Tải bản đầy đủ (.pdf) (27 trang)

Nghiên cứu thành phần hóa học và hoạt tính sinh học của loài sưa (dalbergia tonkinensis prain) ở việt nam (tt)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.31 MB, 27 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------

NGŨ TRƯỜNG NHÂN

NGHIÊN CỨU THÀNH PHẦN HÓA HỌC VÀ HOẠT TÍNH SINH HỌC CỦA
LOÀI SƯA (DALBERGIA TONKINENSIS PRAIN) Ở VIỆT NAM

Chuyên ngành : Hóa học các hợp chất thiên nhiên
Mã số
: 9 44 01 17

TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA HỌC

HÀ NỘI - 2019


Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ Viện Hàn lâm Khoa học và Công nghệ Việt Nam

Người hướng dẫn khoa học 1: PGS.TS. Nguyễn Mạnh Cường
Người hướng dẫn khoa học 2: TS. Đỗ Hữu Nghị

Phản biện 1: …
Phản biện 2: …
Phản biện 3: ….


Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Học viện,
họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ
Việt Nam vào hồi … giờ ..’, ngày … tháng … năm 201….

Có thể tìm hiểu luận án tại:
- Thư viện Học viện Khoa học và Công nghệ
- Thư viện Quốc gia Việt Nam.


MỞ ĐẦU
1. Tính cấp thiết của luận án
Việt Nam có diện tích khoảng 330000 km2, trải dài 1650 km qua 15 vĩ độ, có khí
hậu nhiệt đới gió mùa, hai mùa nóng ẩm, độ ẩm tương đối lớn (trên 80%), lượng mưa
hàng năm dồi dào (trung bình 1200-2800 mm). Với đặc thù môi trường thiên nhiên
như thế đã tạo ra một hệ thực vật đa dạng phong phú về chủng loại, quanh năm xanh
tốt, và có nhiều công dụng phục vụ cuộc sống con người như là lương thực, chế biến
đồ dùng nội ngoại thất, làm cảnh, làm thuốc,… Theo số liệu thống kê, hệ thực vật bậc
cao Việt Nam có trên 10.000 loài, trong đó có khoảng 3.200 loài cây được sử dụng
trong y học dân tộc làm thuốc chữa bệnh.
Trong hệ thực vật đó thì chi Trắc (Dalbergia) thuộc cây họ Đậu (Fabaceae) là
một trong ba chi có số loài đa dạng và phong phú nhất.
Theo tìm hiểu qua tri thức bản địa thì rất nhiều loài trong chi này như Trắc
hoàng đàn Dalbergia assamica Bent, Trắc lá Dalbergia foliacea Wall. ex Benth, Cẩm
lai một hạt Dalbergia candenatenis, Dalbergia rimosa, Dalbergia odorifera.., được
sử dụng rộng rãi trong y học dân gian ở nhiều quốc gia để chữa nhiều bệnh như: đau
đầu, chữa ung nhọt, ho suyễn, gãy xương, phong thấp, chảy máu cam, nhiễm trùng,
bệnh giang mai, tiêu chảy, huyết áp, tim mạch, v/v.
Trong đó, loài Sưa (Dalbergia tonkinensis Prain) bị khai thác quá mức, hiện có
trong danh mục sách Đỏ Việt Nam (2007), phân hạng ở mức nguy cấp.
Các nghiên cứu về thành phần hóa học cho thấy các loài chi Dalbergia chứa các

lớp chất flavonoid (flavone, isoflavone, neoflavone, flavans, flavonol), hợp chất
phenol và các terpen. Các cao chiết và hợp chất phân lập từ chi Dalbergia có các hoạt
tính sinh học quí như làm giảm đau, kháng viêm, kháng androgen, chống dị ứng, ho
suyễn, chống bệnh than, huyết áp, điều hòa miễn dịch, và có tác dụng liên quan đến
tim mạch.
Cho đến nay loài Sưa ở Việt Nam vẫn chưa được nghiên cứu đầy đủ và toàn
diện về thực vật học, thành phần hóa học và tác dụng sinh học. Còn về mặt hóa
học chỉ mới có một công trình nghiên cứu sơ bộ ở trong nước.
1


Từ những cơ sở khoa học và thực tiễn nêu trên đã định hướng cho chúng tôi lựa
chọn đề tài “Nghiên cứu thành phần hóa học và hoạt tính sinh học của loài Sưa
(Dalbergia tonkinensis Prain) ở Việt Nam’’.
2. Mục tiêu nghiên cứu của luận án
Nghiên cứu loài Sưa (Dalbergia tonkinensis Prain) một cách hệ thống và đầy đủ
về các mặt: thực vật (vi phẫu, trình tự gen), thành phần hóa học và hoạt tính sinh học.
3. Các nội dung nghiên cứu chính của luận án
Để đạt được các mục tiêu nêu trên, luận án đã thực hiện các nội dung sau:
- Nghiên cứu về thực vật (vi phẫu lá, thân, bột lõi thân và trình tự gen) của loài
Sưa (Dalbergia tonkinensis Prain).
- Phân lập và xác định cấu trúc các hợp chất từ lõi gỗ cây Sưa (Dalbergia
tonkinensis Prain): điều chế cặn chiết và phân đoạn, phân lập các hợp chất từ cặn chiết bằng
các phương pháp sắc ký, xác định cấu trúc các hợp chất phân lập được bằng các phương pháp
hóa lý hiện đại.
- Khảo sát một số hoạt tính sinh học: kháng khuẩn và ức chế enzyme glucosidase của cao chiết tổng, cao chiết phân bố và một số hợp chất sạch phân lập từ
cây Sưa (Dalbergia tonkinensis Prain) ở Việt Nam.
CHƯƠNG 1. TỔNG QUAN
Phần tổng quan tài liệu là tập hợp các nghiên cứu trong nước và quốc tế về các vấn
đề:

1.1. Tổng quan về họ đậu (Fabaceae) và chi trắc (Dalbergia)
1.1.1. Tổng quan về họ Đậu (Fabaceae)
1.1.1.1. Tổng quan về chi Trắc (Dalbergia)
1.1.1.2. Tổng quan về loài Sưa (Dalbergia tonkinensis Prain)
1.2. Tình hình nghiên cứu về thành phần hóa học và hoạt tính sinh học của chi
Trắc (Dalbergia) trên thế giới
CHƯƠNG 2. THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU
Phần này mô tả chi tiết các quá trình xử lý mẫu nguyên liệu, phương pháp
nghiên cứu vi phẫu và trình tự gen, điều chế các phần chiết, phân tách sắc ký và phân
lập các hợp chất, các phương pháp thử hoạt tính sinh học.
2


2.1. Đối tượng nghiên cứu
Cây Sưa (Dalbergia tonkinensis Prain) được thu hái tại thành phố Buôn Ma
Thuột, tỉnh Đăk Lăk. Tên khoa học của loài cây trên được xác định bởi TS. Nguyễn
Quốc Bình, Bảo Tàng thiên nhiên Việt Nam, Viện Hàn lâm Khoa học và Công nghệ
Việt Nam. Mẫu tiêu bản của cây được lưu trữ tại phòng tiêu bản thực vật, Viện Sinh
thái và Tài nguyên sinh vật và tại phòng Hoạt chất sinh học, Viện Hóa học các hợp
chất thiên nhiên, kí hiệu mẫu là C-561 và C-612.
Mẫu Sưa (lá, vỏ, thân và lõi gỗ) sau khi thu hái về được rửa sạch, loại bỏ phần
vỏ, chỉ lấy phần thân lõi có màu đỏ để phân lập chất, phơi khô. Sau đó mẫu được xay
nhỏ và được ngâm chiết kiệt nhiều lần bằng MeOH ở nhiệt độ phòng. Sau khi cất loại
dung môi, cặn cô được chiết phân đoạn với các dung môi có độ phân cực tăng dần
như: n-hexan, chloroform hoặc dichloromethane, etyl acetate và nước.
Lõi gỗ
(3,7 kg)
Ngâm MeOH (5 x 7,0L)

Cao methanol

(120 g, M)

Bã sau khi chiết

Chiết phân bố

Đun nước (4 x 3,0L)

n-hexane
W
(4,2 g)

ethyl acetate

dichloromethane

MH
(29,0 g)

MD
(45,1 g)

ME
(11,1 g)

nước
MW
(12,0 g)

Sơ đồ 2.1. Xử lý mẫu và chiết tách từ lõi gỗ Sưa (Dalbergia tonkinensis Prain)

2.2. Các phương pháp nghiên cứu
2.2.1. Nghiên cứu vi phẫu: Thực hiện tại Bộ môn Thực vật- Trường Đại học Dược
Hà Nội.
2.2.2. Nghiên cứu trình tự gen: Thực hiện tại Viện Sinh thái và Tài nguyên sinh vật
- Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
2.2.3. Phương pháp phân lập các hợp chất từ các dịch chiết
3


Các phương pháp đã được sử dụng như: sắc ký lớp mỏng (TLC, dùng để khảo
sát), sắc ký cột với chất hấp phụ là silica gel pha thường (Merck loại 40-63 m) hoặc
pha đảo (ODS, YMC (30-50 μm)), sắc ký cột Dianion HP-20, Sephadex LH-20. Bên
cạnh đó còn dùng phương pháp kết tinh để thu chất sạch.
2.2.4. Các phương pháp xác định cấu trúc hóa học các hợp chất
Phương pháp chung để xác định cấu trúc hóa học của các chất là sự kết hợp giữa
các thông số vật lý với các phương pháp phổ hiện đại bao gồm:
Phổ khối ion hóa bụi điện tử ESI-MS được ghi trên máy ghi Agilent 6310 Ion
Trap, phổ khối phân giải cao HR-ESI-MS được đo trên máy Agilent 6510 Q-TOF
LC/MS hoặc máy MicroQ-TOF III mass spectrometer (Bruker Daltonics, Germany).
Phổ cộng hưởng từ hạt nhân một chiều (1H-, 13C-và DEPT NMR) và hai chiều
(HSQC, HMBC, COSY, NOESY) được ghi trên máy Bruker Avance 500 MHz đo
với TMS là chất chuẩn nội. Sử dụng các dung môi hòa tan được hoàn toàn mẫu thử
chủ yếu là DMSO-d6, MeOD-d4, CDCl3. Trong luận án này chúng tôi sử dụng phổ CD
(lưỡng sắc vòng - circular dichroism) để xác định cấu hình tuyệt đối của hợp chất mới.
2.2.5. Phương pháp thử nghiệm hoạt tính sinh học
2.2.5.1. Phương pháp đánh giá hoạt tính kháng khuẩn
Hoạt tính kháng vi sinh vật kiểm định trên một số chủng: Bacillus subtillis,
Staphylococcus aureus, Aspergillus niger, Fusarium oxyporum, Saccharomyces
cerevisiae, Candida albicans. Thực hiện tại Viện Hóa học các Hợp chất thiên nhiên Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
2.2.5.2. Phương pháp thử hoạt tính ức chế enzyme -glucosidase

Thực hiện tại Khoa Dược, Trường Đại học Tam Kang, Đài Loan. Enzyme glucosidase từ gạo, nấm men (Saccharomyces cerevisiae), vi khuẩn (B.
stearothermophilus), chuột cùng với cơ chất p-nitrophenyl -D-glucopyranoside
(pNPG) và acarbose mua tại hãng Sigma Aldrich, St. Louis City, MO, USA.
2.2.6. Thông số hóa lý và dữ kiện phổ các hợp chất phân lập
Phần này trình bày chi tiết các dữ kiện phổ cũng như hằng số vật lý của 18 hợp
chất phân lập từ lõi gỗ Sưa (Dalbergia tonkinenis Prain).

4


CHƯƠNG 3. KẾT QUẢ VÀ BÀN LUẬN
Chương này trình bày các kết quả nghiên cứu về vi phẫu, DNA, kết quả phân
lập và xác định cấu trúc hóa học các hợp chất, hoạt tính kháng khuẩn và ức chế
enzyme -glucosidase.
3.1. Kết quả nghiên cứu về vi phẫu và trình tự gen của loài Sưa (Dalbergia
tonkinenis Prain)
Phần này mô tả chi tiết các kết quả về hình thái vi phẫu của lá, thân và bột lõi
thân của loài Sưa (Dalbergia tonkinensis Prain).
3.1.1. Kết quả nghiên cứu vi phẫu
Chúng tôi đã tiến hành nghiên cứu vi phẫu lá, thân và bột lõi thân của loài Sưa
(Dalbergia tonkinensis Prain) thu tại Tp. Buôn Ma thuột để hỗ trợ cho việc phân loại
hình thái cũng như bổ sung cơ sở dữ liệu di truyền cho loài này. Một số kết quả được
trình bày ở hình dưới đây:
1- Lông che chở;
2- Biểu bì trên;
3-Mô dày trên;
4; 7- Mô cứng;
5- Gỗ;
6- Libe;
8- Mô dày dưới;

9- Mô mềm;
10- Biểu bì dưới
Hình 3.1. Vi phẫu lá Sưa
11- Biểu bì trên;
12- Hạ bì trên;
13- Mô giậu;
14- Mô khuyết;
15 – Biểu bì dưới.

Hình 3.2. Phiến lá Sưa

5


3.1.2. Kết quả nghiên cứu về trình tự gen
Trong nghiên cứu này chúng tôi đã tiến hành xác định trình tự 3 vùng gen lục
lạp rbcL, rpoB và rpoC của 2 mẫu Sưa thu tại Tp. Buôn Ma Thuột (C-561-L) và thu
tại Hà Nội (C-564-L) và so sánh khoảng cách di truyền của từng vùng gen đó với 5
loài Dalbergia khác đã công bố trình tự trên GenBank.
Kết quả cho thấy (hình 3.3) ba vùng gen rbcL, rpoB và rpoC là thích hợp để sử
dụng cho các nghiên cứu phân loại các loài thuộc chi Sưa (Dalbergia) với tỉ lệ phân
biệt lần lượt là 99%, 98% và 97%. Trình tự 3 vùng gen lục lạp rbcL, rpoB và rpoC
của loài Sưa (Dalbergia tonkinenis Prain) ở Việt Nam đã được đăng ký trên ngân
hàng gen với số hiệu lần lượt là KY283103, KY287755 và KY287750.

Hình 3.3. So sánh khả năng phân biệt giữa các loài Dalbergia của 3 vùng gen
nghiên cứu
3.2. Kết quả phân lập và xác định cấu trúc hóa học các hợp chất từ lõi gỗ Sưa
(Dalbergia tonkinensis Prain).
Phần này mô tả chi tiết kết quả phân lập, phân tích phổ và xác định cấu trúc

hóa học của lõi gỗ cây Sưa (Dalbergia tonkinensis Prain), trong đó có 02 hợp chất
mới và còn lại là các hợp chất đã biết. Kết quả đã phân lập và xác định cấu trúc của
18 hợp chất từ lõi gỗ Sưa bao gồm: 08 hợp chất từ cao chiết dichloromethane, 07
hợp chất từ cao chiết ethyl acetate và 03 hợp chất từ cao nước. Cấu trúc 18 hợp chất
phân lập được trình bày ở bảng 3.1.
6


Bảng 3.1. Bảng tổng hợp các hợp chất phân lập từ lõi gỗ loài Sưa
(Dalbergia tonkinensis Prain)
.

Pinocembrin

Naringenin

3'-hydoxy-2,4,5-trimethoxydalbergiquinol

Medicarpin

Buteaspermanol
Daltonkin A
(2S)-8-carboxyethylpinocemprin
(Chất mới)

Dalbergin

Daltonkin B
(2S)-2,6-dicarboxyethylnaringenin
(Chất mới)


7


Liquiritigenin
7,3',5'-trihydroxyflavanone

Sativanone

3'-O-methylviolanone

Vestitone

Calycosin

Formononetin

7,3',4'-trihydroxyaurone
(Sulfuretin)

4',7-dihydroxy-3-methoxyflavone

Isoliquiritigenin

3.2.1. Hợp chất mới daltonkin A
Hợp chất daltonkin A được phân lập dưới dạng chất rắn vô định hình. Phổ khối
phun bụi electron phân giải cao (HR-ESI-MS), cho pic ion giả phân tử ở m/z =
8



327,0868 [M – H]– (theo lý thuyết là 327,0863). Như vậy, công thức phân tử của hợp
chất daltonkin A là C18H16O6.
Phổ hồng ngoại (IR) của hợp chất daltonkin A xuất hiện các cực đại hấp thụ
đặc trưng tại vị trí νmax tại 3354 và tại νmax 1701 cm-1, của các nhóm hydroxyl OH,
nhóm carbonyl và kết C=C (benzene) ( νmax: 1701, 1637, 1610, 1452). Phổ tử ngoại
UV cũng xuất hiện các đỉnh đặc trưng cho nối đôi liên hợp ở UV (MeOH) λmax nm
(logε): 293 nm.
Các tín hiệu trên phổ 1H-NMR và

C-NMR cho thấy, ngoài các tín hiệu đặc

13

trưng cho 2 vòng thơm A và B còn xuất hiện thêm các tín hiệu của 1 carbon
methylene tại δC 44,3 (C-3), 1 tín hiệu carbon nhóm oxymethine ở vị trí δC 80,5 (C-2)
và tín hiệu 1 carbon của nhóm carbonyl tại δC 197,5 (C-4) của vòng C trong phổ 13CNMR. Điều này cho phép kết luận hợp chất daltonkin A là một flavanone. Phổ 1H và
C-NMR của daltonkin A tương tự như hợp chất pinocembrin đã được phân lập từ

13

loài Dalbergia odorifera, ngoại trừ sự thay thế một proton thơm H-8 trong hợp chất
pinocembrin bởi một nhóm carboxyethyl (CH2CH2COOH) (H-9 [δH 2,86, t, 8,0
Hz]/C-9 [δC 18,7], H-10 [δH 2,49, t, 8,0 Hz]/C-10 [δC 34,1] và C-11 [δC 177,7]).

Hình 3.4. Phổ 1H-NMR của hợp chất daltonkin A
9


Hình 3.5. Phổ 13C-NMR của hợp chất daltonkin A


Hình 3.6. Phổ DEPT của hợp chất daltonkin A
Mạch nhánh carboxyethyl được chứng minh thông qua các tương quan giữa
proton methylene H-9 và H-10 trong phổ COSY, cũng như các tương quan giữa
proton H-9 và H-10 với carbon C-11 của nhóm carbonyl trong phổ (HMBC).
10


Hình 3.7. Phổ COSY của hợp chất daltonkin A

Hình 3.8. Phổ HMBC của hợp chất daltonkin A

Thêm vào đó, các tương quan của proton H-9 với các carbon C-7, C-8 và C-8a
trong phổ HMBC cho phép xác định nhóm carboxyethyl gắn vào vị trí C-8 của vòng A.
Bảng 3.2. Số liệu phổ 1H-NMR và 13C-NMR của hợp chất daltonkin A
Vị trí
2
3

daltonkin A (*)
δH (ppm) (J , Hz)

δC (ppm)

5,47, dd, 13,0; 3,0

80,5, d

2,80, dd, 17,0; 3,0, H-3eq
3,11, dd, 17,0; 13,0, H-3ax


44,3, t

4

197,5, s

4a

103,3, s

5

162,8, s

6

6,02, s

95,6, d

7

166,1, s

8

108,5, s

8a


162,8, s

9

2,86, t, 8,0

18,7, t

10

2,49, t, 8,0

34,1, t

11

177,7, s

9'
10'
11'
1'

140,5, s

2',6'

7,52, d, 7,5

127,3, d


4'

7,39, t, 7,5

129,6, d

3',5'

7,44, d, 7,5

129,7, d

(*)1H-NMR (500 MHz, methanol-d4); 13C-NMR (125 MHz, methanol-d4)

11


Các nghiên cứu trước đây cho thấy các flavanone cấu hình 2S trên phổ CD
(lưỡng sắc vòng - circular dichroism) thường có hiệu ứng Cotton dương trong vùng
gần 330 nm (n–*) và hiệu ứng Cotton âm ở vùng 270–290 nm.
Phổ CD (c 0,4, MeOH) của hợp chất daltonkin A (hình 3.9) cho thấy có hiệu
ứng Cotton dương tại 330 + 2,10 (n–*) và hiệu ứng Cotton âm tại 288 – 10,43 (–
* ). Như vậy, hợp chất flavanone daltonkin A có cấu hình 2S.

Hình 3.9. Phổ CD của hợp chất daltonkin A
Qua phân tích tổng hợp các dữ liệu phổ trên cho phép xác định hợp chất
daltonkin A là (2S)-8-carboxyethylpinocembrin, đây là một hợp chất mới lần đầu tiên
phân lập từ thiên nhiên.


Hình 3.10. Cấu trúc hóa học của hợp chất daltonkin A

Hình 3.11. Các tương tác HMBC (H→C) và COSY (H→H) của hợp chất daltonkin A

12


3.2.2. Xác định cấu trúc hợp chất mới daltonkin B
Hợp chất daltonkin B được phân lập dưới dạng chất bột vô định hình màu
trắng. Phổ hồng ngoại (IR) của hợp chất daltonkin B xuất hiện các cực đại hấp thụ
đặc trưng cho nhóm hydroxyl OH (νmax 3369 cm-1) và nhóm carbonyl C=O (νmax 1751
cm-1) và liên kết C=C (benzene) (νmax, 1751, 1676, 1575 cm-1). Phổ tử ngoại UV tương
tự hợp chất daltonkin A cũng xuất hiện các đỉnh đặc trưng cho nối đôi liên hợp ở UV
(MeOH) λmax nm (logε): 297 nm.
Phổ khối phân giải cao (HR-ESI-MS) của hợp chất daltonkin B cho pic ion giả
phân tử ở m/z = 415,1014 [M – H]– (tính toán là 415,1024). Công thức phân tử của
hợp chất daltonkin B là C21H19O9.

Hình 3.12. Phổ khối phân giải cao HR-ESI-MS của hợp chất daltonkin B
Tương tự như hợp chất daltonkin A, các tín hiệu carbon của hợp chất này đặc
trưng cho một khung flavanone bao gồm: 1 tín hiệu của carbon methylene tại δC 44,0
(C-3), 1 tín hiệu carbon nhóm oxymethine ở vị trí δC 80,3 (C-2) và 1 tín hiệu carbon
của nhóm carbonyl tại δC 197,5 (C-4) trong phổ 13C-NMR.
Phổ 1H và

13

C-NMR của daltonkin B có các tín hiệu tương tự như của

flavanone narigenin, được phân lập từ loài Dalbergia odorifera, ngoại trừ sự thay

thế hai proton của vòng benzene (H-6 và H-8) trong hợp chất narigenin bởi tín hiệu
của hai nhóm carboxyethyl (H-9 [δH 2,85, m]/C-9 [δC 18,8], H-10 [δH 2,55, m]/C-10
[δC 34,4], và C-11 [δC 179,1]) và (H-9' [δH 2,81, m]/C-9' [δC 19,4], H-10' [δH 2,51,
13


m]/C-10' [δC 34,8] và C-11' [δC 179,2]). Các số liệu phổ 1H và 13C-NMR của hợp chất
daltonkin B được trình bày trong (bảng 3.3).

Hình 3.13. Phổ 1H-NMR của hợp chất daltonkin B

Hình 3.14. Phổ 13C-NMR của hợp chất daltonkin B
Các dữ kiện phổ 2 chiều HSQC, HMBC, COSY được sử dụng để xác định cấu
trúc khung flavanone, 2 nhóm carboxyethyl và vị trí của gắn của chúng với vòng A
của daltonkin B. Trên phổ COSY ta thấy rõ tương quan giữa các proton methylene H9/H-10 và H-9'/H-10'. Phổ HMBC khẳng định có hai nhóm carboxyethyl qua các
tương tác giữa các proton methylene H-9 và H-10 với carbonyl carbon C-11 cũng
như tương tác của proton H-9' và H-10' với carbon C-11'. Vị trí gắn kết của hai nhóm
carboxyethyl được xác định qua tương tác giữa proton H-9' với các carbon C-5, C-6
và C-7, cũng như các tương tác của proton H-9 với C-7, C-8 và C-8a trên phổ

14


HMBC. Các tương tác đó cho phép kết luận hai nhóm carboxyethyl gắn vào vị trí C-6
và C-8 của vòng A.

Hình 3.15. Phổ COSY của hợp chất daltonkin B

Hình 3.16. Phổ HMBC của hợp chất daltonkin B


Bảng 3.3. Số liệu phổ 1H-NMR và 13C-NMR của hợp chất daltonkin B
Vị trí
2
3
4
4a
5
6
7
8
8a
9
10
11
9'
10'
11'
1'
2',6'
4'
3',5'

daltonkin B (*)
δH (ppm) (J , Hz)
5,39, dd, 13,0, 3,0
2,79, dd, 17,0, 3,0, H-3eq
3,13, dd, 17,0, 13,0, H-3ax

2,85, m
2,55, m

2,81, m
2,51, m

7,36, d, 8,5
6,85, d, 8,5

1

δC (ppm)
80,3, d
44,0, t
198,6, s
103,4, s
159,8, s
109,0, s
163,9, s
108,3, s
161,1, s
18,8, t
34,4, t
179,1, s
19,4, t
34,8, t
179,2, s
131,4, s
128,8, d
158,9, s
116,4, d

(*) H-NMR (500 MHz, methanol-d4); 13C-NMR (125 MHz, methanol-d4)


15


Tương tự daltonkin A, hợp chất daltonkin B được xác định có cấu hình 2S.
Như vậy, cấu trúc của hợp chất mới daltonkin B được xác định.
Hợp chất dicarboxyethylflavanone mới này có tên gọi là (2S)-6,8dicarboxyethylnaringenin, lần đầu được phân lập trong tự nhiên.

Hình 3.17. Cấu trúc hóa học của hợp chất daltonkin B

Hình 3.18. Các tương tác HMBC (H→C) và COSY (H→H) của hợp chất daltonkin B

3.2. Đánh giá tác dụng sinh học
3.2.1. Khảo sát hoạt tính kháng khuẩn
Các

hợp

chất

pinocembrin,

naringenin



3'-hydroxy-2,4,5-

trimethoxydalbergiquinol phân lập từ lõi gỗ loài Sưa (Dalbergia tonkinensis Prain)
được thử nghiệm hoạt tính kháng vi sinh vật kiểm định trên một số chủng. Kết quả

(bảng 3.4) cho thấy hợp chất pinocembrin biểu hiện hoạt tính ức chế mạnh đối với hai
chủng nấm mốc và Fusarium oxyporum và Aspergillus niger với nồng độ ức chế tối
thiểu MIC = 50 µg/mL. Loài nấm Fusarium oxyporum là loại gây bệnh thối cổ rễ. Một
trong các bệnh gây hại nhiều đến mùa màng nước ta.
Còn đối với các chủng nấm men Saccharomyces cerevisiae, Candida albicans
và vi khuẩn Gram dương Staphylococcus aureus thì hợp chất pinocembrin cho thấy
khả năng ức chế trung bình với giá trị MIC=100µg/mL. Hợp chất naringenin có tác
dụng ức chế vửa phải đối với chủng vi khuẩn Gram dương Staphylococcus aureus và
chủng nấm mốc Aspergillus niger. Trong khi đó hợp chất 3'-hydroxy-2,4,5-

16


trimethoxydalbergiquinol không thể hiện hoạt tính kháng vi sinh vật trên các chủng
thử nghiệm.
Bảng 3.4. Hoạt tính kháng vi sinh vật kiểm định của các hợp chất phân lập từ
loài Sưa (Dalbergia tonkinensis Prain)
Hoạt tính kháng khuẩn (MIC: µg/mL)
Vi khuẩn
Nấm mốc (sợi)

Hợp chất

Nấm men

Bacillus
subtillis

Staphylococcus
aureus


Aspergillus
niger

Fusarium
oxyporum

Saccharomyces
cerevisiae

Candida
albicans

(-)
(-)
(-)

100
100
(-)

50
100
(-)

50
(-)
(-)

100

(-)
(-)

100
(-)
(-)

pinocembrin
naringenin
3'-hydroxy2,4,5trimethoxydalbe
rgiquinol
(-): IC50 ≥ 200 µg/mL

3.2.2. Tác dụng ức chế enzyme -glucosidase
 Cao chiết methanol của lõi gỗ, vỏ và lá của loài Sưa (Dalbergia tonkinensis
Prain) đã được đánh giá hoạt tính ức chế enzyme -glucosidase, trong đó
cao chiết methanol của lõi gỗ có tác dụng mạnh nhất với giá trị IC50 là 0,17
mg/mL, so với chất đối chứng dương là acabose (IC50 là 1,21 mg/mL).

100

100

80

80

60
40
20


60
40
20

0

0
0

IC50B
(mg/mL)
1.6

1.6

1.4

1.4

1.2

1.2

EC50 (mg/mL)

A

1
0


2
1

3

2

1.0
0.8

0.6
Lõi gỗ
Heartwood
Heartwood
Vỏ bark
Trunk
Trunk bark 0.4

Leaves
Leaves
Acarbose
0.2
Acarbose
Acarbose
0.0
4
5
3
4

5

(mg/mL)
Concentration (mg/mL)
NồngConcentration
độ (mg/mL)

B

EC50 (mg/mL)

A

aGI (%)

aGI (%)

Ức
chế
(%)

1.25

1.0
0.8

0.78
0.57

1.25


0.78

0.57

0.6
0.4
0.17

0.17

0.2
0.0
Heartwood Bark
Leaves Acarbose
Heartwood Bark
Leaves Acarbose

LõiPart
gỗ used
Vỏ

Part used

Acarbose

Hình 3.19. Khả năng ức chế α-glucosidase của các bộ phận loài
Sưa (Dalbergia tonkinensis Prain)
 Đánh giá tác dụng ức chế enzyme -glucosidase của các phân đoạn cao
chiết methanol lõi gỗ Sưa (Dalbergia tonkinensis Prain)

17


Bảng 3.5. Hoạt tính ức chế α-glucosidase của các cao phân đoạn
từ lõi gỗ Sưa (Dalbergia tonkinensis Prain)
Ức chế enzyme α-glucosidase

Mẫu

IC50 (mg/mL)

ức chế (%)*

HDT

(cao methanol)

0,172±0,011

98±3,2

HDT-1

(cao phân đoạn hexane)

1,712±0,210

73±4,1

HDT-2


(cao phân đoạn

0,124±0,003

90±2,5

0,069±0,001

95±3,7

0,513±0,051

82±2,3

1,357

62

dichloromethane )
(cao phân đoạn ethyl

HDT-3

acetate )
HDT-4

(cao phân đoạn nước)

Acarbose


(đối chứng dương)

(*): Khả năng ức chế của acarbose và các phân đoạn được xác định trong
khoảng nồng độ 0,1-5 mg/mL.
Từ bảng 3.5 cho thấy cao chiết ethyl acetate (HDT-3) có hoạt tính ức chế mạnh
nhất tương ứng 95% và giá trị IC50 là 0,069 mg/mL. Dựa trên đánh giá sắc ký lớp
mỏng. Chúng tôi chọn cao chiết phân đoạn này và cao chiết nước để phân lập các hợp
chất theo định hướng tác dụng sinh học. Kết quả từ hai phân đoạn 3.1.2 và 4.3.3, 02
hợp chất sativanone và formononetin đã được phân lập. Tác dụng ức chế enzyme αglucosidase của 2 hợp chất này so với acarbose được thể hiện trong hình 3.20.
B

C

80

80

80
60

80

aGI (%)

100

80
60
40


4.3.6

4.3.5

0

4.3.4

20

Components separated from HDT-4.3

Các phân đoạn HDT-4.3

Compound
Acarbose1 (purified HDT-3.1.2)
Compound 2 (purified HDT-4.3.3)
Acarbose (positive control)

0

1

2

3

4


5

Concentration (mg/mL)

Nồng độ (mg/mL)

Hình 3.20. Tác dụng ức chế α-glucosidase của các cao phân đoạn và
hợp chất phân lập từ lõi gỗ loài Sưa (Dalbergia tonkinensis Prain)
18

4.7

4.8

4.5

4.1

3.1.7

3.1.8

Sativanone
Formononetin

40

0
4.3.3


3.1.5

60

20

4.3.2

3.1.6

3.1.3

Các phân đoạnEHDT-3.1

100

4.3.1

aGI (%)

Sub-fractions
of HDT-4
Các
phân đoạn
HDT-4

Components separated from HDT-3.1

D


Ức
chế
(%)

3.1.4

3.1.1

Sub-fractions of HDT-3
Các
phân đoạn HDT-3

3.1.2

3.12

3.9
3.10
3.11

3.7

3.8

3.5

3.6

0


3.3

0
3.4

20

0
3.1

20

4.6

40

20

4.3

40

4.4

40

60

4.2


60

aGI (%)

100

aGI (%)

100

3.2

Ức
chế
(%)

aGI (%)

A
100


Từ hình 3.20, thấy rằng khả năng ức chế α-glucosidase của 2 hợp chất
sativanone và formononetin mạnh hơn acarbose (chất đối chứng dương) với tỉ lệ ức
chế và giá trị IC50 lần lượt (90%, 0,23 mg/mL), (98%, 0,059 mg/mL) so với acarbose
(62%, 1,321 mg/mL). Đây là 2 hợp chất lần đầu được phân lập từ lõi gỗ loài Sưa
(Dalbergia tonkinensis Prain).
 Kết quả thử hoạt tính chức chế enzyme α-glucosidase của 2 hợp chất phân
lập từ lõi gỗ Sưa (Dalbergia tonkinensis Prain) trên các enzyme αglucosidase từ các nguồn khác nhau
Bảng 3.6. Hoạt tính ức chế enzyme α-glucosidase của sativanone và formononetin so

với acarbose trên 4 nguồn enzyme α-glucosidase khác nhau
STT

Nguồn enzyme

Khả năng ức chế tính theo IC50
(mg/mL)
Sativanone

Formononetin

Acarbose

1

Nấm men

0,23±0,012

0,06±0,002

1,321±0,048

2

Chuột

0,37±0,022

0,23±0,037


0,121±0,001

3

Vi khuẩn

0,07±0,001

0,03±0,002

0,001±0,000

4

Gạo

0,81±0,023

0,98±0,029

0,031±0,005

(-) không có tác dụng; tất cả thử nghiệm được tiến hành 3 lần
Nhận xét: trong thí nghiệm này enzyme α-glucosidase từ nấm men, từ chuột,
từ vi khuẩn và từ gạo đã được sử dụng để đánh giá tác dụng chống đái tháo đường in
vitro của các hoạt chất phân lập từ lõi gỗ cây Sưa. Kết quả cho thấy 2 hợp chất này
đều có khả năng ức chế enzyme α-glucosidase từ 4 nguồn enzyme α-glucosidase của
nấm men, chuột, vi khẩn và gạo.
Enzyme α-glucosidase từ nấm men đã được sử dụng làm enzyme đích để sàng

lọc chống đái tháo đường trong thử nghiệm in vitro đã được báo cáo. Tuy nhiên, αglucosidase từ chuột được cho là nguồn enzyme tốt hơn để đánh giá các chất ức chế
mạnh vì enzyme này tương tư với enzyme của người. Trong nghiên cứu này, cả
sativanone và formononetin đã chứng minh khả năng sự ức chế enzyme αglucosidase mạnh hơn so với acarbose, kết quả cũng cho thấy các tác dụng tương
đương của chúng đối với acarbose trên enzyme α-glucosidase của chuột.

19


Bảng 3.7. Hoạt tính ức chế enzyme α-glucosidase trên chuột của
các cao chiết các bộ phận và 2 hợp chất từ loài Sưa
(Dalbergia tonkinensis Prain)
Khả năng ức chế enzyme α-glucosidase trên chuột
Thành phần
IC50 (mg/mL )

Cao chiết methanol lõi gỗ
Cao chiết methanol vỏ
Cao chiết methanol lá
Phân đoạn EtOAc (HDT-3)
HDT-3.1
HDT-3.1.2
Sativanone
Cao nước (HDT-4)
HDT-4.3
HDT-4.3.3
Fomononetin
Acarbose

1,72±0,116
2,91±0,289

2,78±0,173
1,31±0,057
1,13±0,057
0,92±0,023

Ức chế cực đại (%)
61±3,46

51±4,62
54±4,60
68±5,77
75±5,20
77±5,18

0,357±0,006

91±4,61

1,43±0,115

67±2,89

0,87±0,035

78±4,61

0,55±0,012

84±6,42


0,251±0,006

94±5,11

0,119±0,005

93±2,50

Kết quả bảng 3.7 cho thấy rằng các cao chiết tổng methanol của lõi gỗ và 2 hợp
chất sativanone và formononetin từ loài Sưa (Dalbergia tonkinensis Prain) là các tác
nhân ức chế enzyme α-glucosidase mạnh và có tiềm năng phát triển thành chế phẩm
hỗ trợ điều trị bệnh đái tháo đường trong tương lai.
20


KẾT LUẬN VÀ KIẾN NGHỊ

1. Về kết quả nghiên cứu thực vật
- Các đặc điểm vi phẫu của lá, thân và bột lõi thân của cây Sưa đã được miêu
tả cụ thể, góp phần tiêu chuẩn hóa loài cây gỗ quý này.
- Đã xác định trình tự 03 vùng gen lục lạp rbcL, rpoB và rpoC của 2 mẫu Sưa
và so sánh khoảng cách di truyền của từng vùng gen đó với 05 loài
Dalbergia khác đã công bố trình tự trên GenBank.
- 03 vùng gen lục lạp rbcL, rpoB và rpoC có khả năng phân biệt các loài
thuộc chi Sưa (Dalbergia) với tỉ lệ tương ứng lần lượt là 99%, 98% và 97%.
- Trình tự 03 vùng gen rbcL, rpoB và rpoC của loài Sưa (Dalbergia
tonkinensis Prain) ở Việt Nam đã được đăng ký trên ngân hàng gen với số
hiệu lần lượt là KY283103, KY287755 và KY287750.
2. Về mặt hóa học
- Lần đầu tiên từ lõi gỗ Sưa (Dalbergia tonkinensis Prain) đã phân lập và xác định

cấu trúc hóa học của 18 hợp chất flavonoid: pinocembrin, naringenin, 3'-hydroxy2,4,5-trimethoxydalbergiquinol, medicarpin, buteaspermanol, daltonkin A [(2S)8-carboxyethylpinocembrin], daltonkin B [(2S)-2,6-dicarboxyethylnaringenin],
dalbergin, isoliquiritigenin, 7,3',5'-trihydroxyflavanone, vestitone, calycosin, 4',7dihydroxy-3-methoxyflavone, liquiritigenin, sativanone, 3'-O-methylviolanone,
7,3',4'-trihydroxyaurone và formononetin.
- 02 hợp chất daltonkin A và daltonkin B là các hợp chất mono- và dicarboxyethylflavanone mới.
3. Tác dụng sinh học của các cao chiết và hợp chất phân lập được
- Tác dụng kháng khuẩn
Hợp chất pinocembrin biểu hiện hoạt tính ức chế trên nấm sợi (với nồng độ
ức chế tối thiểu [MIC] là 50 µg/mL), trong khi đó đối với nấm men và vi khuẩn
Gram dương staphylococcus aureus thì hợp chất pinocembrin và naringenin cho
thấy khả năng ức chế trung bình với giá trị MIC là 100 µg/mL.
- Tác dụng ức chế enzyme α-glucosidase
21


- Cao chiết methanol của lõi gỗ, vỏ và lá của loài Sưa (Dalbergia
tonkinensis Prain) đã được đánh giá hoạt tính ức chế enzyme glucosidase, trong đó cao chiết methanol của lõi gỗ có tác dụng mạnh nhất
với giá trị IC50 là 0,17 mg/mL, so với chất đối chứng dương là acabose
(IC50 là 1,21 mg/mL).
- Phân lập theo định hướng ức chế enzyme α-glucosidase đã xác định 2 hợp
chất sativanone và formononetin có khả năng mạnh hơn acarbose (chất đối
chứng dương) với tỉ lệ ức chế và giá trị IC50 lần lượt của sativanone (90%,
0,23 mg/mL) và của formononetin (98%, 0,06 mg/mL) so với acarbose
(62%, 1,321 mg/mL).
- Cao chiết methanol từ lõi gỗ Sưa (HDT) có tác dụng ức chế enzyme αglucosidase trên chuột mạnh hơn của vỏ và lá với IC50 là 1,72 mg/ mL.
- Sativanone và formononetin có tác dụng ức chế enzyme α-glucosidase của
chuột với tỉ lệ ức chế và giá trị IC50 lần lượt (91%, 0,357 mg/mL), (94%,
0,251 mg/mL).

22



KIẾN NGHỊ
Các kết quả nghiên cứu của chúng tôi trên loài Sưa (Dalbergia tonkinensis
Prain), đã dẫn đến việc phân lập và xác định nhiều hợp chất có cấu trúc lý thú và có
hoạt tính ức chế mạnh đối với enzyme α-glucosidase cùng với các dẫn liệu phong phú
về mặt thực vật (vi phẫu và DNA).
- Nghiên cứu thành phần hóa học và tác dụng sinh học của các bộ phận gỗ,
rễ và lá của loài Sưa (Dalbergia tonkinensis Prain) nhằm tạo dữ liệu đầy đủ
và hệ thống của loài Sưa ở Việt Nam.
- Nghiên cứu sâu hơn về tác dụng ức chế enzyme α-glucosidase và khả năng
điều trị bệnh đái tháo đường của 02 hoạt chất sativanone, formononetin và
cao chiết methanol của lõi gỗ loài Sưa (Dalbergia tonkinensis Prain).

23


×