Tải bản đầy đủ (.docx) (22 trang)

Thiết kế mạch điện tạo xung vuông và xung tam giác

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1013.07 KB, 22 trang )

ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC BÁCH KHOA
KHOA ĐIỆN – ĐIỆN TỬ
BỘ MÔN ĐIỆN TỬ
---------------o0o---------------

ĐỒ ÁN MÔN HỌC
TIẾN HÀNH THỰC NGHIỆM

MẠCH TẠO XUNG VUÔNG VÀ TAM GIÁC

GVHD: abc

TP. HỒ CHÍ MINH, THÁNG 03 NĂM 2019


Lời nói đầu

GVHD: ABC

LỜI NÓI ĐẦU
Mạch tạo xung là một mạch điện tử cơ bản và quan trọng trong kĩ thuật điện tử cũng nhu
trong sản xuất công nghiệp, là một mạch điên không thể thiếu trong sản xuất máy thu hình,
đài FM...
Mạch tạo xung cũng là mạch điện cơ bản thuờng đuợc giao cho sinh viên thiết kế, trong các
môn thực hành cũng nhu đồ án ở các truờng đại học, Cao đẳng giúp sinh viên lắm đuợc những
buớc cơ bản trong thiết kế một mạch điện tử thực tê và qua đó cũng lãm cho sinh viên hiểu rõ
hơn nguyên lý hoạt động của các mạch điện tử nói chung mạch tạo xung nói riêng.
Sau đây là bài báo cáo môn học thiết kế mạch tuơng tự của nhóm sinh viên chúng em: Thiết
kế mạch điện tạo xung vuông và xung tam giác.
Chúng em xin chân thành cảm ơn các thầy khoa Điện tử - Viễn thông, VIỆN ĐẠI HỌC MỞ


HÀ NỘI đã tận tình giúp đỡ chúng em hoàn thành môn học. Trong quá trình thiết kế và trình
bầy chúng em không tránh khỏi những khó khăn, sai sót vì vậy mong các thầy chỉ bảo, giúp
đỡ chúng em để chúng em có kết quả tốt hơn trong môn học.

Tp. Hồ Chí Minh, ngày tháng

năm 2019

.

Sinh viên

1


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

TÓM TẮT ĐỒ ÁN
Đồ án này trình bày về …

2


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

MỤC LỤC


3


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

1. GIỚI THIỆU CHUNG VỀ MẠCH DAO ĐỘNG TẠO XUNG
VUÔNG VÀ XUNG TAM GIÁC SỬ DỤNG IC 555
1.1 Mạch dao động
Mạch dao động là mạch sử dụng các linh kiện để phát ra tín hiệu xung dao động cụ
thể để điều khiển các thiết bị. Có nhiều dạng tín hiệu xung đuợc phát ra từ mạch dao động,
nhu xung sine, xung vuông, xung tam giác...

1.2 Mạch tạo xung vuông và xung tam giác
Có nhiều cách để tạo ra xung vuông và xung tam giác: nhu thiết kế mạch dùng
transistor, thiết kế mạch dùng Opamp... để tạo ra xung vuông. Thiết kế mạch tích phân để tạo
ra xung tam giác...
Ở đây chúng ta chọn thiết kế mạch dao động tạo xung vuông và xung tam giác dùng
ICNE555.
Theo như sơ đồ khối sau đây:

Hình 1–1 Sơ đồ khối mạch tạo xung vuông

1


Đồ án môn học – Tiến hành thực nghiệm


GVHD: ABC

Dựa vào sơ đô khối ta có thê nhận ra rằng để tạo đuợc xung vuông ta chỉ cần IC 555
và một số linh kiện phổ biến như R, C.
Chú ý: ở đây ta tạo đồng thời xung tam giác lấy ra ở chân số 6.

1.3 Lý do chọn mạch tạo xung vuông sử dụng IC NE555 N
IC NE555 N rất phổ biến, dễ tìm.
Mạch tạo xung dùng IC này rất dễ làm, dễ giải thích, dễ hiểu nguyên lý làm việc của
nó.

1.4 Nguyên lý hoạt động của IC NE555 N

Hình 1–2 IC NE555 N

IC NE555 N gồm có 8 chân.



Chân số l (GND): cho nối masse để lấy dòng cấp cho IC.
Chân số 2(TRIGGER): Đây là chân đầu vào thấp hơn điện áp so sánh và được
dùng như 1 chân chốt hay ngõ vào của 1 tần so áp. Mạch so áp dùng các



transistor PNP. Mức áp chuẩn là .
Chân số 3(OUTPUT): ngõ ra, trạng thái ngõ ra chỉ xác định theo mức volt cao




(gần bằng mức áp chân 8) và thấp (gần bằng mức áp chân 1).
Chân số 4 (RESET): dùng lập định mức trạng thái ra. Khi chân số 4 nối masse
thì ngõ ra ở mức thấp, còn khi chân 4 nối vào mức áp cao thì trạng thái ngõ ra



tùy theo mức áp trên chân 2 và 6.
Chân số 5 (CONTROL VOLTAGE): dùng làm thay đổi mức áp chuẩn trong
IC 555 theo các mức biến áp ngoài hay dùng các điện trở ngoài nối masse. Tuy
nhiên trong hầu hết các mạch ứng dụng chân số 5 nối masse qua 1 tụ từ 0.01



µF  0.1 µF, các tụ có tác dụng lọc bỏ nhiễu, giữ cho mức áp chuẩn ổn định.
Chân số 6 (THRESHOLD): ngõ vào của một tầng so áp khác, mạch so sánh
dùng các transistor NPN mức chuẩn là .
2


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC



Chân số 7 (DISCHAGER): có thể xem như một khóa điện cho 1 mạch R-C lúc



IC 555 dùng như 1 tầng dao động.

Chân số 8 (Vcc): cấp nguồn nuôi Vcc để cấp điện cho IC. Nguồn nuôi cấp cho
IC 555 trong khoảng +5V  +15V và mức tối đa là +18 V.

Cấu tạo bên trong và nguyên tắc hoạt động của IC 555:
a. Cấu tạo:

Hình 1–3 Sơ đồ khối IC 555

Về bản chất thì IC 555 là một bộ mạch kết hợp giữa 2 con Op-amp, 3 điện trở, 1 con
transistor, và một bộ Flip flop A (ở đây dùng FFRS).




2 Op-amp có tác dụng so sánh điện áp.
Transistor để xả điện.
Bên trong gồm 3 điện trở mắc nối tiếp chia điện áp V cc thành 3 phần, cấu tạo
này tạo nên điện áp chuẩn. Điện áp nối vào chân âm của Op-amp 1 và điện áp
nối vào chân âm của Op-amp 2. Khi điện áp ở chân 2 nhỏ hơn , chân S = [1]
và Flip-flop đuợc kích. Khi điện áp ở chân 6 lớn hơn 2/3 Vcc, chân R của Flip
flop = [1] và Flip flop đuợc reset.

3


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Bảng chức năng các chân của IC 555


Bảng các đặc tính khuyên dùng của IC 555
b. Giải thích sự hoạt động:

Hình 1–4 Hoạt động của IC 555

Ký hiệu 0 là mức thấp (L) bằng 0V, 1 là mức cao (H) gần bằng V cc. Mạch FF là
loại RS Flip flop.
Khi S = [1] thì Q = [1]

và = [0]

Sau đó, khi S = [0] thì Q = [1] và

= [0]
4


Đồ án môn học – Tiến hành thực nghiệm
Khi R = [1] thì Q = [1]

GVHD: ABC

và = [0]

Tóm lại: khi S = [1] thì Q = [1] và khi R =[1] thì Q = [0], transistor mở dẫn, cực C
nối đất, cho nên điện áp không nạp vào tụ C, điện áp ở chân 6 không vuợt quá V 2,
do lối ra của Op-amp 2 ở mức 0, Flip flop không reset.
Khi mới đóng mạch, tụ C nạp qua Ra, Rb, với thời hằng (Ra + Rb)C.


-

Tụ c nạp từ điện áp 0 V  :
Lúc này V+1 (V+ của Op-amp 1) > V-1. Do đó O1 ( ngõ ra của Op-amp 1) có mức

logic 1 (H).
V+2 < V-2 ( V-2=) do đó O2 = 0 (L).
R = 0, S = 1  Q = 1, = 0.
Q =1  ngõ ra =1.
= 0  transistor hồi tiếp không dẫn.
 Tụ
C tiếp tục nạp từ điện áp  :
Lúc
này, V+1 < V-l. Do đó O1 = 0.
V+2 < V-2. Do đó O2 = 1.
R = 0, S = 0  Q, sẽ giữ trạng thái truớc đó (Q = l, =0).
Transistor vẫn không dẫn.
 Tụ C nạp qua ngưỡng :
Lúc này, V+l < V-l. Do đó O1 = 0.
V+2 > V-2 do đó O2 = 1.
Q = 0  ngõ ra đảo trạng thái = 0.
= 1  transistor dẫn điện áp trên chân 7 xuống 0V.
Tụ C xả qua Rb. Với thời hằng Rb.C
Điện
áp trên tụ C giảm xuống do tụ xả, làm cho điện áp tụ C nhảy xuống
duới .
Tụ C tiếp tục xả từ điện áp  :
Lúc này, V+l < V-l. Do đó O1 = 0.
V+2 < V-2. Do đó O2 = 0.
R = 0, S = 0  Q, sẽ giữ trạng thái truớc đó (Q = 0, = 1).

Transistor vẫn dẫn.
 Tụ C xả qua nguỡng :
Lúc này V+l > V-1. Do đó O1 = 1.
V+2 < V-2 (V-2 = ). Do đó O2 = 0,
R = 0, S = 1  Q=1 , = 0.
Q = 1  ngõ ra = 1.
= 0  transistor không dẫn  chân 7 không = 0 V nữa và tụ C lại được nạp


-

điện

với điện áp ban đầu là .

Quá trình lại lặp lại...
Nhận xét:

5


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

-

Trong quá trình hoạt động bình thường của IC 555, điện áp trên tụ C chỉ dao

-


động quanh điện áp  .
Khi nạp điện, tụ C nạp điện với điện áp ban đầu là , và kết thúc nạp ở thời điểm

-

điện áp trên C bằng , với thời hằng là (Ra+Rb)C.
Khi xả điện, tụ C xả điện với điện áp ban đầu là , và kết thúc xả ở thời điểm điện

-

áp trên C bằng , với thời hằng là Rb.C
Thời gian mức 1 ở ngõ ra chính là thời gian nạp điện, mức 0 là xả điện.

Đồ thị điện áp và dòng điện ngõ ra
Cơ sở lý thuyết và phương pháp tính các giá trị trong mạch:
-

Để tính chu kì dao động T của 1 mạch dao động tạo xung ta cần phải tính được

-

thời gian ngưng dẫn của tụ khi nạp và xả.
Ta có sơ đồ mạch đơn giản để tính thời gian ngưng dẫn khi tụ nạp xả.

Hình 1–5 Mạch tương đương đơn giản

Từ mạch tương đương suy ra:
6



Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Xác định t để vB = 0.7V:

Thường Vcc >> 0.7, nên: t ≈ = 0,693 ≈ 0,7


Tính thời gian ngưng dẫn của T 2, chính là thời gian T1 bắt đầu dẫn đến khi T1
ngưng dẫn. Tương tự, thời gian ngưng dẫn của T2 là: t ≈ = 0,693 ≈ 0,7 .
Vậy chu kỳ dao động của mạch được tính:

Giả sử RB1 = RB2 = R; C1 = C2 = C thì chu kỳ dao động của mạch trở thành:

Và tần số dao động:
Thông thường trong mạch dao động ta có công thức tính thời gian ngưng dẫn
của transistor là:
Thời gian ngưng dẫn ở mức áp cao cũng là lúc tụ C2 nạp dòng qua R1 + R2:

Thời gian ngưng dẫn ở mức áp thấp cũng là lúc tụ C2 xả dòng qua R2:

Như vậy chu kỳ của tín hiệu sẽ là: T = Tn +Tx

2. THIẾT KẾ MẠCH THỰC TẾ
Trong bài toán yêu cầu tạo xung có tần số biến đổi từ 500 Hz đến l kHz, như vậy ta
có 3 phương án thực hiện:

7



Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

+ Điều chỉnh tần số bằng cách thay đổi điện trở R1, R2.
+ Điều chỉnh tần số bằng cách thay đổi tụ điện C2.
+ Điều chỉnh tần số bằng cách thay đổi đồng thời tụ điện và điện trở.
 Để đơn giản, chúng ta điều chỉnh tần số bằng cách thay đổi điện trở R 1, R2 (dùng
biến trở).
Sơ đồ thiết kế mạch:

Ta dùng thêm diode D 1 để có thể điều chỉnh xung vuông tại chân OUT(3) là đối xứng, sở dĩ
diode này có tác dụng như vậy là vì lúc tụ nạp thì dòng chi qua R 1 nhờ diode D1. Khi đó, thời
gian nạp là Tn = tl = ln2 R1C2. Và khi tụ xả cũng vậy, nhờ có D1 mà dòng xả chi qua R2 do
phân cực nghịch diode và thời gian xả là T x = t2 = ln2 R2C2 . Để thu được Duty cycle =50% ta
chỉ cần điều chỉnh biến trở R1 = R2 sẽ thu được Tn = Tx

8


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Hình Quá trình nạp và xả cho tụ C2
Lúc này, theo sơ đồ thiết kế, các thông số của mạch được tính là:
Thời gian nạp và xả của tụ:
Tn = ln2 R1C2 và Tx = ln2 R2C2

Tần số mạch dao động:
=
Độ rộng xung (Duty cycle):
D=
Muốn thay đối tần số (giữ nguyên độ rộng xung thì R 1 và R2 phải được thay đổi cùng
một lúc (cùng tăng hoặc cùng giảm một giá trị như nhau).
Muốn thay đổi độ rộng xung (giữ nguyên tần số) thì R 1 và R2 phải được thay đối
cùng lúc nhưng có chiều ngược lại (khi tăng R1 thì phải giảm R2 cùng một giá trị như nhau).
Muốn xung đối xứng tương ứng với độ rộng xung 50% ta sẽ điều chỉnh R1 = R2
Như vậy mạch được thiết kế như sau:

9


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Hình 2–6 Mạch tạo dao động xung vuông dung IC 555

 THIẾT KẾ VÀ THỰC HIỆN PHẦN MỀM
 Sử dụng phần mềm proteus để mô phỏng sự ho ạt động và s ơ
đồ layout PCB
Ta tiến hành mô phỏng mạch tạo xung với các yêu cầu đặt ra như sau để kiểm tra hoạt động
của mạch:
Ngõ vào : Nguồn DC 15V
Ngõ ra : - Xung vuông ở chân số 3 và xung tam giác ở chân số 6 của IC 555
-

Tần số và độ rộng có thể thay đổi nhờ vào thay đổi điện trở ( ở đây ta khảo sát


-

với độ rộng xung 50% và tần số 500 Hz và 1kHz
Led báo điện áp ngõ ra.

Mô phỏng hoạt động
Sơ đồ khối chi tiết thiết kế:

10


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Khoảng điều chỉnh điện trở :
Chọn C2 = 10 nF thay vào công thức

Với f theo yêu cầu bài toán là thay đổi từ 500 - 1KHz
Ta được 284 kΩ < (R1 +R2) < 142 kΩ
Khoảng điều chỉnh với tổng 2 điện trở như trên sẽ cho ta thu được 500Hz < f <1kHz
Các linh kiện khác trong mạch
R3 chỉ là tải giả mắc vào chân 3 của IC 555, để mô phỏng chọn khoảng vài kΩ
Khi lấy xung răng cưa trên chân 2, 6 để làm tín hiệu thử mạch, Bạn phải chú ý đến ảnh
hưởng của mạch ngoài lên mạch định tần với R1, R2 và các tụ C1, C2, nội trở của mạch ngoài sẽ
làm thay đổi tần số của tín hiệu, Ta sẽ dùng thêm tầng khuếch đại đệm để cách ly trở kháng của
mạch thử với mạch định tần của ic 555.

R5 cũng là điện trở đệm ngõ ra của IC 555 với ngõ vào của C1585 là trán đệm

(buffer) ngõ ra, thường lắp theo kiểu cực thu chung (CC), đặc điểm của cách lắp này cho ta
trở kháng ngõ (Ri) vào rất lớn, R4 (RE) chọn sao cho trở kháng ngõ vào của nó đủ lớn để khi
11


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

ta ghép các tầng phía sau C1815 sẽ không ảnh hưởng đến các tham số của mạch ta chọn
khoảng vài trăm kΩ.
Ở đây ta chọn điện trở R1 = R2 =142kΩ để thu được tần số xung vuông ngõ ra là
500Hz và Duty cycle 50%
Chạy mô phỏng và kiểm tra kết quả so với tính toán
Sử dụng công cụ OSCILLOSCOPE để xem kết quả mô phỏng:

Hình. Chọn công cụ OSCILLOSCOPE trong proteus
Chạy mô phỏng :

Hình. Kết quả mô phỏng
12


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Dùng Cursors để kiểm tra lại độ rộng xung, ứng với thông số mạch, ta có T n =Tx = 1ms

Thông số Tn và Tx đo được

Ta thu được trên phần mềm với Tn = 1.05 ms và Tx = 1ms
Duty cycle = 51.22%
Biên độ điện áp là 14.75V
Kiểm tra tần số với công cụ COUNTER TIMER

13


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Tần số dao động thu được khi mô phỏng là 492Hz
Sai số so với tính toán lí thuyết :

Tương tự với tần số 1kHz. Ta điều chỉnh điện trở R1 =R2 = 71kΩ
Thu được kết quả:

14


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Tn = 0.525 ms Tx = 0.5ms
D=

Tần số f = 982Hz
Sai số so với tính toán lí thuyết :

15


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Sơ đồ layout PCB để thực hiện mạch in:

3. KẾT QUẢ THỰC HIỆN
Trong phần này, sinh viên mô tả:


Trình bày cách thức đo đạc, thử nghiệm
o Ghi rõ các thiết bị sử dụng và sơ đồ kết nối trong việc thử nghiệm
o Ghi rõ các phần mềm sử dụng trong việc viết và thực thi chương trình
o Ghi rõ cách bước tiến hành thử nghiệm (phần cứng và phần mềm)



Trình bày số liệu đo đạc
o Thực hiện thu thập số liệu trong nhiều trường hợp
o Ghi rõ số liệu đo đạc thu được dưới hình thức bảng biểu, đồ thị …



Giải thích và phân tích về kết quả thu được
o Cần giải thích rõ ràng số liệu thu được trên các bảng biểu, đồ thị, dạng sóng …
o Phân tích các số liệu để biết kết quả đã thực hiện là phù hợp, đạt yêu cầu


Nếu những bảng số liệu và kết quả mô phỏng quá nhiều, sinh viên có thể trình bày đưa vào
phần Phụ Lục.
Ví dụ về hình minh họa: (dùng chức năng Insert Caption để tạo liên kết cho Danh sách hình
minh họa)

Hình 5–7 Kết quả thi công

16


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

Hình 5–8 Kết quả mô phỏng

Ví dụ về Bảng số liệu
Bảng 1 Thông số hệ thống

Thông số 1

Thông số 2

Thông số 3

Thông số 4

4. KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN
4.1 Kết luận
Sinh viên tóm tắt những điều rút ra được từ kết quả đề tài, những kinh nghiệm có

được sau khi thực hiện đề tài. Ưu và khuyết điểm của kết quả nghiên cứu đề tài cũng được
trình bày trong mục này. Sinh viên cần so sánh với mục tiêu đặt ra trong chương 1.

4.2 Hướng phát triển
Sinh viên trình bày hướng phát triển và khả năng ứng dụng của đề tài

5. TÀI LIỆU THAM KHẢO
Trong mục này, sinh viên liệt kê những tài liệu đã tham khảo khi thực hiện đề tài luận
văn. Những nội dung trình bày ở mục trên có tham khảo tài liệu thì sinh viên cần ghi chú
bằng chỉ số (ví dụ [1], [2]). Chỉ số này cần tương ứng danh mục tài liệu tham khảo. Sinh viên
xem thêm hướng dẫn cách viết trích dẫn kiểu IEEE.
Ví dụ:
17


Đồ án môn học – Tiến hành thực nghiệm

GVHD: ABC

[1] Tống Văn On, “Thiết kế mạch số với VHDL & Verilog”, Nhà xuất bản Lao động Xã Hội,
2007.
[2] Altera Corp., “SDRAM Controller for Altera’s DE2/ DE1 boards”, www.altera.com

6. PHỤ LỤC
Trong phần này, sinh viên có thể trình bày:


Những kết quả nghiên cứu bổ sung mà trong phần Kết quả luận văn chưa trình bày




hết.
Phần mã nguồn chương trình, sinh viên cũng có thể trình bày trong mục này. Để ngắn



gọn, sinh viên chỉ đưa những mã nguồn chính vào phần Phụ lục.
Sơ đồ toàn mạch chi tiết

18



×