Sở giáo dục và đào tạo TP Hải Phòng
Trơng THPT
Đề thi tuyển sinh vào lớp 10
Năm học: 2008 - 2009
Đề thi này gồm có 01 trang
I. Phần trắc nghiệm:
Khoanh tròn vào chữ cái trớc câu trả lời đúng trong các bài tập sau:
Câu 1: Đờng thẳng y = ax qua điểm M(-3 ; 2) và điểm N(1 ; -1) có phơng trình là:
A. y =
4
1
4
3
+
x
B. y = -
4
1
4
3
x
C. y =
3
1
3
2
x
D. y =
3
1
3
2
+
x
Câu 2: Phơng trình x
4
2mx
2
3m
2
= 0 ( m
0 ) có số nghiệm là:
A. Vô nghiệm B. 2 nghiệm C. 4 nghiệm D. không xác định đợc
Câu 3: Phơng trình
9
15x3
2
2
x
x
= x -
3
x
x
có tổng các nghiệm là:
A. 4 B. - 4 C. -1 D. 1
Câu 4:Cho a + 90
o
. Hệ thức nào sau đây là SAI ?
A. 1- sin
2
a = sin
2
B. cot ga = tg
C. tg =
sin
D. tga = cotg(90
o
)
Câu 5: Tam giác ABC cân đỉnh A, đờng cao AH có AH = BC = 2a. Diện tích toàn phần
của hình nón khi cho tam giác quay một vòng xung quanh AH là:
A.
a
2
(
13
+
) B.
a
2
(
23
+
) B.
a
2
(
15
+
) D.
a
2
(
25
+
)
Câu 6: cho tga =
4
3
, giá trị của biểu thức C = 5sin
2
a + 3cos
2
a là:
A. 3,92 B. 3,8 C. 3,72 D. 3,36
II Phần tự luận:
Bài 1: Cho P =
+
x
x
xx
1
1
x
+
+
x
x
xx
1
1
.
a. Rút gọn P
b. Tìm x để p < 7 -
34
Bài 2: Cho parabol (P) y = x
2
và đờng thẳng (d) y = 2x + m.
a. Vẽ (P) và (d) trên cùng một hệ trục toạ độ với m = 3 và tìm toạ độ giao điểm của
(P) và (d).
b. Tìm M để (d) tiếp xúc với (P). Xác định toạ độ tiếp điểm.
Bài 3: từ điểm M ở ngoài đơng tròn (O; R) vẽ tiếp tuyến MA đến đờng tròn. E là trung
điểm AM; I, H làn lợt là hình chiếu của E và A trên MO. Từ I vẽ tiếp tuyến MK với
(O)
a. chứng minh rằng I nằm ngoài đờng tròn (O; R).
b. Qua M vẽ cát tuyến MBC ( B nằm giữa M và C ). Chứng minh tứ giác BHOC
nội tiếp
c. Chứng minh HA là phân giác của góc BHC và tam giác MIK cân.
Sở giáo dục và đào tạo TP Hải Phòng
Trơng THPT
đáp án tuyển sinh vào lớp 10
Năm học: 2008 - 2009
Đáp án này có 1 trang
I Phần trắc nghiệm
Câu 1: B
Câu 2: B
Phơng trình trung gian có ac = -3m
2
< 0 suy ra phơng trình trung gian có hai nghiệm
trái dấu ýuy ra phơng trình có hai nghiệm.
Câu 3: D
Câu 4: D
Câu 5: C
Ta có I = AC =
5a
suy ra S
tp
=
RL +
R
2
=
a.a
5
+
a
2
(
15
+
)
Câu 6: C
II Phần tự luận:
Bài 1:
a. A = (1- x)
2
, với
x
0; x
1
b. P < 7- 4
3
1 - x > 2 -
3
3
-1 < x < 3-
3
; x
1
Bài 2:
a. Với m = 3 (d) là y = 2x +3, đồ thị đi qua điểm (0; 3) và (
0;
2
3
)
( Bạn đọc tự vẽ đò thị)
Hoành độ giao điểm là nghiệm của phơng trình x
2
= 2x =3
Giao điểm của parabol và đờng thẳng (d) là (-1 ; 10 ) và ( 3 ; 9 )
b. Để (P) tiếp xúc với (d) thì phơng trình x
2
= 2x + m có nghiệm
kép
x
2
2x m = 0 có
= 1 = m = 0
m = -1
Bài 3:
Bạn làm tự vẽ hình.
a. Ta có OI
2 +
IE
2
= OE
2
= OA
2
+ EA
2
(1)
Mà IE < ME = EA. Vậy IE
2
< AE
2
OI
2
> OA
2
OI > OA = R (2)
Từ 2 suy ra điểm I nằm ngoài (O; R)
b. Dễ dàng chứng minh đợc MA
2
= MB.MC
áp dụng hệ thức lợng trong tam giác vuông AMO, ta có MA
2
= MH.MO
MBH
MOC
H
1
=
C
1
tứ giác BHOC nội tiếp.
c. Từ trên ta có
CHO =
B
1
=
C
1
= H
1
.
Vậy
BHA =
AHC( cùng phụ với các góc bằng nhau)
Ta có HA là phân giác góc BHC
IK
2
= IO
2
R
2
(3). Từ (1) suy ra OI
2
+ IE
2
= R
2
= AE
2
IO
2
R
2
= AE
2
IE
2
= ME
2
IE
2
= MI
2
(4)
Từ (3) và (4) suy ra IK = IM, vậy tam giác MIK cân tại I