Tải bản đầy đủ (.pdf) (21 trang)

Lecture Strength of Materials I: Chapter 5 - PhD. Tran Minh Tu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (725.14 KB, 21 trang )

STRENGTH OF MATERIALS

1/10/2013

TRAN MINH TU - University of Civil Engineering,
Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam

1


CHAPTER

5
Geometric Properties of an Area
1/10/2013


Contents
5.1. Introduction

5.2. First moment of area
5.3. Moment of inertia for an area
5.4. Moment of inertia for some simple areas

5.5. Parallel - axis theorem
5.6. Examples

1/10/2013

3



5.1. Introduction

Dimension, shape?

1/10/2013

4


5.2. First Moment of Area
5.2.1. Definition
• The first moment of a plane A about
the x- and y-axes are defined as

Sx 



( A)

ydA

Sy 



xdA

( A)


• Value: positive, negative or zero

• Dimension: [L3]; Unit: m3, cm3,...
• Centroidal axes: are axes, which first moment of a plane A about them
is zero
5.2.2. The centroid of an area

• The centroid C of the area is defined as the point in the xy-plane that
has the coordinates
1/10/2013

5


5.2. First Moment of Area
xC 

Sy
A

Sx
yC 
A

yC

• If the origin of the xy-coordinate system
is the centroid of the area then Sx=Sy=0


C

xC

• Whenever the area has an axis of
symmetry, the centroid of the area will lie
on that axis
• If the area can be subdivided in to simple geometric shapes
(rectangles, circles, etc., then
n

Sx   S
i 1

1/10/2013

n

i
x

S y   S yi
i 1

6


5.2. First Moment of Area
y


5.2.3. The centroid of composite area
yC1

n

xC 

Sy
A



x
i 1
n

Ci

Ai
i

y

Ci

i 1

C3
x


xC1

n

Ai

n

A
i 1

1/10/2013

C2

A
i 1

Sx
yC 

A

C1

i

7



5.3. Moment of Inertia for an Area
5.3.1. Moment of inertia

Ix 



y 2dA

Iy 



x 2dA

( A)

( A)

5.3.2. Polar moment of inertia

Ip 



 2 dA  I x  I y

( A)

5.3.3. Product of inertia


I xy 

 xydA

( A)

• The value of moment of inertia and polar
moment of inertia always positive, but the
product of inertia can be positive, negative,
or zero
• Dimension: [L4]; Unit: m4, cm4,...

1/10/2013

8


5.3. Moment of Inertia for an Area
- The product of inertia Ixy for an area will be zero if either the x or the y
axis is an axis of symmetry for the area
- The area with hole, then the hole’s
area is given by minus sign.
- The composite areas:
n

Sx   S
i 1

i 1


1/10/2013

n

S y   S yi
i 1

n

Ix   I

i
x

n

i
x

I y   I yi
i 1

9


5.4. Moment of Inertia for some simple areas


Rectangular


hb3
Iy 
12

Ip 

R
2

Ix  I y 



y
h

bh3
Ix 
12

Circle
4

y



 R4
4


D
32


x

4

 0,1D 4

 D4
64

x
b

 0,05D

4

D

Triangular

1/10/2013

h

bh3

Ix 
12

x
b

10


5.5. Paralell-axis Theorem
• In the xy coordinates, an area
has geometric properties: Sx, Sy,
Ix, Iy, Ixy.
• In the uv coordinates: O'u//Ox,
O'v//Oy và:

u  xb

v ya

• Geometric properties of an area
in the coordinates O'uv are:

Su  S x  a. A

Sv  S y  b. A
1/10/2013

Iu  I x  2aS x  a 2 A


I v  I y  2bS y  b2 A
Iuv  I xy  aS y  bS x  abA

11


5.5. Paralell-axis Theorem
If O go through centroid C, then:

Iu  I x  a 2 A
I v  I y  b2 A

Iuv  I xy  abA

C

C

. Radius of gyration
The radius of gyration of an area about the x and y axes, and the point
O are defined as

1/10/2013

Iy
Ix
rx 
; ry 
A
A


12


5.5. Paralell-axis Theorem

1/10/2013

13


5.5. Paralell-axis Theorem

1/10/2013

14


Example 5.1
Problem 5.6.1. An area with the shape
and the dimension as shown in the
figure. Determine the principal moment
of inertia for area .
Solution
Choosing the primary
coordinates x0y0 as shows in the figure.
Divide the composite area to 2 simple
2
areas 1


y0

1. Determine the centroid:

1

- xC=0 (y0 – axis of symmetry)
2

x0
1/10/2013

15


Example 5.1
- Draw the principal coordinates Cxy

y0

- The Principal moment of inertia for an area:
1
2
x
0

1/10/2013

16



Example 5.2
Problem 5.2.

1/10/2013

17


Example 5.2

1/10/2013

18


Example 5.3

1/10/2013

19


Example 5.3

1/10/2013

20



THANK YOU FOR
ATTENTION !

1/10/2013

21



×