Tải bản đầy đủ (.doc) (90 trang)

Chuỗi fourier và ứng dụng trong vật lí (2017)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (735.81 KB, 90 trang )

TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA VẬT LÝ

CẤN THỊ LAN HƯƠNG

CHUỖI FOURIER VÀ ỨNG DỤNG TRONG VẬT LÝ

Chuyên ngành: Vật lý lý thuyết
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC

HÀ NỘI - 2017

1


TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA VẬT LÝ

CẤN THỊ LAN HƯƠNG

CHUỖI FOURIER VÀ ỨNG DỤNG TRONG VẬT LÝ
Chuyên ngành: Vật lý lý thuyết

KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC

Người hướng dẫn: TS.Nguyễn Huy Thảo

HÀ NỘI – 2017
2



LỜI CẢM ƠN
Lời đầu tiên, tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới TS.Nguỹen Huy
Thảo, thầy đã định hướng cho tôi có những tư duy khoa học đúng đắn, tận tình chỉ bảo và
tạo rất nhiều thuận lợi cho tôi trong suốt quá trình xây dựng và hoàn thiện đề tài này.
Tôi xin chân thành cảm ơn các thầy cô giáo trong khoa Vật lý trường ĐHSPHN2 đã
giúp đỡ tạo điều kiện cho tôi trong thời gian hoàn thành khoá luận.
Tôi xin chân thành cảm ơn!

Hà Nội, ngày 18 tháng 4 năm 2017
Sinh viên
Cấn Thị Lan Hương

3


LỜI CAM ĐOAN
Tôi xin cam đoan rằng:
Khoa luận đề tài “Chuỗi Fourier và ứng dụng trong Vật lý” dưới sự hướng dẫn của
TS.Nguyễn Huy Thảo có các nội dung và kết quả nghiên cứu hoàn toàn trung thực.
Mọi sự giúp đỡ trong việc thực hiện khoá luận đã được cảm ơn, các tài liệu tham
khảo được sử dụng đều được ghi rõ trong khoá luận.

Hà Nội, ngày 18 tháng 4 năm 2017
Sinh viên
Cấn Thị Lan Hương

4


MỤC LỤC

MỞ ĐẦU
NỘI DUNG
CHƯƠNGI: LÝ THUYẾT CHUỖI
1.1: Một số nội dung cơ bản về chuỗi........................................................................................................... 9
1.1.1: Các định nghĩa................................................................................................................................. 9
1.1.2: Tính chất. ........................................................................................................................................ 9
1.1.3: Tiêu chuẩn hội tụ. ........................................................................................................................ 10
1.1.4: Chuỗi số dương............................................................................................................................. 10
1.2: Chuỗi lượng giác. ................................................................................................................................. 12
1.2.1: Định nghĩa. .................................................................................................................................... 12
1.2.2: Định lý. .......................................................................................................................................... 13
1.3: Chuỗi Fourier....................................................................................................................................... 14
1.3.1: Định nghĩa. .................................................................................................................................... 14
1.3.2: Định lý. .......................................................................................................................................... 15
1.3.3: Tính chất của các hệ số Fourier..................................................................................................... 16
1.3.4: Tính hội tụ Fourier. ....................................................................................................................... 17
1.3.5: Dạng phức của chuỗi Fourier........................................................................................................ 17
1.3.7: Khai triển một số hàm số thành chuỗi Fourier. ............................................................................ 19
CHUỖI II: ỨNG DỤNG CỦA CHUỖI FOURIER
2.1: Ứng dụng trong Vật lý.......................................................................................................................... 28
2.1.1: Phương trình truyền nhiệt. ........................................................................................................... 28
2.1.2: Phương trình dao động của dây. .................................................................................................. 36
2.2: Ứng dụng của huỗi Fourier trong một số lĩnh vực khác. ..................................................................... 48
2.2.1: Tích chập và biến đổi Fourier........................................................................................................ 48
2.2.2: Tuyến tnh, tính bất biến............................................................................................................... 54
2.2.3: Xác định xung phản hồi và hàm chuyển của một hệ thống.......................................................... 58
2.2.4: Ứng dụng của tch chập- xử lý tn hiệu và bộ lọc.......................................................................... 63
2.2.5: Ứng dụng của tch chập- điều chỉnh biên độ và ghép tần số........................................................ 66
2.2.6: Ứng dụng của chuỗi Fourier trong âm nhạc. ................................................................................ 69
KẾT LUẬN

5


TÀI LIỆU THAM KHẢO

6


MỞ ĐẦU
1. Lý do chọn đề tài.
Trong những năm đầu của thế kỷ thứ 19, nhà toán học người Pháp
Joseph Fourier trong nghiên cứu về sự dẫn nhiệt kết hợp với việc nghiên
cứu chuỗi lượng giác theo các công trình trước đó của Euler, d’Alambert và
Bernoulli; ông đã phát hiện ra điều đáng chú ý của chuỗi lượng giác và đưa
ra chuỗi đặc biệt mà hiện nay mang tên ông gọi là chuỗi Fourier. Chuỗi
Fourier ra đời tạo nền tảng cho nhiều nghiên cứu khoa học, đồng thời tạo ra
bước tiến mới cho cả lý thuyết khoa học và ứng dụng thực tế.
Ngày nay, những nghiên cứu về chuỗi Fourier có nhiều ứng dụng
trong các ngành khoa học như số học, xử lý tín hiệu, xác suất, hình học….
và đặc biệt trong vật lý với các bài toán về sự dao động và sự truyền nhiệt.
Việc ứng dụng chuỗi Fourier giúp giải quyết nhiều vấn đề mà trước đây ta
chưa làm được và giúp các ngành khoa học phát triển hơn.
Với mục đích tìm hiểu về ứng dụng của chuỗi Fourier và cũng để làm
quen với nghiên cứu khoa học, chúng tôi đã chọn đề tài “chuỗi Fourier và
ứng dụng" để làm khóa luận tốt nghiệp của mình.
2. Mục đích nghiên cứu
Trình bày một số ứng dụng của chuỗi Fourier.
Rèn luyện khả năng nghiên cứu khoa học.
Đóng góp thêm tài liệu tham khảo cho sinh viên khoa Vật lý trường sư
phạm Hà Nội II.

3. Nhiệm vụ nghiên cứu
Nghiên cứu về chuỗi Fourier, tính hội tụ, tính chất của các hệ số
Fourier.
Hệ thống hóa một số kiến thức cơ bản về chuỗi Fourier. Nghiên cứu
sâu hơn và chuỗi fourier.
Tìm hiểu và nghiên cứu của các ứng dụng của chuỗi Fourier.
4. Phạm vi nghiên cứu.
Nghiên cứu về chuỗi Fourier và các ứng dụng nổi bật của chuỗi.
5. Phương pháp nghiên cứu.
Phương pháp nghiên cứu chủ yếu là:
-Sưu tầm, đọc, nghiên cứu tài liệu, phân tích, tổng hợp kiến thức.
7


-Trao đổi, thảo luận với bạn bè, giáo viên hướng dẫn, qua đó tổng hợp
kiến thức và trình bày theo đề cương nghiên cứu, thực hiện kế hoạch và
hoàn thành khóa luận.
6. Đóng góp của đề tài.
Khóa luận trình bày được hệ thống kiến thức cơ sở đến mở rộng của
chuỗi Fourier. Cung cấp và làm sáng tỏ các ứng dụng của chuỗi Fourier.
7. Cấu trúc
Chương I: Trình bày một số kiến thức cơ bản về chuỗi và các kiến thức quan
trọng cần thiết về chuỗi Fourier.
Chương II: Trình bày về ứng dụng của chuỗi Fourier trong giải bài toán vật lý và
một vài ứng dụng trong các lĩnh vực khác.

8


NOI DUNG

CHƯỞNG I: LÝ THUÝET CHUOI
1.1: Một số nội dung cơ bản về chuỗi.
1.1.1: Các định nghĩa
 Định nghĩa 1:
Cho dãy số
Biểu thức:

(1.1)

được gọi là chuỗi số và được kí hiệu là ∑
hạng của chuỗi số.

.Các số

là các số

 Định nghĩa 2:

Ta gọi
(1.1). Nếu

là tổng riêng thứ

ta nói chuỗi số (1.1) hội tụ có tổng là S và viết
Trường hợp ngược lại, nếu không tồn tại
(1.1) được gọi là chuỗi phân kì.

của chuỗi số



hoặc

thì chuỗi số

 Định nghĩa 3:
Ta gọi
Nếu

là phần dư thứ của chuỗi số. Nếu chuỗi số hội tụ thì
khi
không dần tới một giới hạn hữu hạn khi
, thì chuỗi số phân kì.

1.1.2: Tính chất.
 Tính chất 1:
Nếu chuỗi số ∑
hội tụ và có tổng S thì chuỗi số ∑
hằng số cũng hội tụ và có tổng
 Tính chất 2:
9

trong đó





Nếu các chuỗi số ∑
hội tụ và có tổng tương ứng là I, J thì
chuỗi số


cũng hôi tụ và có tổng I+J.
 Tính chất 3:
Tính hội tụ hay phân kì của chuỗi số không thay đổi khi ta bớt đi một số hữu hạn số hạng
đầu tiên.
1.1.3: Tiêu chuẩn hội tụ.
 Định lý (Tiêu chuẩn Cauchy).
Chuỗi số ∑
hội tụ khi và chỉ khi mỗi số
|
dương N sao cho:

cho trước, tìm được số nguyên
|

 Tính chất:
Điều kiện cần để chuỗi ∑

hội tụ là

1.1.4: Chuỗi số dương.
 Định nghĩa 1:
Chuỗi số ∑

có các số hạng

với mọi

được gọi là chuỗi số dương.


Các dấu hiệu hội tụ
 Định nghĩa 2:
Chuỗi số dương ∑

hội tụ khi và chỉ khi dãy tổng riêng của chuỗi bị chặn trên

 Định lý 1: (Dấu hiệu so sánh 1).
Cho hai chuỗi số dương ∑
và ∑
chuỗi số ∑
hội tụ thì chuỗi số

chuỗi
số ∑
phân kì.

. Giả sử
,
hội tụ, nếu chuỗi số ∑

. Khi đó nếu
phân kì thì

 Định lý 2: (Dấu hệu so sánh 2).
Cho hai chuỗi số dương ∑

và ∑

. Nếu tồn tại giới hạn hữu hạn


thì hai chuỗi số ấy đồng thời hội tụ hay phân kì.

10


 Định lý 3: (Dấu hiệu tích phân Cauchy).
Giả sử là một hàm số liên tục trên khoảng [
và giảm với đủ lớn. Đặt

khi đó chuỗi số ∑

[

hội tụ nếu và chỉ nếu


là hữu hạn.
1.1.5: Chuỗi đan dấu.
 Định nghĩa: Chuỗi số có dạng.

hoặc

với

gọi là chuỗi số đan dấu.
 Định lý: ( Định lý Leibniz)

Nếu chuỗi số đan dấu ∑

thoả mãn các điều


kiện sau: (i)
(ii)
thì chuỗi số trên hội tụ và có tổng nhỏ hơn hoặc bằng

.

1.1.6: Chuỗi số bất kì.
 Định nghĩa:
Chuỗi số ∑
được gọi là hội tụ tuyệt đối nếu ∑

| | phân kì.
hội nhưng ∑
tụ

11

| | hội tụ, là bán hội tụ
nếu


 Định lý 1:
Nếu chuỗi số ∑

hội tụ tuyệt đối thì chuỗi đó hội tụ và
|∑

|
|


12

∑|


 Định lý 2: ( Dấu hiệu D’Alembert)
Cho chuỗi số ∑

|



|
|

Khi đó

|

(i)
Nếu
thì chuỗi hội tụ tuyệt đối.
(ii)
Nếu
thì chuỗi phân kì.
(iii) Nếu
thì chưa kết luận được về sự hội tụ của chuỗi.
 Định lý 3: (Dấu hiệu Cauchy)
Giả sử chuỗi số ∑

(i)
Nếu
(ii)
Nếu
(iii) Nếu
 Định lý 4:
Giả sử ∑

√|

Giả sử ∑

Khi đó

thì chuỗi hội tụ tuyệt đối.
thì chuỗi phân kì.
thì chưa kết luận được về sự hội tụ của chuỗi.

√|

là một chuỗi số với

(i)
Nếu
(ii)
Nếu
(iii) Nếu
 Định lý 5 :

|


|

Khi đó

thì chuỗi hội tụ tuyệt đối.
thì chuỗi phân kì.
thì chưa thể nói gì về tính chất của chuỗi số.
là một dãy số thực

(i)

Nếu

(ii)

Nếu

|
|
|
|
|
|
|
|

thì chuỗi số đã cho hội tụ tuyệt đối.
thì chuỗi số đã cho phân kì.


1.2: Chuỗi lượng giác.
1.2.1: Định nghĩa.
 Định nghĩa 1: Chuỗi lượng giác là chuỗi hàm có dạng.

13




(1.2)

Trong đó {

} {

} là hai dãy số thực.

Số hạng tổng quát

là một hàm số tuần hoàn chu kỳ

liên tục và khả vi mọi cấp.
1.2.2: Định lý.
 Định lý 1: Nếu các chuỗi số ∑
giác:



hội tụ tuyệt đối thì chuỗi lượng



hội tụ đều trên R và tổng của chuỗi là một hàm liên tục trên R.
 Định lý 2:
Giả sử dãy {
giác:

}

{

} là hai dãy số giảm đến 0 khi

Khi đó, chuỗi lượng


hội tụ tại mọi điểm

và hội tụ đều trên mỗi đoạn

[
liên tục trên

],

Do đó tổng chuỗi là một hàm số

 Định lý 4:
Nếu ∑

|


|

|

|

thì tổng



của chuỗi lượng giác
(1.3)

là một hàm số khả vi liên tục trên R và
hạng tử của chuỗi (1.3), tức là


nhận được bằng cách lấy đạo hàm từng


 Định lý 5:


Nếu chuỗi số ∑
giác:



đều hội tụ tuyệt đối thì tổng


của chuỗi lượng


(1.5)
liên tục trên R và tổng của chuỗi lượng giác
∑ (

)

nhận được nhờ lấy nguyên hàm từng hạng tử của chuỗi (1.5) là một nguyên hàm của
trên R.
1.3: Chuỗi Fourier
1.3.1: Định nghĩa.
 Định nghĩa 1:
Hàm số xác định trên đoạn [
phân hoạch

của đoạn [

] gọi là liên tục từng khúc nếu tồn tại một phép

] có tính chất:Với mỗi , hàm số

liên tục trên khoảng

,

có giới hạn phải hữu hạn tại điểm
và giới hạn trái tại điểm

Nói cách
] nếu chỉ có một số hữu hạn điểm gián
khác, là liên tục từng khúc trên đoạn [
đoạn loại I và liên tục tại mọi điểm còn lại của đoạn..
 Định nghĩa 2:
Giả sử là một hàm số tuần hoàn xác định trên R với chu kỳ
mỗi đoạn bị chặn . Chuỗi lượng giác:

trong đó các hệ số được cho bởi công thức:


, liên tục từng khúc trên





gọi là chuỗi Fouriercủa hàm số
được gọi là các hệ số Fourier của . Các
công thức tnh
được gọi là công thức Euler.


là một hàm số tuần hoàn chu kỳ

dàng chứng minh được:

nên nhờ một phép biến đổi biến số, dễ





Đặc biệt ta có:


nếu là một hàm số chẵn thì
hàm số lẻ. Do đó:

là những hàm số chẵn và

là những


Vì thế chuỗi Fourier của có dạng:

Tương tự, nếu là một hàm số lẻ thì
những hàm số chẵn. Do đó.

là những hàm số lẻ và


Khi đó chuỗi Fourier của có dạng:

1.3.2: Định lý.
Giả sử là một hàm số tuần hoàn với chu kì

Giả sử chuỗi lượng giác:






Hội tụ đều trên đoạn [

] (do đó hội tụ đều trên R) và có tổng là

. Khi đó ta có:




1.3.3: Tính chất của các hệ số Fourier.
 Định lý 1:
Cho là hàm số với bình phương khả tch trên đoạn [
Nếu

]

là tổng Fourier bậc của thì:
∫ [

]

∫ [

]

trong đó minium ở vế phải lấy theo mọi đa thức lượng giác
Nếu
đây:


là các hệ số Fourier của



có bậc không quá

thì ta có bất đẳng thức Bessel sau



 Định lý 2:
Nếu là hàm liên tục trên đoạn [
đoạn thì các hệ số Fourier

(đẳng thức Parseval)

] và nhận cùng một giá trị ở hai đầu mút của
của thoả mãn đẳng thức sau:



1.3.4: Tính hội tụ Fourier.
Không phải khi nào chuỗi Fourier của hàm cũng hội tụ đến chính hàm đó, nên ta dùng
biểu thức:

để biểu thị rằng hàm có khai triển Fourier là chuỗi ở vế phải.
 Dấu hiệu hội tụ của chuỗi Fourier
Cho hàm tuần hoàn với chu kì , bị chặn và đơn điệu từng khúc trên mỗi chu kì. Khi
đó chuỗi Fourier của hàm hội tụ, tổng của chuỗi Fourier bằng

tại mọi điểm mà
hàm liên tục. Tại những điểm mà hàm không liên tục, tổng chuỗi Fourier hội tụ về
]
giá trị [
trong đó:

1.3.5: Dạng phức của chuỗi Fourier.
Sử dụng công thức biểu diễn hàm lượng giác thông qua số
phức:



Ta có thể viết lại khai triển Fourier dưới dạng:
∑ [
Đặt

]
ta có:



Lưu ý rằng

, ta có





Do vậy công thức trên có thể viết lại thành:





Công thức này được gọi là dạng phức của chuỗi Fourier.
 Dạng phức của chuỗi Fourier đối với hàm tuần hoàn chu kì
Với

khả tch trên đoạn [

]. Đối với hàm này ta lập được chuỗi Fourier


trong đó


{

.



Ta sử dụng đẳng thức Euler liên hệ các hàm lượng giác với hàm mũ


Suy ra
Ta có thể viết

Thay vào (1.9) ta được
∑ (


)

Nếu đặt
tổng riêng thứ

(1.11)
của chuỗi (1.10), tức là của cả chuỗi (1.9), có thể viết là:




Ta có cách viết.

Dạng phức của chuỗi Fourier của hàm
1.3.7: Khai triển một số hàm số thành chuỗi Fourier.
 Định nghĩa khai triển Fourier của một hàm số.
Cho chuỗi lượng giác:

] Nếu chuỗi (1.12) hội tụ và hội tụ đến tổng
là chuỗi Fourier của
trên đoạn [
] Đồng thời
chính là
thì ta nói rằng
khai triển thành Fourier trên đoạn [
viết




 Khai triển Fourier tổng quát
Khai triển một hàm tuần hoàn trong khoảng[
Hàm
được gọi hàm liên tục từng khúc trong [
]
số hữu hạn các khoảng con [

sao cho hàm liên tục trên mỗi khoảng mở
giới hạn một phía:

].
] nếu [

] có thể chia thành một

và tồn tại các giá trị hữu hạn của các

tại các đầu khoảng con.
Nói cách khác, khi đó trong mỗi khoảng con
hàm có thể thác triển liên tục được
]
lên các đầu
của khoảng thành hàm liên tục trong mỗi khoảng con đóng [
đó. Nếu các đầu khoảng
đó là các điểm gián đoạn của hàm
thì chúng chỉ có
thể là các điểm gián đoạn loại một. Ta không quan tâm tới giá trị của hàm tại chính các
đầu khoảng con
Chúng có thể xác định với giá trị tuỳ ý hoặc không xác định, và điều
đó không ảnh hưởng gì đến các giá trị của các hệ số Fourier của

 Định nghĩa:
Hàm
được gọi là hàm khả vi từng khúc trên đoạn [
] và trong mỗi khoảng con mở
từng khúc trong [
tồn tại các giá trị giới hạn hữu hạn:

] nếu
hàm

Nói cách khác, hàm
sau khi đã thác triển liên tục trong khoảng
khoảng thì hàm đã thác triển này là hàm khả vi trong khoảng đóng [
Ta có định lý khai triển sau:
 Định lý Dirichlet.

là hàm liên tục
khả vi, đồng thời

lên hai đầu
]


Giả sử hàm
khúc trong [

là hàm xác định trên toàn trục số tuần hoàn với chu kì
]

Khi đó, chuỗi Fourier của hàm hội tụ trong toàn khoảng [


với mọi

[

, khả vi từng

] và tổng bằng

].

Ta thừa nhận định lý trên
Nếu là điểm liên tục của hàm

thì:

Do đó

Như vậy chuỗi Fourier của hàm khả vi từng khúc tại những điểm liên tục của hàm, hội tụ
về chính giá trị của hàm ấy. Còn tại những điểm gián đoạn của hàm thì hội tụ về giá trị
trung bình cộng của các giá trị giới hạn bên phải và bên trái của hàm.
Chú ý: Nếu
là hàm lẻ, nghĩa là
những từ gồm toàn các hàm
, vì khi đó
đều bằng
0.

thì chuỗi Fourier của hàm chứa
là một hàm lẻ và mọi hệ số



Khai triển một hàm không tuần hoàn trong [
Xét hàm
khúc.

].

không tuần hoàn và giả thiết rằng trong khoảng [

Ta thành lập một cách hình thức chuỗi

trong đó các hệ số

được tnh theo công thức Euler.

] hàm khả vi từng




Chuỗi (1.13) vẫn được gọi là chuỗi Fourier của hàm
Để xét xem chuỗi có hội tụ về

hay không, ta xây dựng hàm

trong khoảng [

sao cho


] trùng với hàm
[

Còn ngoài khoảng trên thì lặp lại một cách tuần hoàn với chu kì
cũng là chuỗi Fourier của hàm
Theo kết quả đã xét ở trên, thì tại mọi
chỉ khi

[

chuỗi (1.13) hội tụ về

[

].

của

Vậy nếu
là hàm không lặp lại tuần hoàn với chu kì
[
] thì chuỗi Fourier của hàm:
hội tụ về
hội tụ về
hội tụ về

Do

] nên ta có
khi


Do tnh tuần hoàn với chu kì

Vậy chuỗi (1.13)

[

].

Khai triển một hàm xác định trong khoảng [

]

, khả vi từng khúc trong


×