Tải bản đầy đủ (.doc) (5 trang)

DE HSG TOAN THPT VINH PHUC LOP 11 CHUYEN, 2010 2011

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (141.79 KB, 5 trang )

SỞ GD&ĐT VĨNH PHÚC
—————————
ĐỀ CHÍNH THỨC

KỲ THI CHỌN HSG LỚP 11 THPT NĂM HỌC 2010-2011
ĐỀ THI MÔN: TOÁN
(Dành cho học sinh THPT chuyên Vĩnh Phúc )
Thời gian làm bài: 180 phút, không kể thời gian giao đề.
————————————

Câu I (4 điểm)
1. Giải phương trình:





3  1 cos 2 x 





3  1 sin x.cos x  sin x  cos x  3  0

�x 2  2 y 2  1
� 2
2
2. Giải hệ phương trình: �2 y  3 z  1
�xy  yz  zx  1



 x, y, z ��

Câu II (2 điểm)
� ,�
� , CDA

Giả sử A, B, C , D lần lượt là số đo các góc DAB
của tứ giác lồi ABCD
ABC , BCD
bất kì.
A B C
.
3
A
2. Tìm giá trị lớn nhất của biểu thức P   sin  sin B  sin C  sin D .
3

1. Chứng minh rằng sin A  sin B  sin C �3sin

Câu III (1 điểm)
Gọi A là tập hợp các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một
số tự nhiên thuộc vào tập A. Tính xác suất để chọn được một số thuộc A và số đó chia hết
cho 9 .
Câu IV (2,0 điểm)
Cho tam giác ABC. Phân giác trong của các góc A, B, C cắt đường tròn ngoại tiếp tam
giác ABC lần lượt tại các điểm A1 , B1 , C1 . Đường thẳng AA1 cắt đường thẳng CC1 tại điểm
I ; đường thẳng AA1 cắt đường thẳng BC tại điểm N ; đường thẳng BB1 cắt đường thẳng
A1C1 tại điểm P . Gọi O là tâm đường tròn ngoại tiếp tam giác IPC1 . Đường thẳng OP cắt
�  2�

đường thẳng BC tại điểm M. Biết rằng BM  MN và BAC
ABC . Tính các góc của tam
giác ABC.
Câu V (1 điểm)
�1





Cho hàm số f :  0; � �  0; � thỏa mãn điều kiện f  3 x  �f � f  2 x  � 2 x với mọi
2
x  0 . Chứng minh rằng f  x  �x với mọi x  0 .

-------------Hết------------Chú ý: Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: ……………………………………………SBD: …………………


SỞ GIÁO DỤC VÀ ĐÀO TẠO

KÌ THI CHỌN HSG LỚP 11 VÒNG TỈNH

TỈNH VĨNH PHÚC

NĂM HỌC 2010 – 2011
HƯỚNG DẪN CHẤM MÔN: TOÁN
(Dành cho học sinh các trường THPT chuyên)
Đáp án gồm 4 trang

Câu


Nội dung

I
I.1 (2 điểm)
4điểm
3  1 cos 2 x 











3  1 sin x.cos x  sin x  cos x  3  0



� 3 cos 2 x  1  3 sin x.cos x  cos 2 x  sin x.cos x  sin x  cos x  0

Điểm
0,5

�  3 sin 2 x  3 sin x.cos x  cos 2 x  sin x.cos x  sin x  cos x  0
�  3 sin x  sin x  cos x   cos x  sin x  cos x   sin x  cos x  0
�  sin x  cos x 






3 sin x  cos x  1  0


� �
2 sin �x  � 0

sin x  cos x  0

� 4�
��
��
� � 1
� 3 sin x  cos x  1 �
sin �x  �

� � 6� 2
� 
x   k
� 

x   k
4


4


 

� x    k 2 � �
x  k 2
 k ��
� 6 6
� 2


5

x
 k 2


x 
 k 2
3

� 6
6

I.2 (2 điểm)
+) Nếu x  0 thay vào hệ ta có hệ vô nghiệm
+) Nếu x �0 ta đặt y  ax; z  bx thay vào hệ ta được







�x 2 1  2a 2  1



4a 2  3b 2  1
1  2a 2  2a 2  3b 2
�2


2
2
�� 2
 1 �x 2a  3b  1 � � 2
2a  a  1  b  a  1  0
1  2a  a  ab  b
�2


x
a

ab

b

1








0,5

0,5

0,5

0,25
0,25
0,5



a  1



b  �1


4a  3b  1


�4a  3b  1
��
��

��
b  1  2a

 a  1  2a  1  b  a  1  0 � a  1  2a  1  b   0 �


� 2

2a  3a  1  0


�a  1
+) Nếu �
thay vào (1) không thỏa mãn
b  �1

2

2

2

2


�a  1


b  1



b  1  2a

�a  1
��
+) Nếu � 2
vào (1) không thỏa mãn, thay
1 thay �

b  1

�a 

�2a  3a  1  0
� 2



b0


� 1
�a 
� 2 vào (1) ta có x  � 2 . Do đó nghiệm của hệ là

b0

1
1


��

 x; y; z   � 2; ;0 �, � 2;  ;0 �
2 ��
2 �


0,5
0,25

0,25

II
II.1 (1 điểm)
x y
2điểm
  thì
Nhận xét. Nếu 0  x, 0  y;

2
x y
x y
x y
sin x  sin y  2sin
cos
�2sin
. Dấu bằng xảy ra khi x  y
2
2
2


0,25

Sử dụng nhận xét trên ta có

A B C
A B
A  B  4C
�2sin
 2sin
3
2
6
A  B A  B  4C

A BC
2
6
�4sin
 4sin
2
3
A B C
sin A  sin B  sin C �3sin
. Dấu bằng xảy ra khi A  B  C .
3
sin A  sin B  sin C  sin

0,5


0,25

II.2 (1 điểm)
Đặt t 

BC  D

2
, ta có A  2  3t;  t 
3
3
3

 1

Khi đó theo phần II.1 ta có
3
5
�2  3t �
P � sin �
cos t  sin t
� 3sin t  
2
2
� 3 �

0,25
0,25



2
2�

� 3 � �5 �


 � ��sin 2 t  cos 2 t  7
Khi đó P � �




� 2 � �2 ��







0,25

3
5
; sin t 
 2
28
28
Vậy max P  7 � B  C  D  t , A  2  3t (với t xác định bởi (1) và (2))


Đẳng thức xảy ra khi cos t  

+) Trước hết ta tính n(A). Với số tự nhiên có tám chữ số đôi một khác nhau thì chữ
1điểm số đầu tiên có 9 cách chọn và có A97 cho 7 vị trí còn lại. Vậy n  A   9 A97

0,25

III

+) Giả sử B   0;1; 2;...;9 ta thấy tổng các phần tử của B bằng 45M9 nên số có chín
chữ số đôi một khác nhau và chia hết cho 9 sẽ được tạo thành từ 8 chữ số đôi một
khác nhau của các tập B \  0; 9 ; B \  1; 8 ; B \  2; 7 ; B \  3; 6 ; B \  4; 5 nên số các số
loại này là A88  4.7. A77 .
A88  4.7. A77 1
 .
Vậy xác suất cần tìm là
9. A97
9

0,5
0,25

�  900 , do đó O là trung điểm của IC1 .
IV
* Dễ thấy IPC
1
2điểm
�  2 IC
� P  CAB
�  CC

� B � BC // OP
* IOP
1
1
1
* Do BM=MN; OI  OC1 � IN // C1B
�  1 BAC
� �
�  BAC
� , mà CIA
ACB
Do đó CIA
1
1
2
�  1 BAC
� �
� �
ACB � BAC
ACB
Vậy BAC
2
� �
�  2�
Cùng với BAC
ACB  720 ; �
ABC  360
ABC ta được BAC






0,25





C

0,5
0,5

0,5

A1

N
B1

I

M

0,5

P
B
A


O

C1


V
1điểm

�1

f (3 x) �f � f (2 x) � 2 x (1)
�2

�1
Từ (1) suy ra f ( x) �f �
�2
Khi đó
�1
f ( x) �f �
�2

0,25

� 2x
2x
�2 x �
f� �

� f ( x) 

, x  0 (2)

3
�3 �
� 3

� 2x 2 1
�2 x �
f� �
� 3  3 . 2
�3 �


�2 x � 2 x 1 �2 x � 2 x �4 2 �
f � �
 f � �
 �  �x
�3 � 3 3 �3 � 3 �27 3 �

0,25

2
1
2
và an 1  an2  .
3
3
3
*
Ta sẽ chứng minh bằng quy nạp theo n rằng với mỗi n �� luôn có

Xét dãy (an ) , (n=1,2,…) được xác định như sau: a1 

f ( x)  an x với x  0 (3)
Thật vậy, khi n  1 thì theo (2), ta có ngay (3)
Giả sử mệnh đề (3) đúng với n  k . Khi đó
�1 �2 x �
� 2x 1
2x 2x
�2 x � 2 x 1
f ( x) �f � f � �

 a . f � �
 a .a . 

3
�2 �3 �
� 3 2 k �3 � 3 2 k k 3
a2  2
 k
.x  ak 1.x
3

0,25

Vậy (3) đúng với n  k  1 .
Tiếp theo ta chứng minh lim an  1 . Thật vậy, ta thấy ngay an  1 n ��* . Do đó:
1
an 1  an  (an  1)(an  2)  0 , suy ra dãy (an ) tăng ngặt.
3
1

3

Dãy (an ) tăng và bị chặn trên nên hội tụ. Đặt lim an  l thì l  l 2 

2
với l �1 ,
3

suy ra l  1 . Vậy lim an  1 .Do ®ã tõ (3) suy ra f ( x ) �x víi mäi x  0
(®pcm).

0,25



×