =

(a)

Ix =

1 3
a dx
3
1 3 a
a3
2
a ∫ − a dx =
( 2a ) = a 4
3
3
3


dI y = x 2dA = x 2adx

I y = a∫

a 2
x dx
−a

JO = I x + I y =

JO =

kO2 A

a

 x3 
2
= a   = a4
 3  −a 3

2 4 2 4
a + a
3
3

4 4
a
JO

2
k =
= 3 2 = a2
A
3
2a
2

JO =

4 4
a
3

kO = a

2
3

(b)

dI x =
Ix =

1 3
a dx
12
a 3 2a
a 3 2a 1 4
dx

=
[ x] = 6 a

12 0
12 0

dI y = x 2dA = x 2 ( adx )
I y = a∫

2a 2
x dx
0

JO = I x + I y =

J O = kO2 A

2a

 x3 
8
= a   = a4
3
 3 0

1 4 8 4 17 4
a + a =
a
6
3

6

17 4
a
J
17 2
kO2 = O = 6 2 =
a
A
12
2a

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

JO =

17 4
a
6

kO = a

17
12


×