Tải bản đầy đủ (.pdf) (1 trang)

mechmat competition1999

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (239.56 KB, 1 trang )

Competition for University Students

of Mechanics and Mathematics Faculty
of Kyiv State Taras Shevchenko University.
Problems 1-9 are for 1-2 years students, problems 5-11 are for 3-4 years students.

1. Solve the equation 2x = 23 x2 + x3 + 1.
2. Find the maximum of 2sin x + 2cos x .
3. See William Lowell Putnam Math. Competition, 1998, A3.
4. See William Lowell Putnam Math. Competition, 1988, A6.
5. See William Lowell Putnam Math. Competition, 1998, B5.
6. Let S be the set of rational numbers such that for every a, b ∈ S the numbers a + b and
ab belong to S and for every r ∈ Q just one of the statements r ∈ S, −r ∈ S, r = 0 is true.
Prove that S = Q (0, +∞).
n
1 √
n
2
x
7. Find lim
e dx .
n→∞

0

8. Let A be closed subset of a plane and let S be a closed disk which contains A such
that for every closed disk S if A ⊆ S then S ⊆ S . Prove that every inner point of S is a
midpoint of some segment with endpoints in A.
9. Let {Sn , n ≥ 1} be a sequence of m × m matrices such that Sn SnT tends to identity
matrix. Prove that there exist a sequence {Un , n ≥ 1} of orthogonal matrices such that
Sn − Un → 0, n → ∞.


10. Let ξ, η be independent random variables such that P{ξ = η} > 0. Prove that there
exists real number a such that P{ξ = a} > 0 and P{η = a} > 0.
11. Let H be infinite-dimensional separable Hilbert space. Find a set of linear independent
elements M = {ei , i ≥ 1} such that for every i ≥ 1 closed linear span of M \ {ei } coincides
with H.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×