Tải bản đầy đủ (.doc) (95 trang)

ĐA THỨC MA TRẬN sự PHÂN bố GIÁ TRỊ RIÊNG, các ĐỊNH lý BIỂU DIỄN DƯƠNG và một số vấn đề LIÊN QUAN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (252.48 KB, 95 trang )







n


R
R+
C
N
K

C

R

n

n
n

R
Cn

t
t

Mt(R)


Mt(C)
St(R)
X

X α

C[z]
R[X]
R(X)

t

A≻0
||A||
P

Mt(R)

n
(X1, ..., Xn)
Xα1 ...Xαn , α = (α , ..., α ) ∈ Nn
1

n

1

n

n


X = (X1, ..., Xn)
R[X]

Mt(R[X])
St(R[X])
T
A
A<0

R
C

t

R[X]
t

Mt(R[X])

A ∈ Mt(R[X])

A
A
A

A2
A



K[X] := K[X1, · · · , Xn]
K

Mt(K), Mt(K[X])
K K[X]

nX1, · · · , Xn
t

A ∈ Mt(K[X])

Mt(K)

n

X1, · · · , Xn

d
|

X

α

A=

AαX ,
α|=0

d


n

α

α1

α = (α1, · · · , αn) ∈ N |α| := α1 + · · · + αn X := X1

α

· · · Xn

n

Aα ∈ Mt(K)

A

Mt(K[X])

d

P (z) = Adz + · · · + A1z + A0,
z

Ai ∈ Mt(C), ∀i = 0, ..., d

It


Mt(C)

A ∈ Mt(C)

λIt − A

P (z)

Ad 6= 0

d
t

x∈C

λ∈C

x

P (z)

Ad = It P (z)

P (λ)x = 0λ
P (z)

λ
P (z)
P (z)
P


(z)

(P (z))
σ(P (z))


P (z) = zIt − A
A ∈ Mt(C)
A

P (z)

t

x∈C

λ

P (λ)x = 0

d=1

Ax = λBx.
A1 = It
Ax = λx.

d=2

d


X
i=0

d

Ai

u(t) = x0e

i

u(t) = 0.

dt
λt
0

x0, λ0

t


d

P (z) = Adz + · · · + A1z + A0

m

M

m

≤ |λ| ≤ M, ∀ λ ∈ σ(P (z)),
P (z)

t=1

d

Ad

A

zP

z

1
P (z)

0

Ad
λ
t>1

P (z)

t=1
f ∈ R[X] := R[X1, ..., Xn], G = {g1, ..., gm} ⊆ R[X]

R[X]2 =

X

A0

(

2
=1 fi

n

X

i

)

|fi ∈ R[X], n ∈ N

,


R[X]
KG = {x ∈ R |g1(x) ≥ 0, ..., gm(x) ≥ 0},
n

Rn


G

m
Xi

MG = {t0 +

X
tigi|ti ∈

2

R[X] , i = 0, ..., m},

=1

R[X]

G

X

X

TG = {

tσ g

1


σ=(σ1,...,σm) {0,1}m

R[X]

m

n

K∅ = R , M∅ = T∅ =
f≥0

MG )

f ∈ TG

R[X] },

G

G=∅

MG ⊆ TG

2

σ1 ...g σm |tσ ∈

f≥0

P


2

R[X] .

KG

KG =⇒ f ∈ TG

MG)?

G=∅
X
Rn =⇒ f ∈

f≥0

R[X]2?
f

R[X]
2

R(X) =
X

f ∈ R[X]
(

g


i

|k ∈ N, fi, gi ∈ R[X], gi 6= 0, i = 1, · · · , .
k

X

k

i=1

fi

R(X)

2

)



f≥0

R

n

P


f∈

R(X)

2

f ∗ = inf f (x),
x∈KG

f ∈ R[X] G KG

G = ∅, KG = R

n

f ∗ = inf f (x) = sup{λ|λ ≤ f (x), x ∈ KG}
x∈KG

=

sup{λ|f (x) − λ ≥ 0, x ∈ KG}

=

sup{λ|f (x) − λ > 0, x ∈ KG}.
f∗

λ

f−λ


KG

f−λ

f−λ≥0

K

G

m
Xi

f − λ = t0 +tigi,
ti ∈

P

2

R[X]

=1

f −λ ≥ 0KG

f −λ ∈ MG



f

sos,G

= sup{λ|f − λ ∈ MG}.

K

f − λ ∈ MG f − λ ≥ 0

f sos,G ≤ f ∗

G

f−λ

KGf sos,G = f

f sos,G



f−λ

ti

k

2k ≥ max{deg(f ), deg(g1), . . . , deg(gm)}.
m


sos,G

fk

X

Xi

2

= sup{λ|f − λ = t0 +tigi, ti ∈

R[X] , deg(t0), deg(tigi) ≤ 2k}.

=1

fksos,G
fksos,G ≤ fksos,G+1 ≤ f sos,G ≤ f ∗
lim fksos,G = f sos,G

k→∞

R

K

Rn

L : R[X1, ..., Xn] →

µ

K

f ∈ R[X1, ..., Xn]
L(f ) = K

Z f dµ?

µ
µ
f ∈ R[X1, ..., Xn]
Z
L(f ) =
f dµ

K

K

L(f ) ≥ 0

f≥0

K


Rn

K = KGG


R[X]
G = {g1, ..., gm} ⊆ R[X] KG, TG
µ

L(f ) ≥ 0, ∀ f ∈ TG
Z

KG
L(f ) =

f dµ
KG

f

∈ R[X]
f ∈ TG

f≥0

KG

KG

f>0

KG

K

T

G

M

f ∈ TG

KG

M

G

M

G

R[X]

k∈N

2

2

k−(X1 +...+Xn ) ∈ M

M


f > 0KG

G

G

f ∈ MG
MG

TG
f

TG
KG

KG


KG TG
MG

KG

MG

K

Rn

G


K

f ∈ R[X]

f

G

f>0

KG

f ∈ TG

KG

R∞(f, KG) := {y ∈ R|∃xk ∈ KG, xk
→ ∞(k → ∞), f (xk) → y}
f
n

n

R+ = {(x1, · · · , xn) ∈ R : xi ≥ 0}
f

f>0

P

n

i=1

X

n
+

R
R

N
i

n
+

\ {0}
N

\ {0}

f

n

f

N


P
n

N
i=1

R \ {0}
n
f (x) > 0, ∀x ∈ R \ {0}
P

X2
i

2

f ∈ R[X]

Rn

Rn
t>1
R
Mt(R[X])

n

St(R[X])
F ∈ St(R[X])


G = {G1, ..., Gm} ⊆ St(R[X])
n

KG := {x ∈ R |Gi(x)< 0, i = 1, ..., m},
R

n

G

t


n

G ∈ St(R[X])

x ∈ R G(x)< 0
t

G(x)
G(x)

G(x) ≻ 0
t
T
R \ {0}, v G(x)v > 0.

T


v ∈ R , v G(x)v ≥ 0
v∈

X
T

MG := { Aij GiAij |Gi ∈ G ∪ {It}, Aij ∈ Mt(R[X])},
i,j

G

Mt(R[X])
P

t

G

R[X] := M∅ = T∅

G=∅

TG
Mt(R[X])

T

A A


A ∈ Mt(R[X])
F ∈ TG

KG

MG F < 0

F≻0

F ∈ St(R[X]), G = {G1, ..., Gm} ⊆ St(R[X])
F ∈ TG

KG

F ∈ MG .
n

n

KGMG
n

n

i

= {(x1, ..., xn) ∈ R |xi ≥ 0,

P


=1

x=1
i

}

L(X) := A0 + A1X1 + ... + AnXn ≻ 0,
A0, A1, ..., An ∈ Sn(R)

X = (X1, ..., Xn) n
L(x)

T

v L(x)v > 0, ∀ v



n

R \ {0}
G

n

:= {x ∈ R |L(x) ≻ 0}.
F

N


d
N

(X1 + · · · + Xn) F =

A



F ≻ 0△n

X
|≤N +d

α

α

α

AαX ,
α1

X = X1

α

...Xn


Rn

n














f (z)
d
d

d−1

f (z) = adz + ad−1z

+ · · · + a1z + a0, ai ∈ R, ∀i = 0, ..., d.


ad ≥ ad−1 ≥ · · · ≥ a0 ≥ 0, ad > 0.
a0 ≤ |z| ≤ 1

f (z)
2ad

z∈C

d

ai, i = 0, ..., d,
α :=

min

ai

a

, β := max

0≤i≤d−1

z∈C

d−1

f (z) = adz +ad−1z

0≤i≤d−1

ai+1
f (z)


+· · ·+a1z +a0

.

i

ai+1

≤ |z| ≤ β.

α

f (z)

iP
d

i

d

f (z) = aiz
=0

M = max

{z ∈ C| |z| ≤ 1 + M},
.


ad , j = 0, 1, ..., d − 1

aj

|ad| > |ai|, ∀i = 0, ..., d − 1M < 1
f (z)
P

|ad| > |ai|, ∀i = 0, ..., d−1,

i

d

f (z) =

f (z)

{z ∈ C| |z| < 2}

i

a iz

d

=0

d


r R

i

f (z) =

P
d

=0

d

d−1

+ · · · + |a1|z − |a0|,

d

d−1

− · · · − |a1|z − |a0|.

h(z) = |ad|z + |ad−1|z
g(z) = |ad|z − |ad−1|z
f

(z)
r


≤ |z| ≤ R.

i

a iz


d

i

f (z) =

a iz

i=0

d

P
M := max

.

ai

0≤i≤d−1

ad


f (z)
K(0, r1) = {z ∈ C| |z| ≤ r1},
r1
d+1

z

d

− (1 + M)z + M = 0.
(1 − z)f (z)
d

f (z) = aizi

i=0

d

P
M := max

a

d−i −

i=0,...,d

a


a

, a−1

d d−i−1

:= 0.

f
f (z)
K(0, r2) = {z ∈ C| |z| ≤ r2},
r2

z d+2

f
− (1 + )

M zd+1

f (z)
i

f (z) =

f
+ = 0.

P
d

=0

r

3

=1+

M

i

a iz

K(0, r3) = {z ∈ C| |z| ≤ r3},

f

M

f
M

d


d

f (z) =


=0

a

d
α :=

i

max

i

a iz

ad

i=0,...,d−2

i

P

.

f (z)

z

1


1+

a

+

d−1

|≤2

a

1

ad

|

4α.

2+

d−1



ad

s


1

g(z) = zdf (
d

da0 6= 0

z

d−1

f (z) = adz + ad−1z
β

a

max
:=

i=2,...,d

)

+ · · · + a1z + a0

i .

a0


f (z)
2
|z| ≥

1 + a0 +

s
1 − a0

+ 4β

a1

2

a1

.

(1 − z)f (z)
d

d

d−1

f (z) = adz + ad−1z
γ := max
f (z) i=1,...,d
1+

z
|

1
|≤

2

a

d−

a
ad

a

d−1

d−i −

a

d−i−1

+ · · · + a1z + a0
,a

ad


+

a

1
s

:= 0.
−1



d−

a

2+

d−1

ad

d

g(z) = z f (

1
z

)




.


a0 6= 0

d

d−1

f (z) = adz + ad−1z


γ :=

a

max

a

i − i+1 ,

i=1,...,d

f (z)

d


+ · · · + a1z + a0
a

:= 0.
d+1

a0
2

a0

|z| ≥

a0 − a 1

1+

+

s

a0



1

2


a 0 − a1

+ 4γ′

.

(z − ad−1)f (z)
d

d

f (z) = z + ad−1z
δ :=

max
i=0,...,d−1

f

a
|

d−1

a

+ · · · + a1z + a0

a


d−1 i −

, a

−1

i−1|

:= 0.

(z)

1



|z| ≤ 2 (1 + 1 + 4δ).

d

d−1

f (z) = adz + ad−1z
d

+ · · · + a1z + a0

a a a a




d−1 i −

δ := max

i−1 d

:= 0.

, a−1

2
ad

i=0,...,d−1

f (z)
1
|z| ≤




2 (1 + 1 + 4δ ).
d
g(z) = z f (

1

)


z

d

a0 6= 0

f (z) = adz + ad−1z

d−1

+ · · · + a1z + a0d

aa aa
1 i−

δ” := max

0 i+1

,a

2
a0

i=1,...,d

f (z)
2
|z| ≥


1+

√ 1 + 4δ” .

d+1

:= 0.


×