Tải bản đầy đủ (.doc) (6 trang)

50 bài hình tuyển chọn lớp 7

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.97 KB, 6 trang )

Bài 1: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác
ABC vuông.
Bài 2: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác
ABC vuông.
Bài 3:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài
51cm. Tính độ dài hai cạnh góc vuông.
Bài 4: Tam giác ABC có góc A tù,
C
ˆ
= 30
0
; AB = 29, AC = 40. Vẽ đường cao AH, tính BH.
Bài 5: Cho ∆ ABC, trung tuyến AM cũng là phân giác.
a/ Chứng minh rằng ∆ ABC cân
b/ Cho biết AB = 37, AM = 35, tính BC.
Bài 6. Trên hình 3 cho
µ
µ
µ
0
360B C D+ + =
. Chứng minh AB // ED
Bài 7: Trong hình 1 cho MN // PQ. Tìm số đo góc B
Bài 8:Cho góc xOy. Trên tia Ox lấy M, N. Trên tia Oy lấy P, Q sao cho OM = OP, PQ = MN.
Chứng minh :
a.
OPN OMQ∆ = ∆
b.
MPN PMQ∆ = ∆
c. Gọi I là giao điểm của MQ và PN.
Chứng minh


IMN IPQ∆ = ∆
d. Chứng minh OI là tia phân giác của góc xOy
e. OI là tia đường trung trực của MP
g. c/m MP//NQ
Bài 9. Cho tam giác ABC có
µ
0
A 90=
. Gọi M và N lần lượt là trung điểm của AC và AB. Trên
tia đối của tia MB lấy K sao cho MK = MB. Trên tia đối của tia NC lấy I sao cho
NI = NC.
Tính
·
ACK
Chứng minh IB//AC, AK//BC
Chứng minh A là trung điểm của IK
Bài 10. Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E
là trung điểm của DF. Chứng minh :
A
B
C
DE
Hình 3
M
N
P
Q
B
20
0

40
0
?
Hình 1
a. DB CF ; b. BDC FCD
1
c. DE // BC vµ DE BC
2
= ∆ = ∆
=
Bài 11. Cho tam giác ABC. Vẽ các đường tròn (C; AB) và (A; BC). Chúng cắt nhau tại D ( B
và D ở hai bên đường thẳng AC). Nối B với D. Chứng minh :
a.
ABC CDA∆ = ∆
b.
ABD CDB∆ =
c. AB//CD d. AD//BC
Bài 12. Cho AC cắt BD tại trung I điểm mỗi đoạn, chứng minh :
a.
IAB ICD∆ = ∆
b.
CAD ACB∆ = ∆
c.
ABD CDB∆ = ∆
Bài 13. Cho góc xOy. Trên tia Ox lấy M, N. Trên tia Oy lấy P, Q sao cho OM = OP, PQ =
MN. Chứng minh :
a)
OPN OMQ∆ = ∆
b)
MPN PMQ∆ = ∆

c) Gọi I là giao điểm của MQ và PN.
1/Chứng minh
IMN IPQ∆ = ∆
2/Chứng minh OI là tia phân giác của góc xOy
3/OI là tia đường trung trực của MP,
4/MP//NQ
Bài 14: Cho góc xOy; vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kỳ;
trên các tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của
AB và Ot.
Chứng minh:
1/MA = MB 2/OM là đường trung trực của AB.
3/Cho biết AB = 6cm; OA = 5 cm. Tính OH?
Bài 15 : Cho

ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH

AC. Trên
tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
1/AB // HK 2/

AKI cân 3/
·
·
BAK AIK=
4/

AIC =

AKC
Bài 16 : Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy

điểm E sao cho BD = CE. Chứng minh:
a) ADE cân
b) ABD = ACE
Bài 17: Cho tam giác ABC có góc B = 90
0
, vẽ trung tuyến AM. Trên tia đối của tia MA lấy
điểm E sao cho ME = MA. Chứng minh:
a)

ABM =

ECM b) AC > CE. c) góc BAM > góc MAC
d) BE //AC e) EC

BC
Bài18 : Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD.
Chứng minh:
a) BE = CD. b) BMD = CME c)AM là tia phân giác của góc BAC.
Bài 19: Cho ∆ ABC có
0
60C
ˆ
B
ˆ
=+
, phân giác AD. Trên AD lấy điểm O. Trên tia đối của tia
AC lấy điểm M sao cho góc ABM = góc ABO. Trên tia đối của tia AB lấy một điểm N sao
cho góc ACN = góc ACO. Chứng minh rằng:
a/ AM = AN b/ ∆ MON là tam giác đều

Bài 20: Cho tam giác ABC có

B = 80
0
; C =40
0
. Tia phân giác của góc A cắt bc ở D.
a/ Tính góc BAC , góc ADC.
b/ Gọi E là mọt điểm trên cạnh Ac sao cho AE = AB.
Chng minh : ABD = AED
c/ Tia phõn giỏc ca gúc B ct AC ti I . Chng minh BI // DE
Bi 21: Cho tam giỏc ABC ( AB < AC) cú AM l phõn giỏc ca gúc A.(M thuc BC).Trờn
AC ly D sao cho AD = AB.
a. Chng minh: BM = MD
b. Gi K l giao im ca AB v DM .Chng minh: DAK = BAC
c. Chng minh : AKC cõn
d. So sỏnh : BM v CM.
*Bi 22: Cho ABC cõn ti A, cnh ỏy nh hn cnh bờn. ng trung trc ca AC ct
ng thng BC tiM. Trờn tia úi ca tia AM ly im N sao cho AN = BM
a/ Chng minh rng gúc AMC = gúc BAC
b/ Chng minh rng CM = CN
c/ Mun cho CM CN thỡ tam giỏc cõn ABC cho trc phi cú thờm iu kin gỡ?
HD:c/ Ta cú CM = CN , CM CN thỡ tam giỏc CMN vuụng cõn ti C.
Suy ra gúc M = 45
0
.Tam giỏc ACM cõn ti M nờn ng cao xut phỏt t M (MK)cng l
ng phõn giỏc.
Nờn gúc CMK = 45
0
: 2 = 27,5

0
.m tam giỏc CMK vuụng ti K suy ra gúc KCM = 90
0
-
27,5
0
=62,5
0
.
Vy tam giỏc cõn ABC phi cú gúc ỏy = 62,5
0
Bi 23:Tam giỏc ABC cú AB > AC. T trung im M ca BC v mt ng thng vuụng
gúc vi tia phõn giỏc ca gúc A, ct tia phõn giỏc ti H, ct AB, AC lm lt ti E v F.
Chng minh rng:
a/ BE = CF
b/
2
ACAB
AE
+
=
;
2
ACAB
BE

=
c/
2
B


BC

A
EM

B

=
Bi 24: Cho ABC cõn ti A = 1080. Gi O l mt im nm trờn tia phõn giỏc ca gúc C
sao cho gúc CBO = 120
0
. V tam giỏc u BOM (M v A cựng thuc mt na mt phng b
BO). Chng minh rng:
a/ Ba im C, A, M thng hng b/ Tam giỏc AOB cõn
Bài 25.Cho tam giác đều AOB, trên tia đối của tia OA, OB lấy theo thứ tự các điểm C và D sao
cho OC = OD.Từ B kẻ BM vuông góc với AC, CN vuông góc với BD. Gọi P là trung điểm của
BC.Chứng minh:
a.Tam giác COD là tam giác đềub.AD = BC c.Tam giác MNP là tam giác đều
Bài 26. Cho tam giác cân ABC, AB = AC, đờng cao AH. Kẻ HE vuông góc với AC. Gọi O là
trung điểm của EH, I là trung điểm của EC. Chứng minh:
1/IO vuông góc vơi AH 2/AO vuông góc với BE
Bài 27.Cho tam giác nhọn ABC. Về phía ngoài của tam giác vẽ các tam giác vuông cân ABE và
ACF ở B và C.Trên tia đối của tia AH lấy điểm I sao cho
AI = BC. Chứng minh:
1/Tam giác ABI bằng tam giác BEC 2/BI = CE và BI vuông góc với CE.
3/Ba đờng thẳng AH, CE, BF cắt nhau tại một điểm.
Bài 28. Cho tam giác ABC vng ở C có
µ
0

A 60=
. Tia phân giác của góc BAC cắt BC ở E. Kẻ
EK AB, BD AE⊥ ⊥
. Chứng minh :
1/AC = AK và AE vng góc với CK 2/KA = KB
3/EB > AC 4/AC, BD, KE cùng đi qua một điểm
Bài 29. Cho tam giác DEF cân tại D có DE = DF = 5cm, EF = 8cm. M, N lần lượt là trung
điểm DF và DE. Kẻ
DH EF⊥
.
1/Chứng minh EM = FN và
·
·
DEM DFN=
2/Giao điểm của EM và FN là K. Chứng minh KE = KF
3/Chứng minh DK là phân giác của góc EDF
4/Chứng minh EM, FN, AH đồng quy
5/Tính AH
Bài30. Cho góc vng xOy, điểm A thộc tia Ox, B thuộc Oy. Đường trung trực của OA cắt
Ox tại D, đường trung trực của OB cắt Oy ở E. Gọi C là giao điểm của hai đường trung trực
đó. Chứng minh :
1/CE = OD 2/CE vng góc với CD
3/CA = CB 4/CA//DE 5/A, B, C thẳng hàng
Bài 31. Cho tam giác ABC vng tại A. Đường phân giác BE. Kẻ EH vng góc với BC. Gọi
K là giao điểm của AB và HE. Chứng minh :
a.
ABE HBE∆ = ∆
b. BE là đường trung trực của AH
c. EK = EC d. AE < EC e.
BE KC⊥

f. Cho AB = 3cm, BC = 5cm. Tính KC
Bài 32. Cho
ABC∆

µ
0
A 120=
. Các phân giác AD và CE gặp nhau ở O. Đường thẳng chứa tia
phân giác ngồi tại đỉnh B của tam giác ABC cắt đường thẳng AC tại F. Chứng minh :
a.
BO BF⊥
b.
·
·
BDF ADF=
c. Ba điểm D, E, F thẳng hàng
Bài 33. Cho tam giác ABC cân tại A. trên hai cạnh AB, AC và về phía ngồi tam giác vẽ các
tam giác đều ADB, AEC
1/Chứng minh BE =CD
2/ Kẻ phân giác AH của tam giác cân. Chứng minh BE, CD, AH đồng quy
Bài 34. Cho
·
xOy
nhọn. Trên tia Ox lấy điểm A và trên tia Oy lấy B sao cho OA = OB. Kẻ
đường thẳng vng góc với Ox tại A cắt Oy tại D. Kẻ đường thẳng vng góc với Oy tại B
cắt Ox tại C. Giao điểm của AD và BC là E. Nối CE, CD
1/Chứng minh OE là phân giác của góc xOy 2/Chứng minh tam giác ECD cân
3/Tia OE cắt CD tại H. Chứng minh
Bài 35. Cho tam giác ABC vng tại A. Kẻ
AH BC⊥

. Kẻ HP vng góc với AB và kéo dài
để có PE = PH. Kẻ HQ vng góc với AC và kéo dài để có QF = QH
1/Chứng minh
APE APH, AQH AQF∆ = ∆ ∆ = ∆
2/Chứng minh E, A, F thẳng hàng và A là trung điểm của EF
3/Chứng minh BE//CF
4/Cho AH = 3cm, AC = 4cm. Tính HC, EF
Bài 36. Cho

ABC cân tại A (
µ
0
90A <
), vẽ BD

AC và CE

AB. Gọi H là giao điểm của
BD và CE.
1/Chứng minh :

ABD =

ACE 2/Chứng minh

AED cân
3/Chứng minh AH là đường trung trực của ED
4/Treõn tia ủoỏi cuỷa tia DB laỏy K sao cho DK = DB. Chửựng minh
ã
ã

ECB DKC=
Bi 37. Cho on thng BC. I l trung im BC. Trờn ng trung trc ca BC ly im A
khỏc I
1/Chng minh
AIB AIC =
2/K
IH AB; IK AC
. Chng minh tam giỏc AHK l tam giỏc cõn
3/Chng minh HK//BC
Bi 38. Cho tam giỏc ABC cõn ti A. Trờn tia i ca tia BA ly D, trờn tia i ca tia CA
ly E sao cho BD = CE. V DH v EK cựng vuụng gúc vi BC. Chng minh :
1/HB = CK 2/
ã
ã
AHB AKC=
3/HK//DE 4/
AHD AKE =
5/ I l giao im ca DC v EB, chng minh
AI DE
Bi 39.Cho tam giỏc ABC cõn ti A (
à
0
A 90<
). K
BD AC
,
CE AB
.BD v CE ct nhau ti I.
1/Chng minh
BDC CEB =

2/So sỏnh
ã
ã
IBE và ICD
3/Tam giỏc IBC l tam giỏc gỡ ? Vỡ sao ?
4/Chng minh
AI BC
5/Chng minh ED//BC
6/Cho BC = 5cm, CD = 3cm,. Tớnh EC, AB
Bi 40. Cho tam giỏc cõn ABC cú
à
0
A 120=
; ng phõn giỏc AD ( D thuc BC ). V
DE AB; DF AC
.Chng minh:
1/ Tam giỏc DEF u
2/T C k ng thng song song vi AD ct AB ti M. Chng minh tam giỏc AMC u
3/Chng minh
MC BC
4/Tớnh DF v BD bit AD = 4cm
Bi 41. Cho gúc nhn xOy. im H nm trờn tia phõn giỏc ca gúc xOy. T H dng cỏc
ng vuụng gúc HA,HB xung hai cnh Ox v Oy (A thuc Ox v B thuc Oy).
a) Chng minh tam giỏc HAB l tam giỏc cõn
b) Gi D l hỡnh chiu ca im A trờn Oy, C l giao im ca AD vi OH.
Chng minh BC

Ox.
c) Khi gúc xOy bng 60
0

, chng minh OA = 2OD.
Bi 42. Cho tam giỏc ABC cõn ti A, ng cao AH. Bit AB = 5 cm,
BC = 6 cm.
a) Tớnh di cỏc on thng BH, AH?
b) Chng minh hai gúc ABG v ACG bng nhau
c) *Gi G l trng tõm tam giỏc ABC. Chng minh rng ba im A, G, H thng hng
Bi 43:Cho ABC vuụng C, cú
à
A
= 60
0
, tia phõn giỏc ca gúc BAC
ct BC E, k EK vuụng gúc vi AB. (K

AB), k BD vuụng gúc AE (D

AE).
Chng minh:
a) AK = KB.
b) AD = BC.
Bi 44: Cho ABC cú AC > AB, trung tuyn AM. Trờn tia i ca tia MA ly
im D sao cho MD = MA . Ni C vi D
a. Chng minh
ã
ADC
>
ã
DAC
. T ú suy ra:
ã

MAB
>
ã
MAC

×