Tải bản đầy đủ (.doc) (2 trang)

De thi HSG tinh Nam Dinh (hot)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (99.17 KB, 2 trang )

SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI TỈNH NAM ĐỊNH
NAM ĐỊNH Năm học 2004-2005
-------- ---------------------------
Môn : TOÁN Lớp 9
Thời gian làm bài: 150 phút
Bài 1 (4 điểm)
Giải phương trình:
11
2
=+−
xx
Bài 2 (4 điểm)
Cho phương trình bậc hai x
2
– (m
2
+ m + 1)(x – n
2
– 1) – (n
2
+ 1)
2
= 0 với ẩn là x.
a) Biết rằng m = 321,657 và n = 123,546. Hãy tính gần đúng các nghiệm của phương
trình tới 3 chữ số sau dấu phẩy.
b) Cho các số nguyên dương m và n sao cho m ≥ n, m là số chính phương và m + n là số
lẻ. Chứng minh rằng phương trình trên có 2 nghiệm nguyên, dương, không là số chính
phương.
Bài 3 (4 điểm)
a) Chứng minh rằng trong 5 số tự nhiên bất kỳ luôn tìm được 3 số có tổng chia hết cho
3.


b) Chứng minh rằng trong 11 số tự nhiên bất kỳ luôn tìm được 6 số có tổng chia hết cho
6.
Bài 4 (3 điểm)
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau và nội tiếp đường tròn tâm O.
Chứng minh rằng các tứ giác (lồi hoặc không lồi) OABC và OADC có diện tích bằng nhau.
Bài 5 (5 điểm)
Cho hai đường tròn tâm O bán kính R và tâm O' bán kính R' cắt nhau tại A và B sao cho
OA và O'A vuông góc với nhau. Đường thẳng OO' cắt hai đường tròn tại các điểm C, E, D, F
sao cho các điểm C, O, E, D, O', F nằm trên đường thẳng OO' theo đúng thứ tự đó. BE cắt
đường tròn tâm O tại điểm thứ hai P và cắt CA tại M. BD cắt đường tròn tâm O' tại điểm thứ
hai Q và cắt AF tại N. Chứng minh rằng:
a) Ba điểm C, A, Q thẳng hàng.
b) Các đường thẳng MN và CF song song với nhau.
c)
R
R
QD
QN
PM
PE '
=⋅
ĐỀ CHÍNH THỨC
+ SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI TỈNH NAM ĐỊNH
NAM ĐỊNH Năm học 2004-2005
-------- ---------------------------
Môn : TOÁN Lớp 8
Thời gian làm bài: 150 phút
Bài 1 (4 điểm)
a) Tìm các số a, b, c biết rằng đa thức P(x) = x
4

+ ax
3
+ bx
2
+ cx + 1 chia hết cho đa
thức (x – 1)
3
b) Cho các số a, b, c đôi một khác nhau và các đa thức
))((
))((
))((
))((
))((
))((
)(
bcac
bxax
c
cbab
cxax
b
caba
cxbx
axP
−−
−−
+
−−
−−
+

−−
−−
=
))((
))((
))((
))((
))((
))((
)(
222
bcac
bxax
c
cbab
cxax
b
caba
cxbx
axQ
−−
−−
+
−−
−−
+
−−
−−
=
Chứng minh rằng (P(x))

2
= Q(x)
Bài 2 (4 điểm)
Tìm tất cả các bộ số thực (x; y; z) thoả mãn các điều kiện
2
2
2
2
2
2
41
4
;
41
4
;
41
4
y
y
z
x
x
y
z
z
x
+
=
+

=
+
=
Bài 3 (4 điểm)
Tìm tất cả các số nguyên a, b, c thoả mãn a
2
+ b
2
+ c
2
= a
2
b
2
.
Bài 4. (4 điểm)
Cho hình vuông ABCD có diện tích bằng 1. Trên cạnh AB lấy điểm M, trên cạnh CD
lấy điểm N. AN cắt DM tại P và BN cắt CM tại Q. Xác định vị trí của các điểm M và N sao
cho diện tích tứ giác MPNQ lớn nhất.
Bài 5 (4 điểm)
Cho tam giác cân ABC có AB = AC. Đường phân giác của góc B cắt AC tại điểm E.
Biết rằng BC = BE + EA. Hãy tính góc A.
ĐỀ CHÍNH THỨC

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×