Tải bản đầy đủ (.doc) (16 trang)

Đề thi thử THPTQG năm 2018 môn toán THPT thăng long hà nội lần 1 file word có lời giải chi tiết

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (238.27 KB, 16 trang )

THƯ VIỆN ĐỀ THI THỬ THPTQG 2018
Đề thi: THPT Thăng Long-Hà Nội
Câu 1: Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a. Độ dài cạnh bên của hình
chóp bằng bao nhiêu để góc giữa cạnh bên và mặt đáy bằng 60�?
A.

2a
3

a
B. 6

2a
3

C. a 3
6

D.

C. y  x3  3 x  2

D. y  2 x 2

Câu 2: Hàm số nào dưới đây đồng biến trên 
A. y  x 4  2 x 2  3

B. y 

x
x2



Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, hai mặt phẳng  SAB  và  SAD 
cùng vuông góc với đáy. Biết diện tích đáy bằng m, thể tích V của khối chóp S.ABCD là:
1
A. V = mSA
3

1
B. V = mSB
3

1
C. V = mSC
3

1
D. V = mSD
3

Câu 4: Đồ thị hàm số y  x 4  5 x 2  1 cắt trục hoành tại bao nhiêu điểm?
A. 1

B. 4

C. 3

D. 2

2


Câu 5: Cho a là số thực dương, khác 1. Khi đó 4 a 3 bằng:
8

A. a 3

B.

6

a

C.

3

a2

3

D. a 8

Câu 6: Cho hàm số f  x   sin 2 x . Tính f '  x 
A. f '  x   2sin 2 x

B. f '  x   cos 2 x

C. f '  x   2 cos 2 x

1
D. f '  x    cos 2 x

2

Câu 7: Cho hàm số y  x 3  3x 2  2 . Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có
hoành độ x  2 là:
A. 6

B. 0

C. 6

D. 2

Câu 8: Cho hình trụ có bán kính đường tròn đáy bằng 4, diện tích xung quanh bằng 48 . Thể
tích của hình trụ đó bằng:
A. 24

B. 96

C. 32

D. 72

1 3
2
Câu 9: Giá trị nhỏ nhất của hàm số y  x  2 x  5 x  1 trên đoạn  0; 2018 bằng:
3
A. 5

B. 0


C. 

5
3

D. 1

Câu 10: Cho hàm số y   x 4  2 x 2  1 . Điểm cực tiểu của hàm số là
A. x  1

B.  0; 1

C. x  1

D. x  0

Trang 1 – Website chuyên đề thi thử file word có lời giải


Câu 11: Cho hàm số y  f  x  có bảng biến thiên như sau:
�

x

�

2


f '( x) 



�

1

f ( x) 
�


Hàm số đã cho đồng biến trên khoảng nào dưới đây
A.  1; �

B.  0;3

C.  �; �

D.  2; �


2x y  8

Câu 12: Hệ phương trình � x
có bao nhiêu nghiệm?
2  2y  5

A. 1
Câu

B. 2

13:

Cho

tứ

C. 0
OABC

diện



D. 4

OA, OB, OC

đôi

một

vuông

góc,

biết

OA  a, OB  2a, OC  a 3 Tính khoảng cách từ điểm O đến mặt phẳng  ABC 
A.


a 3
2

B.

a
9

C.

a 17
19

D.

2a 3
19

Câu 14: Một người gửi 75 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn 1 năm với lãi
suất 5, 4% một năm. Giả sử lãi suất không thay đổi, hỏi sau 6 năm thì người đó nhận về số tiền là
bao nhiêu kể cả gốc và lãi? (làm tròn đến nghìn đồng)
A. 97.860.000

B. 150.260.000

C. 102.826.000

D. 120.628.000

Câu 15: Cho a là số thực dương khác 1. Khẳng định nào dưới đây là sai?

A. log a 2.log 2 a  1

B. log a 1  0

C. log a 2 

1
log a 2

D. log a a  1

Câu 16: Cho tam giác ABC vuông tại A. Khi quay tam giác ABC (kể cả các điểm trong) quanh
cạnh AC ta được:
A. Khối nón

B. Mặt nón

C. Khối trụ

D. Khối cầu

Câu 17: Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy, I là tâm
mặt cầu ngoại tiếp hình chóp. Khẳng định nào sau đây là đúng?
A. I là trung điểm SC

B. I là tâm đường tròn ngoại tiếp tam giác SBD

C. I là giao điểm của AC và BD

D. I là trung điểm SA.


Trang 2 – Website chuyên đề thi thử file word có lời giải


1 2
Câu 18: Một vật chuyển động theo quy luật s   t  20t với t (giây) là khoảng thời gian tính
2
từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong thời gian đó. Hỏi vận
tốc tức thời của vật tại thời điểm t  8 giây bằng bao nhiêu?
A. 40m / s

B. 152m / s

C. 22m / s

D. 12m / s

Câu 19: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OA  a, OB  b, OC  c .
Tính thể tích khối tứ diện OABC .
A. abc

B.

abc
3

C.

abc
6


Câu 20: Có bao nhiêu điểm thuộc đồ thị hàm số y 

D.

abc
2

2x  2
thỏa mãn tiếp tuyến với đồ thị tại
x 1

điểm đó có hệ số góc bằng 2018?
A. 1
Câu

B. 0
21:

Cho

hình

hộp

C. vô số
chữ

nhật


ABCD. A ' B ' C ' D '

D. 2


diện

tích

các

mặt

ABCD, BCC 'B', CDD ' C ' lần lượt là 2a 2 ,3a 2 , 6a 2 . Tính thể tích khối hộp chữ nhật
ABCD. A ' B ' C ' D ' .

A. 36a 3

B. 6a 3

C. 36a 6

D. 6a 2

Câu 22: Đồ thị hình bên dưới là của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

A. y  2 x 3  x 2  3

B. y  2 x 4  4 x 2  3


C. y  x 4  2 x 2  1

D. y  2 x 4  4 x 2  3

Câu 23: Cho hàm số y  f  x  có đạo hàm f '  x    x  1  3  x  . Điểm cực đại của hàm số
y  f  x  là:
A. x  1

B. x  2

Câu 24: Cho hàm số f  x  
A.

8
27

B.

C. x  3

D. x  0

1
. Tính f '  1
2x 1
2
9

C.


8
27

D. 

4
27

Trang 3 – Website chuyên đề thi thử file word có lời giải


Câu 25: Nghiệm của phương trình log 2017  2018 x   0 là
A. x 

1
2018

B. x  2018

D. x  1

C. x  2017 2018

Câu 26: Cho a là số thực dương khác 1. Biểu thức P  log a 2018  log

a

2018  ...  log 2018 a 2018

bằng

A. 1009.2019.log a 2018

B. 2018.2019.log a 2018

C. 2018.log a 2018

D. 2019.log a 2018

Câu 27: Cho hình chóp tứ giác đều S . ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt
phẳng đáy bằng 600 . Tính thể tích khối chóp S . ABCD .
a3 6
A.
2

a3 6
B.
6

a3
C.
6

D.

a3 6
3

Câu 28: Cho hàm số y  x 3  3x . Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A.  �, �


B.  1; �

Câu 29: Cho hình lăng trụ đứng

C.  1;1
ABC. AB ' C ' có tam giác

D.  �; 1
ABC

vuông tại A,

AB  AA '  a, AC  2a . Tính thể tích khối lăng trụ đã cho
A.

a3
3

B.

2a 3
3

C. a 3

D. 2a 3

x

2

�1 �
Câu 30: Tập nghiệm của phương trình 4 x  x  � � là
�2 �

� 2�
0; �
A. �
� 3

� 1�
0; �
B. �
� 2

C.  0; 2

� 3�
0; �
D. �
� 2

2

Câu 31: Tìm tập xác định của hàm số y   3 x  x 2  3
A. D  �

B. D   �;0  � 3; � C. D  �\  0;3

Câu 32: Đường tiệm cận ngang của đồ thị hàm số y 
A. x  2

Câu 33: Cho hàm số y 

B. y  2

D. D   0;3

2x  4
x2

C. x  2

D. y  2

x2
 C  . Phương trình tiếp tuyến với đồ thị hàm số tại giao điểm của
x 1

đồ thị (C) với trục tung là
A. y   x  2

B. y   x  1

C. y  x  2

D. y   x  2

Trang 4 – Website chuyên đề thi thử file word có lời giải


Câu 34: Cho hình lập phương ABCD. A 'B' C ' D ' có độ dài cạnh bằng 10. Tính khoảng cách giữa

hai mặt phẳng  ADD ' A '  và  BCC ' B '
A. 10

B. 100

C. 10

D. 5

Câu 35: Cho hình chóp S . ABC , đáy ABC là tam giác đều có độ dài cạnh bằng a, SA vuông góc
với đáy, SA  a 3 . Tính thể tích V của khối chóp S . ABC
A. V 

a3
2

B. V 

3a 3
4

C. V 

a3
12

D. V 

a3
4


Câu 36: Cho phương trình 4 x  m.2 x 1  m  2  0 , m là tham số. Gọi S là tập hợp các giá trị của
m sao cho phương trình trên có hai nghiệm dương phân biệt. Biết S là một khoảng có dạng  a; b 
tính b  a
A. 1

B. 3

C. 4

D. 2

�4a  2b  5 �
Câu 37: Cho a, b là hai số thực dương thỏa mãn log 5 �
� a  3b  4 . Tìm giá trị nhỏ
� ab �
nhất của biểu thức T  a 2  b 2
A.

1
2

B.

5
2

C.

3

2

D. 1

Câu 38: Cho hình lập phương ABCD. A ' B ' C ' D ' có độ dài cạnh bằng 1. Gọi M, N, P, Q lần lượt
là trung điểm của AB, BC , C ' D ' và DD ' . Tính thể tích khối tứ diện MNPQ
A.

3
8

B.

1
8

C.

1
12

D.

1
24

Câu 39: Cho tứ diện ABCD có thể tích V . Gọi M , N , P, Q lần lượt là trọng tâm tam giác
ABC , ACD, ABD và BCD . Thể tích khối tứ diện MNPQ bằng:
A.


4V
9

B.

V
27

C.

V
9

D.

4V
27

1 3
Câu 40: Cho hàm số f  x   x  mx  2 , m là tham số. Biết hàm số có hai điểm cực trị x1 , x2 .
3
2
2
Tìm giá trị nhỏ nhất của biểu thức T  x1  x2  10  x1  x2 

A. 1

B. 1

C. 18


D. 22

3
Câu 41: Cho hàm số f  x   x  mx  2 với m là tham số. Biết đồ thị hàm số y  f  x  cắt trục

hoành tại ba điểm phân biệt có hoành độ là a, b, c.
Tính giá trị của biểu thức P 

1
1
1


f ' a f ' b f ' c

Trang 5 – Website chuyên đề thi thử file word có lời giải


A. 0

B.

1
3

C. 29  3m

D. 3  m


Câu 42: Tìm tất cả các giá trị thực của tham số m để bất phương trình

x 2  3x  3
�m nghiệm
x 1

đúng với mọi x � 0;1
A. m �3

7
B. m �
2

7
C. m �
2

D. m �3

Câu 43: Cho hình lăng trụ ABC. A ' B ' C ' có đáy ABC là tam giác đều cạnh a, biết
AA  AB  AC  a . Tính thể tích khối lăng trụ ABC. A ' B ' C '

A.

3a 3
4

B.

a3 2

4

C.

Câu 44: Số đường tiệm cận của đồ thị hàm số y 
A. 1

B. 2

a3 3
4

D.

a3
4

16  x 2

x  x  16 

C. 0

D. 4

Câu 45: Cho tứ diện đều ABCD có độ dài cạnh bằng a,  S  là mặt cầu tiếp xúc với sáu cạnh của
tứ diện ABCD , M là điểm thay đổi trên mặt cầu  S  . Tính tổng T  MA2  MB 2  MC 2  MD 2 .
3a 2
A.
8


B. a 2

C. 4a 2

D. 2a 2

2

Câu 46: Cho đồ thị hàm số y  e  x như hình vẽ, ABCD là hình chữ nhật thay đổi sao cho B, C
luôn thuộc đồ thị hàm số đã cho và A, D nằm trên trục hoành. Giá trị lớn nhất của diện tích hình
chữ nhật ABCD là

A.

2
e

B.

2
e

C.

2
e

D.


2
e

Câu 47: Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và
nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SA và BC
A.

a 3
2

B. a

C.

a 3
4

D.

a
2

Trang 6 – Website chuyên đề thi thử file word có lời giải


Câu 48: Cho hàm số y  f  x  có bảng biến thiên như hình vẽ
x
f  x

�

�

0

1
2018

�

�

-2018

Hỏi phương trình f  x  2017   2018  2019 có tất cả bao nhiêu nghiệm
A. 6

B. 2

C. 4

D. 3

Câu 49: Cho hình nón có thiết diện qua trục là tam giác đều. Gọi V1 , V2 lần lượt là thể tích của
khối cầu ngoại tiếp và nội tiếp hình nón đã cho. Tính
A. 4

B. 2

V1
V2


C. 8

D. 16

Câu 50: Cho hàm số y  log 2  ln x  . Khẳng định nào sau đây là đúng?
A. Hàm số đạt cực tiểu tại x  e

B. Tập xác định của hàm số là  1; �

C. Hàm số nghịch biến trên khoảng  1;e 

D. hàm số đồng biến trên khoảng  e; �

Đáp án
Trang 7 – Website chuyên đề thi thử file word có lời giải


1-A
11-D
21-B
31-D
41-A

2-C
12-C
22-B
32-B
42-D


3-A
13-D
23-C
33-A
43-B

4-D
14-C
24-A
34-C
44-A

5-B
15-C
25-A
35-D
45-D

6-C
16-A
26-A
36-A
46-A

7-B
17-A
27-B
37-B
47-A


8-B
18-D
28-C
38-C
48-C

9-C
19-C
29-C
39-B
49-C

10-D
20-B
30-D
40-D
50-D

LỜI GIẢI CHI TIẾT
Câu 1: Đáp án A

2

2 2 �a � a 3
Ta có: AH 
a  � �
3
3
�2 �
a 3

AH
2a
SA 
 3 
0
1
cos 60
3
2
Câu 2: Đáp án C
Xét hàm số y  x3  3 x  2 Ta có: y '  3 x 2  3  0x � Hàm số đồng biến trên R
Câu 3: Đáp án A (Dethithpt.com)

 SAB    ABCD 

�  SAB  � SAD   SA   ABCD 
Vì �
 SAD    ABCD 

1
1
Thể tích của khối chóp S . ABCD là: V  SA.S ABCD  mSA
3
3
Câu 4: Đáp án D

4
5x2 1
Phương trình hoành độ giao điểm là: x �۱


�2 5  29
x 

2

�2 5  29
x 
 0  L


2

5  29
2

Câu 5: Đáp án B

Trang 8 – Website chuyên đề thi thử file word có lời giải


Ta có:

4

2
3

a a

21

.
34

a

1
6

Câu 6: Đáp án C
Câu 7: Đáp án B
Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ x  2 là y '  2   0
Câu 8: Đáp án B
Độ dại đường cao là:

48
 6 . Thể tích của hình trụ là : V   .42.6  96
2 .4

Câu 9: Đáp án C
x 1

2
Ta có: y '  x  4 x  5  0 � �
Vì hàm số nghịch biến trên  0;1 và đồng biến
x  5 � 0; 2018

trên  1; 2018  nên ymin  y  1  

5
3


Câu 10: Đáp án D
x0

3
; y "  12 x 2  4
Ta có: y '  4 x  4 x  0 � �
x


1

y "  0   4  0 � x  0 là điểm cực tiểu
Câu 11: Đáp án D
Câu 12: Đáp án C
x
y

�P   2   2   8
� S 2  4 P  7  0 � Hệ PT vô nghiệm
HPT � �
x
y
�S  2  2  5

Câu 13: Đáp án D
Gọi H là hình chiếu của O xuống  ABC 
1
1
1

1

2
Ta có: OH 2  a 2 
 2a 
a 3





2



19
2a 3
� OH 
2
12a
19

Câu 14: Đáp án C
Số tiền nhận được là: 75.106  1  5, 4%  �102.826.000 đồng
6

Câu 15: Đáp án C

Trang 9 – Website chuyên đề thi thử file word có lời giải



Ta có log a 2 

1
log 2 a

Câu 16: Đáp án A
Câu 17: Đáp án A
Câu 18: Đáp án D
Ta có v  t   s '  t   t  20 � v  8  12  m / s 
Câu 19: Đáp án C
Câu 20: Đáp án B
Gọi d là tiếp tuyến với đồ thị hàm số tại điểm M  x0 ; y0  thỏa mãn đề bài
Ta có: y '  
Suy ra: 

1

 x  1
1

 x0  1

2

2

� y '  x0   

1


 x0  1

2

 kd là hệ số góc của d

 2018 � x0 �� (Dethithpt.com)

Suy ra không có điểm nào thuộc đồ thị thỏa mãn đề bài
Câu 21: Đáp án B
�xy  2a 2

2
3
Gọi độ dài 3 chiều của hình hộp lần lượt là x, y , z . ta có: �yz  3a � xyz  6a
�zx  6a 2

� Thể tích khối tứ diện là: V  xyz  6a 3
Câu 22: Đáp án B
Câu 23: Đáp án C
x 1

Ta có: f '  x    x  1  3  x   0 � �
x3

f '  x  đổi dấu từ dương sang âm khi đi qua x  3 , suy ra điểm cực đại của hàm số y  f  x  là
x3

Câu 24: Đáp án A

Ta có f '  x   

2

 2 x  1

2

� f " x  

8

 2 x  1

3

� f "  1  

8
27

Trang 10 – Website chuyên đề thi thử file word có lời giải


Câu 25: Đáp án A
2018 x  0

1
� 2018 x  1 � x 
PT � �

2018 x  1
2018

Câu 26: Đáp án A (Dethithpt.com)
Ta có: P  log a 2018  2 log a 2018  ...  2018log a 2018   1  2  ...  2018  log a 2018
 2018

2018  1
log a 2018  1009.2019.log a 2018
2

Câu 27: Đáp án B
Ta có: 2 BI 2  a 2 � BI 

a
2

; SI  BI tan 600 

a 3
2

Thể tích khối chóp S . ABCD là
1
1 a 3 2 a3 6
V  SI .S ABCD 
.a 
3
3 2
6

Câu 28: Đáp án C
Ta có y '  3x 2  3 � y '  0 � 1  x  1
Suy ra hàm số nghịch biến trên khoảng  1;1
Câu 29: Đáp án C
1
3
Thể tích khối lăng trụ là: V  AA '.S ABC  a. a.2a  a
2
Câu 30: Đáp án D
PT � 2

2 x2 x2

2

x

x0

� 3�

� 2 x  2 x   x � 2 x  3x  0 �
�S �
0; �
3

x
� 2
� 2
2


2

Câu 31: Đáp án D
Hàm số đã cho xác định khi 3 x  x3  0 � 3  x  0
Câu 32: Đáp án B
Câu 33: Đáp án A
Ta có y ' 

1

 x  1

2

;  C  �Oy   0; 2  � y '  0   1

Do đó PTTT là: y   x  2
Câu 34: Đáp án C

Trang 11 – Website chuyên đề thi thử file word có lời giải


Câu 35: Đáp án D
Ta có: VS . ABCD 

1
1
a 2 3 a3
SA.S ABC  .a 3.


3
3
4
4

Câu 36: Đáp án A
Đặt t  2 x  0 � t 2  2mt  m  2  0

 '  m2  m  2  0

�m2
ĐK PT có 2 nghiệm phân biệt là: �S  2m  0
�P  m  2  0

x

�2 1  t1
� x1  log 2 t1 ; x2  log 2 t 2 (Dethithpt.com)
Khi đó: � x2
�2  t2

t1  t2  2

2m  2

��
�1 m  3
Để x1 ; x2  0 � t1  1; t2  1 � �
 t1  1  t2  1  0 �m  2  2m  1  0


Vậy m � 2;3
Câu 37: Đáp án B
�4a  2b  5 �
Ta có: log 5 �
� a  3b  4
� ab �
� log5  4a  2b  5    4a  2b  5   log 5  5a  5b   5a  5b
Xét hàm số f  t   log 5 t  t  t  0  � f  t  đồng biến trên  0; �
Do đó f  4a  2b  5  f  5a  5b  � 4a  2b  5  5a  5b
� a  3b  5 � T   5  3b 

2

2

� 3� 5 5
 b  10b  30b  25  10 �
b  � �
� 2� 2 2
2

2

Câu 38: Đáp án C

Dựng hình như hình vẽ
Trang 12 – Website chuyên đề thi thử file word có lời giải



1
1 1
Ta có: VMNPQ  VP .MNE  . .1.SMNE
2
2 3
Do MN / / AC ; ME / / BD � MN  ME; MN 
Do đó S MNE 

2
; ME  2
2

1
1
� VMNPQ 
2
12

(ngoài ra các em có thể gắn các hệ trục tọa độ)
Câu 39: Đáp án B
Vé hình ta thấy khối tứ diện MNPQ đồng dạng với tứ diện ABCD theo tỷ số k 
Do đó

VMNPQ
VABCD

1
3

3


�1 � 1
 � �
�3 � 27

Câu 40: Đáp án D
2
Ta có: f '  x   x  2  m  1 x  2m  1

Hàm số có 2 điểm cực trị �  '   m  1  8m  4  m 2  12 m  3  0  *
2

�x1  x2  2m  2
Khi đó gọi x1 ; x2 là hoành độ các điểm cực trị ta có: �
�x1 x2  2m  1
Khi đó: T   x1  x2   10  x1  x2   2 x1 x2   2m  2   10  2m  2   4m  2
2

2

� T  4m 2  8m  18  4  m  1  22 �22 . dấu bằng xảy ra � m  1 t / m *
2

Câu 41: Đáp án A (Dethithpt.com)
Vì a, b, c là 3 nghiệm của f  x   0 � f  x    x  a   x  b   x  c 

 *

Đạo hàm 2 vế của (*), ta được f '  x    x  a   x  b    x  b   x  c    x  c   x  a 
�f '  a    a  b   a  c 


1
1
1
� �f '  b    b  c   b  a  � P 


0
a

b
a

c
b

c
b

a
c

a
c

b














�f '  c    c  a   c  b 
Câu 42: Đáp án D
Để bất phương trình m ��
�f  
x 
Xét hàm số f  x  

x 2  3x  3
; x
x 1

 0;1

m

min f  x 
 0;1

x 2  3x  3
f  x   3 . Vậy m �3
trên  0;1 � min

 0;1
x 1

Câu 43: Đáp án B
Trang 13 – Website chuyên đề thi thử file word có lời giải


Ta thấy A '. ABC là tứ diện đều cạnh a � VA '. ABC 

a3 2
12

Vậy thể tích khối lăng trụ ABC. A ' B ' C ' là V  3 �VA '. ABC  3.

a3 2 a3 2

12
4

Câu 44: Đáp án A
Tập xác định của hàm số không chứa � nên ĐTHS không có tiệm cận ngang
Ta có lim y  lim
x �0

x �0

16  x 2
 �� x  0 là tiệm cận đứng của ĐTHS
x  x  16 


Câu 45: Đáp án D
Với tứ diện đều ABCD thì mặt cầu  S  là mặt cầu có tâm trùng với tâm của mặt cầu ngoại tiếp
tứ diện ABCD và là trọng tâm của tứ diện đều cạnh a, đồng thời có bán kính R 

a 2
4

Gọi G là trọng tâm của tứ diện � GA  GB  GC  GD  0
Ta có: (Dethithpt.com)



 
2

T  MA2  MB 2  MC 2  MD 2  MG  GA  MG  GB

   MG  GC    MG  GD 
2

2



 4MG 2  2MG �
GA
 GC
GD � GA2  GB 2  GC 2  GD 2  4MG 2  4GA2
1 44GB
42

4 443
0


2

2

�a 2 � �a 6 �
2
2
2
2
2
2
 4�
�4 �
� 4 �
�4 �
�  2a . Vậy T  MA  MB  MC  MD  2a

� �

Câu 46: Đáp án A



 

t

t
Theo hình vẽ , gọi D  t ;0  , A  t ;0  và C t ; e , B t ; e



t
Suy ra AB  0; e

2

Xét hàm số f  t  

 � AB  e
t
et

2

t 2

2

2

 với t  0

và BC  2t � S ABCD  AB.BC  2t .e  t

2
t

trên khoảng  0; � , có f '  t    1  2t  e

f  t 
Do đó, giá trị lớn nhất của hàm số f  t  là max
 0; �

1
2e

2

2

. Vậy S max 

2
e

Câu 47: Đáp án A
Gọi h là trung điểm của AB � SH   ABCD 
Kẻ HK  SA  K �SA  � HK   SAD  � d  H ;  SAD    HK
Trang 14 – Website chuyên đề thi thử file word có lời giải

2


Vì AD / / BC � BC / / mp  SAD  � d  SA; BC   d  BC;  SAD  
 d  B;  SAD    2 �d  H ;  SAD    2HK
SH .HA


Tam giác SAH vuông tại H, có HK 
Vậy d  SA; BC   2 HK  2.

SH  HA
2

2



a 3
4

a 3 a 3

4
2

Câu 48: Đáp án C
Chú ý: Cho  C  là đồ thị của hàm số y  f  x  và p  0 , ta có
 Tịnh tiến  C  sang trái p đơn vị thì được đồ thị hàm số y  f  x  p 
 Tịnh tiến  C  sang phải p đơn vị thì được đồ thị hàm số y  f  x  p 
Ta có (Dethithpt.com)
�f  x  2017   2018  2019
f  x  2017   2018  2019 � �

�f  x  2017   2018  2019

�f  x  2017   4037  1


�f  x  2017   1  2 

Dựa vào chú ý và BBT, đồ thị hàm số y  f  x  2017  bản chất chính là đồ thị hàm số
y  f  x  dịch chuyển theo trục Ox, do đó phương trình (1) có 1 nghiệm, phương trình (2) có 3
nghiệm phân biệt (Dethithpt.com)
Câu 49: Đáp án C
Xét thiết diện qua trục hình nón là tam giác đều ABC cạnh a
Bán kính mặt cầu ngoại tiếp khối nón là bán kính đường tròn ngoại tiếp ABC � R 
Bán kính mặt cầu ngoại tiếp khối nón là bán kính đường tròn nội tiếp ABC � r 
3

a 3
6

3

�3� �3� 3
V
Vậy tỉ số 1  R 3 : r 3  �
�3 �
�: �
�6 �
� 2  8
V2
� �� �
Câu 50: Đáp án D
�x  0;ln x  0
Hàm số y  log 2  ln x  xác định �۳۳

log 2  ln x  �0


Ta có y ' 

 log  ln x   ' 
2

2 log 2  ln x 

ln x 1

x

a 3
3

e

1
1
.
 0; x  e
2 ln 2 x.ln x. log 2  ln x 

Trang 15 – Website chuyên đề thi thử file word có lời giải


Suy ra hàm số đồng biến trên khoảng  e; �

Trang 16 – Website chuyên đề thi thử file word có lời giải




×