Tải bản đầy đủ (.doc) (7 trang)

DE+DA thi vao THPT Bac Giang(09-10)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (88.06 KB, 7 trang )

Sở Giáo dục và đào tạo
Bắc giang
---------------------
Đề thi chính thức
(đợt 1)
Kỳ thi tuyển sinh lớp 10 THPT
Năm học 2009-2010
Môn thi: Toán
Thời gian làm bài: 120 phút không kể thời gian giao đề.
Ngày 08 tháng 07 năm 2009
(Đề thi gồm có: 01 trang)
--------------------------------------
Câu I: (2,0 điểm)
1. Tính
4. 25
2. Giải hệ phơng trình:
2 4
3 5
x
x y
=


+ =

Câu II: (2,0 điểm)
1.Giải phơng trình x
2
-2x+1=0
2. Hàm số y=2009x+2010 đòng biến hay nghịch biến trên R? Vì sao?
Câu III: (1,0 điểm)


Lập phơng trình bậc hai nhận hai số 3 và 4 là nghiệm?
Câu IV(1,5 điểm)
Một ôtô khách và một ôtô tải cùng xuất phát từ địa điểm A đi đến địa điểm B đờng
dài 180 km do vận tốc của ôtô khách lớn hơn ôtô tải 10 km/h nên ôtô khách đến B trớc
ôtô tải 36 phút.Tính vận tốc của mỗi ôtô. Biết rằng trong quá trình đi từ A đến B vận tốc
của mỗi ôtô không đổi.
Câu V:(3,0 điểm)
1/ Cho tam giác ABC nhọn nội tiếp đờng tròn tâm O. Các đờng cao BH và CK tam
giác ABC cắt nhau tại điểm I. Kẻ đờng kính AD của đờng tròn tâm O, các đoạn thẳng
DI và BC cắt nhau tại M.Chứng minh rằng.
a/Tứ giác AHIK nội tiếp đợc trong một đờng tròn.
b/OM

BC.
2/Cho tam giác ABC vuông tại A,các đờng phân giác trong của goác B và góc C cắt
các cạnh AC và AB lần lợt tại D và E. Gọi H là giao điểm của BD và CE, biết
AD=2cm, DC= 4 cm tính độ dài đoạn thẳng HB.
Câu VI:(0,5 điểm)
Cho các số dơng x, y, z thỏa mãn xyz -
16
0
x y z
=
+ +
Tìm giá trị nhỏ nhất của biểu thức P = (x+y)(x+z)

----------------Hết------------------
Sở Giáo dục và đào tạo
Bắc giang
---------------------

Đề thi chính thức
(đợt 2)
Kỳ thi tuyển sinh lớp 10 THPT
Năm học 2009-2010
Môn thi: Toán
Thời gian làm bài: 120 phút không kể thời gian giao đề.
Ngày 10 tháng 07 năm 2009
(Đề thi gồm có: 01 trang)
--------------------------------------
Câu I: (2,0 điểm)
1. Tính
49
+
2. Cho hàm số y = x -1. Tại x = 4 thì y có giá trị là bao nhiêu?
Câu II: (1,0 điểm)
Giải hệ phơng trình:



=
=+
3
5
yx
yx
Câu III: (1,0 điểm)
Rút gọn:




















+
+
+
=
1
1
1
1 x
xx
x
xx
A
Với
1;0


xx
Câu IV( 2,5 điểm)
Cho PT: x
2
+ 2x - m = 0 (1)
1. Giải PT(1) với m = 3
2. Tìm tất cả các giá trị m để PT(1) có nghiệm
Câu V:(3,0 điểm)
Cho đờng tròn tâm O đờng kính AB cố định. H thuộc đoạn thẳng OA( H khác A;O và
trung điểm của OA). Kẻ dây MN vuông góc với AB tại H. MN cắt AK tại E.
1. Chứng minh tứ giác HEKB nội tiếp.
2. Chứng minh tam giác AME đồng dạng với tam giác AKM.
3. Cho điểm H cố định, xác định vị trí của K để khoảng cách từ N đến tâm đờng tròn
ngoại tiếp tam giác MKE nhỏ nhất.
Câu VI:(0,5 điểm)
Tìm số nguyên x; y thoả mãn đẳng thức: x
2
+ xy +y
2
- x
2
y
2
= 0

----------------Hết------------------
đáp án đề 1:
Câu I:
1. Tính

4. 25
= 2.5 = 10
2. Giải hệ phơng trình:
2 4
3 5
x
x y
=


+ =

< = >
2
2 3 5
x
y
=


+ =

< = >
2
1
x
y
=



=

Vậy hệ phơng trình có nghiệm duy nhất (x;y) = (2;1) .
Câu II:
1.
x
2
- 2x +1 = 0
<=> (x -1)
2
= 0
<=> x -1 = 0
<=> x = 1
Vậy PT có nghiệm x = 1
2.
Hàm số trên là hàm số đồng biến vì: Hàm số trên là hàm bậc nhất có hệ số
a = 2009 > 0. Hoặc nếu x
1
>x
2
thì f(x
1
) > f(x
2
)
Câu III:
Lập phơng trình bậc hai nhận hai số 3 và 4 là nghiệm?
Giả sử có hai số thực: x
1
= 3; x

2
= 4
Xét S = x
1
+ x
2
= 3 + 4 = 7; P = x
1
.x
2
= 3.4 = 12 =>S
2
- 4P = 7
2
- 4.12 = 1 > 0
Vậy x
1
; x
2
là hai nghiệm của phơng trình: x
2
- 7x +12 = 0
Câu IV
Đổi 36 phút =
10
6
h
Gọi vận tốc của ô tô khách là x ( x >10; km/h)
Vận tốc của ôtô tải là x - 10 (km/h)
Thời gian xe khách đi hết quãng đờng AB là:

x
180
(h)
Thời gian xe tải đi hết quãng đờng AB là:
10
180

x
(h)
Vì ôtô khách đến B trớc ôtô tải 36 phút nên ta có PT:

0300010
)10(10.180)10(610.180
180
10
6
10
180
2
=
=
=

xx
xxxx
xx

553025
302530005
'

2'
==
=+=
x
1
= 5 +55 = 60 ( TMĐK)
x
2
= 5 - 55 = - 50 ( không TMĐK)
Vậy vận tốc của xe khách là 60km/h, vận tốc xe tải là 60 - 10 = 50km/h
Câu V
1/
a)

AHI vuông tại H (vì CA

HB)

AHI nội tiếp đờng tròn đờng kính AI

AKI vuông tại H (vì CK

AB)

AKI nội tiếp đờng tròn đờng kính AI
Vậy tứ giác AHIK nội tiếp đờng tròn đờng kính AI
b)
Ta có CA

HB( Gt)

CA

DC( góc ACD chắn nửa đờng tròn)
=> BH//CD hay BI//CD (1)
Ta có AB

CK( Gt)
AB

DB( góc ABD chắn nửa đờng tròn)
=> CK//BD hay CI//BD (2)
Từ (1) và (2) ta có Tứ giác BDCI là hình bình hành( Có hai cặp cạnh đối song song)
Mà DI cắt CB tại M nên ta có MB = MC
=> OM

BC( đờng kính đi qua trung điểm của dây thì vuông góc với dây đó)
2/
Vì BD là tia phân giác góc B của tam giác ABC;
nên áp dụng tính chất đờng phân giác ta có:
ABBC
BC
AB
BC
AB
DC
AD
2
4
2
===



ABC vuông tại A mà BC = 2AB nên
ACB = 30
0
; ABC = 60
0
Vì B
1
= B
2
(BD là phân giác) nên ABD = 30
0


ABD vuông tại A mà ABD = 30
0
nên BD = 2AD = 2 . 2 = 4cm
=>
12416
222
=== ADBDAB


ABC vuông tại A =>
341236
22
=+=+=
ABACBC
Vì CH là tia phân giác góc C của tam giác CBD; nên áp dụng tính chất đờng phân giác

ta có:
DHBH
HB
DH
HB
DH
BC
DC
3
34
4
===
Ta có:
34)31(
3
3433
3
4
=+





=
=+





=
=+
BH
HDBH
HDBH
HDBH
HDBH
)13(32
2
)13(34
)31(
34
=

=
+
=
BH
. Vậy
cmBH )13(32
=
Câu VI
Cách 1:
.
A
B
C
D
M
I

O
H
K
D
A
B
C
E H
1
2
2
1
Vì xyz -
16
0
x y z
=
+ +
=> xyz(x+y+z) = 16
P = (x+y)(x+z) = x
2
+xy + xz + yz = x(x+y+z) + yz
áp dụng BĐT Côsy cho hai số thực dơng là x(x+y+z) và yz ta có
P = (x+y)(x+z) = x(x+y+z) + yz
816.2)(2
==++
zyxxyz
; dấu đẳng thức xẩy ra khi
x(x+y+z) = yz
Vậy giá trị nhỏ nhất của P là 8

Cách 2:

xyz
zyx
zyx
xyz
16
0
16
=++=
++

P = (x+y)(x+z) = x
2
+xy + xz + yz = x(x+y+z) + yz =
yz
yz
yz
xyz
x
+=+
1616
áp dụng BĐT Côsy cho hai số thực dơng là
yz
16
và yz ta có
P =
yz
yz
+

16
816.2
16
2
==
yz
yz
; dấu đẳng thức xẩy ra khi
yz
yz
=
16
Vậy giá trị nhỏ nhất của P là 8
đáp án đề 2:
Câu I:
1. Tính
52349
=+=+
2. Thay x =4 vào hàm số y = x -1. Ta đợc: y = 4 - 1 = 3
Vậy khi x = 4 thì y = 3
Câu II:
Giải hệ phơng trình:



=
=





=
=+




=
=+
1
4
82
5
3
5
y
x
x
yx
yx
yx
Vậy hệ PT có nghiệm (x; y) = (4; 1)
Câu III:
Với
1;0

xx
ta có:




















+
+
+
=
1
1
1
1 x
xx
x
xx
A


( ) ( )
( )( )
111
1
1
1
1
1
1
=+=



















+

+
+
=
xxx
x
xx
x
xx

×