Tải bản đầy đủ (.doc) (8 trang)

DE THI THU DH TRUONG DS1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (208.67 KB, 8 trang )

kì thi KSCL trớc tuyển sinh năm 2009 (lần 1)
Môn Thi: Toán
Thời gian: 180 phút (không kể thời gian giao đề)
(Đề thi gồm 02 trang)
phần chung cho tất cả các thí sinh
Câu I (2 điểm) Cho hàm số
43
23
+=
xxy
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Gọi d là đờng thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm
phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau.
Câu II (2điểm)
1. Giải hệ phơng trình:



=++
=+++
yyxx
yyxyx
)2)(1(
4)(1
2
2
(x, y
R
)
2. Giải phơng trình:
8


1
3
tan
6
tan
3coscos3sin.sin
33
=






+







+

xx
xxxx
Câu III (1 điểm) Tính tích phân

++=
1

0
2
)1ln( dxxxxI

Câu IV (1 điểm) Cho hình lăng trụ ABC.ABC có đáy là tam giác đều cạnh a, hình chiếu vuông
góc của A lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và
vuông góc với AA, cắt lăng trụ theo một thiết diện có diện tích bằng
8
3
2
a
. Tính thể tích khối lăng
trụ ABC.ABC.
Câu V (1 điểm) Cho a, b, c là ba số thực dơng thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức
32
1
32
1
32
1
222222
++
+
++
+
++
=
accbba
P
Phần tự chọn

Thí sinh chỉ đợc làm một trong hai phần: Phần 1 hoặc Phần 2
Phần 1
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ trục tọa độ Oxy cho parabol (P):
xxy 2
2
=
và elip
(E):
1
9
2
2
=+
y
x
. Chứng minh rằng (P) giao (E) tại 4 điểm phân biệt cùng nằm trên một đờng tròn.
Viết phơng trình đờng tròn đi qua 4 điểm đó.
2. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phơng trình
011642
222
=+++
zyxzyx
và mặt phẳng (

) có phơng trình 2x + 2y z + 17 = 0. Viết ph-
ơng trình mặt phẳng (

) song song với (


) và cắt (S) theo giao tuyến là đờng tròn có chu vi bằng 6.
Câu VII.a(1điểm) Tìm hệ số của số hạng chứa x
2
trong khai triển nhị thức Niutơn của
n
x
x








+
4
2
1
,
biết rằng n là số nguyên dơng thỏa mãn:
1
6560
1
2
3
2
2
2
2

1
2
3
1
2
0
+
=
+
++++
+
n
C
n
CCC
n
n
n
nnn

(
k
n
C
là số tổ hợp
chập k của n phần tử)
Phần 2
1
Câu VI.b (2 điểm)
1. Trong mặt phẳng với hệ trục tọa độ Oxy cho hai đờng thẳng d

1
: x + y + 5 = 0, d
2
: x + 2y - 7= 0
và tam giác ABC có A(2 ; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d
1


điểm C thuộc d
2
. Viết ph-
ơng trình đờng tròn ngoại tiếp tam giác ABC.
2. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A(1; 2; 5), B(1; 4; 3),
C(5; 2; 1) và mặt phẳng (P): x y z 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P).
Tìm giá trị nhỏ nhất của biểu thức
222
MCMBMA
++
Câu VII.b (1 điểm) Giải hệ phơng trình



+=
+=+
+
+
1
)1(2
yxe
xee

yx
yxyx
(x, y
R
)
----------------***Hết***----------------
Chú ý: Thí sinh dự thi khối B và D không phải làm câu V.
Thí sinh không đợc sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh:. . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh:. . . . . . . . . . . . . . . . . . .
2
Kì thi KSCL trớc tuyển sinh năm 2009(lần 1)
Hớng dẫn chấm môn toán
- Điểm toàn bài không làm tròn.
- Học sinh làm các khác nếu đúng vẫn đợc điểm tối đa.
- Nếu học sinh làm cả hai phần trong phàn tự chọn thì không tính điểm phần tự chọn.
- Thí sinh dự thi khối B, D không phải làm câu V; thang điểm dành cho câu I.1 và câu III là
1,5 điểm.
Câu Nội dung Điểm
I.1
Khảo sát hàm số
43
23
+=
xxy
1,00
1. Tập xác định: R
2. Sự biến thiên:
a) Giới hạn:
+=+==+=
++

)4x3x(limylim,)4x3x(limylim
23
xx
23
xx
0,25
b) Bảng biến thiên: y' = 3x
2
- 6x, y' = 0

x = 0, x = 2
Bảng biến thiên:
x
-

0 2 +

y' + 0 - 0 +
y
4 +

-

0
- Hàm số đồng biến trên (-

; 0) và (2; +

), nghịch biến trên (0; 2)
- Hàm số đạt cực đại tại x = 0, y


= 4, đạt cực tiểu tại x = 2, y
CT
= 0.
0,50
3. Đồ thị: Đồ thị giao với trục tung tại (0; 4), giao với trục hoành tại (-1; 0),(2; 0).
Nhận điểm uốn I(1; 2) làm tâm đối xứng
0,25
I.2
Tìm m để hai tiếp tuyến vuông góc .....
1,00
d có phơng trình y = m(x 3) + 4.
Hoành độ giao điểm của d và (C) là nghiệm của phơng trình



=
=
=+=+
0mx
3x
0)mx)(3x(4)3x(m4x3x
2
223
0,50
Theo bài ra ta có điều kiện m > 0 và
1)m('y).m('y
=
0,25
9

35318
m01m36m91)m6m3)(m6m3(
2

==+=+
(thỏa mãn) 0,25
II.1
Giải hệ phơng trình đại số
1,00
Ta thấy y = 0 không phải là nghiệm của hệ 0,25
3
x
y
-1
2
O
4
2
1
Hệ phơng trình tơng đơng với







=+
+
=++

+
1)2yx(
y
1x
22yx
y
1x
2
2
0,25
Đặt
2yxv,
y
1x
u
2
+=
+
=
Ta có hệ
1vu
1uv
2vu
==



=
=+
0,25

Suy ra





=+
=
+
12yx
1
y
1x
2
. Giải hệ trên ta đợc nghiệm của hpt đã cho là (1; 2), (-2; 5) 0,25
II.2
Giải phơng trình lơng giác
1,00
Điều kiện:
0
3
xcos
6
xcos
3
xsin
6
xsin









+















+









Ta có
1x
6
cot
6
xtan
3
xtan
6
xtan
=















=








+








0,25
Phơng trình đã cho tơng đơng với
8
1
x3cosxcosx3sin.xsin
33
=+
1 cos2x cos2x cos4x 1 cos2x cos2x cos 4x 1
2 2 2 2 8
+ +
ì + ì =
0,25
2
1
x2cos
8

1
x2cos
2
1
)x4cosx2cosx2(cos2
3
===+
0,25






+

=
+

=

k
6
x
(loại) k
6
x
,
(k ) Z
. Vậy phơng trình có nghiệm

+

=
k
6
x
,
(k ) Z
0,25
III
Tính tích phân
1,00
Đặt





=
++
+
=




=
++=
2/xv
dx

1xx
1x2
du
xdxdv
)1xxln(u
2
2
2
1
1
2 3 2
2
2
0
0
x 1 2x x
I ln(x x 1) dx
2 2 x x 1
+
= + +
+ +


0,25
4

++

++
+

+=
1
0
2
1
0
2
1
0
1xx
dx
4
3
dx
1xx
1x2
4
1
dx)1x2(
2
1
3ln
2
1
( )
11
1
0
2
1

0
2
I
4
3
3ln
4
3
I
4
3
)1xxln(
4
1
xx
2
1
3ln
2
1
=+++=
0,25
* Tính I
1
:










+






+
=
1
0
2
2
1
2
3
2
1
x
dx
I
. Đặt








=+
2
,
2
t,ttan
2
3
2
1
x
Suy ra
9
3
t
3
32
ttan1
dt)ttan1(
3
32
I
3/
6/
3/
6/
2
2

1

==
+
+
=





0,25
Vậy
12
3
3ln
4
3
I

=
0,25
IV
Tính thể tích khối lăng trụ
1,00
Gọi M là trung điểm của BC, gọi H là hình chiếu vuông góc của M lên AA, Khi
đó (P)

(BCH). Do góc
ã

A' AM
nhọn nên H nằm giữa AA. Thiết diện của lăng
trụ cắt bởi (P) là tam giác BCH.
0,25
Do tam giác ABC đều cạnh a nên
3
3a
AM
3
2
AO,
2
3a
AM
===
Theo bài ra
4
3a
HM
8
3a
BC.HM
2
1
8
3a
S
22
BCH
===

0,25
4
a3
16
a3
4
a3
HMAMAH
22
22
===
Do hai tam giác AAO và MAH đồng dạng nên
AH
HM
AO
O'A
=
suy ra
3
a
a3
4
4
3a
3
3a
AH
HM.AO
O'A
===

0,25
Thể tích khối lăng trụ:
12
3a
a
2
3a
3
a
2
1
BC.AM.O'A
2
1
S.O'AV
3
ABC
====
0,25
V
Tìm giá trị lớn nhất ...
1,00
Ta có a
2
+b
2
2ab, b
2

+ 1 2b

1bab
1
2
1
21bba
1
3b2a
1
22222
++

++++
=
++
0,50
5
A
B
C
C
B
A
H
O
M

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×