Tải bản đầy đủ (.pdf) (50 trang)

Lecture Control system design: State variable models - Nguyễn Công Phương

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (625.35 KB, 50 trang )

Nguyễn Công Phương

CONTROL SYSTEM DESIGN
State Variable Models


Contents
I. Introduction
II. Mathematical Models of Systems
III. State Variable Models
IV. Feedback Control System Characteristics
V. The Performance of Feedback Control Systems
VI. The Stability of Linear Feedback Systems
VII. The Root Locus Method
VIII.Frequency Response Methods
IX. Stability in the Frequency Domain
X. The Design of Feedback Control Systems
XI. The Design of State Variable Feedback Systems
XII. Robust Control Systems
XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn

2


State Variable Models
1.
2.
3.
4.


The State Variables of a Dynamic System
The State Differential Equation
Signal – Flow Graph & Block Diagram Models
Alternative Signal – Flow Graph & Block
Diagram Models
5. The Transfer Function from the State Equation
6. The Time Response & the State Transition
Matrix
7. Analysis of State Variable Models Using Control
Design Software
sites.google.com/site/ncpdhbkhn

3


The State Variables of a Dynamic
System (1)
• The state of a system is a set of variables
whose values, together with the input signals
& the equations describing the dynamics, will
provide the future state & output of the system.
• The state variables describe the present
configuration of a system & can be used to
determine the future response, given the
excitation inputs & the equations describing
the dynamics.
sites.google.com/site/ncpdhbkhn

4



The State Variables of a Dynamic
System (2)
d 2 y (t )
dy (t )
M

b
 ky (t )  u (t )
2
dt
dt
dy (t )
x1 (t )  y (t ), x2 (t ) 
dt

Wall
friction
b

 dx1
 x2

dx
 dt
 M 2  bx2  kx1  u (t )  
dt
 dx2   b x  k x  1 u
2
1

 dt
M
M
M
ic  C

dvC
 u ( t )  iL
dt

di
L L   RiL  vC
dt
vo  RiL (t )
x1  vC , x2  iL

1
1
 dx1


x

u (t )
2
 dt
C
C

 dx2  1 x  R x


1
2
dt
L
L

u (t )

 v (t )  Rx
 o
2
sites.google.com/site/ncpdhbkhn


vC


k
Mass
M
y(t)

iL

C

u(t)

L



vo


R

iC

5


State Variable Models
1.
2.
3.
4.

The State Variables of a Dynamic System
The State Differential Equation
Signal – Flow Graph & Block Diagram Models
Alternative Signal – Flow Graph & Block
Diagram Models
5. The Transfer Function from the State Equation
6. The Time Response & the State Transition
Matrix
7. Analysis of State Variable Models Using Control
Design Software
sites.google.com/site/ncpdhbkhn


6


The State Differential Equation
(1)
 x1  a11 x1  a12 x2  ...  a1n xn  b11u1  ...  b1m um
 x  a x  a x  ...  a x  b u  ...  b u
 2
21 1
22 2
2n n
21 1
2m m


 xn  an1 x1  an 2 x2  ...  ann xn  bn1u1  ...  bnm um

 x1   a11 a12
  
d  x2   a21 a22




 


dt
  
 xn   an1 an 2


 a1n   x1 
 b11  b1m   u2 



 a 2 n x2
         
 
     
   bn1  bnm   um 
 ann   xn 

 x  Ax  Bu
y  Cx  Du

x (t )  exp( At )x (0) 

t

t

0

0

 exp[A(t   )Bu(r)d  Φ(t )x(0)   Φ(t   )Bu( )d

X ( s )  [ sI  A ]1 x (0)[ sI  A ]1 BU( s )
sites.google.com/site/ncpdhbkhn


7


The State Differential Equation
(2)
1
1
 dx1


x

u (t )
2
 dt
C
C

 dx2  1 x  R x
1
2
 dt
L
L


 v (t )  Rx
 o
2


1


1

0 C
 x  
 x   C  u (t )
 

1  R
0

 L

L

 y   0 R  x
sites.google.com/site/ncpdhbkhn

u (t )


vC


iL

C


L


vo


R

iC

8


The State Differential Equation
(3)
q
k1

k2

M 1a1  u  f spring  f damp

 M 1 
p  u  k1 ( p  q )  b1 ( p  q )

M2
b2

p

u

M1
b1

 M 1 
p  b1 p  k1 p  u  k1q  b1q
M 2 q  k1 ( p  q)  b1 ( p  q )  k2 q  b2 q
 M 2 q  ( k1  k2 ) q  (b1  b2 ) q  k1 p  b1 p
 x3  x1  p

 x4  x2  q
b1
k1
1
k1
b1



x

p


p

p

u


q

q
 3
M1
M1
M1
M1
M1


 x4  q   k1  k2 q  b1  b2 q  k1 p  b1 p

M2
M2
M2
M2

 x1  p
,

 x2  q

sites.google.com/site/ncpdhbkhn

9


The State Differential Equation

(4)
b1
k1
1
k1
b1



x

p


p

p

u

q

q
 3
M1
M1
M1
M1
M1



 x4  q   k1  k2 q  b1  b2 q  k1 p  b1 p

M2
M2
M2
M2

 x1  p
,

 x2  q

 x3  x1  p

 x4  x2  q

k1
k1
b1
b1
1

x


x

x


x

x

u
1
2
3
4
 3
M1
M1
M1
M1
M1


 x  k1 x  k1  k2 x  b1 x  b1  b2 x
2
3
4
 4 M 2 1
M2
M2
M2
sites.google.com/site/ncpdhbkhn

10



The State Differential Equation
(5)
k1
k1
b1
b1
1

x


x

x

x

x

u
1
2
3
4
 3
M1
M1
M1
M1
M1



 x4  k1 x1  k1  k2 x2  b1 x3  b1  b2 x4

M2
M2
M2
M2

 0
 0
 x1   p 

x  q
 k
x   2     , A   1
M1
 x3   p 

   
 k1
 x4   q 
 M
 2

0
0
k1
M1



k1  k2
M2

1
0
b
 1
M1
b1
M2


 0 

 0 




, B   1 
M 

 1
b1  b2 

 0 

M2 
0

1
b1
M1

 x  Ax  Bu
y  p  x1  1 0 0 0 x  Cx
sites.google.com/site/ncpdhbkhn

11


The State Differential Equation
(6)
q

p

k1

k2

M2

u

M1
b1

b2


k1
k1
b1
b1
1

x


x

x

x

x

u
1
2
3
4
 3
M1
M1
M1
M1
M1



 x  k1 x  k1  k2 x  b1 x  b1  b2 x
2
3
4
 4 M 2 1
M2
M2
M2
p

q

k2 q
b2 q

M2

k1 ( q  p )

k1 ( p  q)

b1 ( q  p )

b1 ( p  q )

sites.google.com/site/ncpdhbkhn

M2

u

12


State Variable Models
1. The State Variables of a Dynamic System
2. The State Differential Equation
3. Signal – Flow Graph & Block Diagram
Models
4. Alternative Signal – Flow Graph & Block
Diagram Models
5. The Transfer Function from the State Equation
6. The Time Response & the State Transition
Matrix
7. Analysis of State Variable Models Using Control
Design Software
sites.google.com/site/ncpdhbkhn

13


Signal – Flow Graph
& Block Diagram Models (1)

?

1
1
 dx1
 dt   C x2  C u (t )


 dx2  1 x  R x
1
2
 dt
L
L


 v (t )  Rx
 o
2


vC


u (t )
1
C

C


vo


R

iC



1
L

1
s

L

iL

R
L

R

U ( s)

X1

Vo ( s )
R /( LC )
G( s) 
 2
U ( s ) s  ( R / L) s  1/( LC )
U ( s) 1
C

( )


Vo ( s )

1/ s
X2


1
C

R
L
( )

1 X1 1
L
s

sites.google.com/site/ncpdhbkhn

1
C

1
s

X2

R

14


Vo ( s )


Signal – Flow Graph
& Block Diagram Models (2)
Y ( s ) bm s m  bm 1s m 1  ...  b1s  b0
G( s) 
 n
, nm
n 1
U ( s)
s  an 1s  ...  a1s  a0

bm s  ( n m )  bm 1s  ( n  m 1)  ...  b1s  ( n 1)  b0 s  n

s  an 1s 1  ...  a1s  ( n 1)  a0 s  n
P


1  L
k

k

N

q 1 q

Sum of the forward-path factor


1  sum of the feedback loop factors

sites.google.com/site/ncpdhbkhn

15


Ex. 1

Signal – Flow Graph
& Block Diagram Models (3)

b0
b0 s 4
Y ( s)
G( s) 
 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3 s 1  a2 s 2  a1s 3  a0 s 4

 ( s 4  a3 s 3  a2 s 2  a1s  a0 )Y ( s )  b0U ( s )
d 4 ( y / b0 )
d 3 ( y / b0 )
d 2 ( y / b0 )
d ( y / b0 )



a

a

a
 a0 ( y / b0 )  u
3
2
1
4
3
2
dt
dt
dt
dt
1
1
1
1
x1  y / b0
b0
1
s X4
s
s
s
U ( s)
x2  x1  y / b0
X3

X2
X1
a
3

x3  x2  
y / b0
x4  x3  
y / b0

 a2

Y ( s)

a1

a0
U ( s)

( )

1
( ) s

X4

1
s

X3


1
s

X2

1
s

X1

1
s

b0

Y ( s)

a3
( )
( )

a2

a1

sites.google.com/site/ncpdhbkhn

a0


16


Ex. 1

Signal – Flow Graph
& Block Diagram Models (4)

b0
b0 s 4
Y ( s)
G( s) 
 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3s 1  a2 s 2  a1s 3  a0 s 4
d 4 ( y / b0 )
d 3 ( y / b0 )
d 2 ( y / b0 )
d ( y / b0 )

a

a

a
 a0 ( y / b0 )  u
3
2

1
dt
dt 4
dt 3
dt 2

x1  y / b0
x2  x1  y / b0
x3  x2  
y / b0
x4  x3  
y / b0

 x 4   a0 x1  a1 x2  a2 x3  a3 x4  u
y  b0 x1

sites.google.com/site/ncpdhbkhn

17


Ex. 1

Signal – Flow Graph
& Block Diagram Models (5)

b0
b0 s 4
Y ( s)
G( s) 

 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3s 1  a2 s 2  a1s 3  a0 s 4

x4   a0 x1  a1 x2  a2 x3  a3 x4  u
y  b0 x1

 x1   0
 x   0
  2  
 x3   0
  
 x 4    a0

0
0
0
 a1

y (t )  Cx   b0

0
0
0
 a2

0   x1   0
0   x2   0 

      u (t )  x  Ax  Bu
0   x3   0
   
 a3   x4   1 

 x1 
x 
0 0 0  2 
 x3 
 
 x4 

sites.google.com/site/ncpdhbkhn

18


Ex. 1

Signal – Flow Graph
& Block Diagram Models (6)

b0
b0 s 4
Y ( s)
G( s) 
 4

3
2

U ( s ) s  a3 s  a2 s  a1s  a0 1  a3 s 1  a2 s 2  a1s 3  a0 s 4
1
s

1

X4

1
s

1
s

1
s

b0

U ( s)

Y ( s)

a3

P
 L

Y ( s)
G( s) 


U ( s) 1 

k

k

N

( )

X2

 a2

X1

a1

a0



q 1 q

U ( s)

X3

Sum of the forward-path factor

1  sum of the feedback loop factors

1
( ) s

X4

1
s

X3

1
s

X2

1
s

X1

b0

Y ( s)

a3
( )
( )


a2

a1

sites.google.com/site/ncpdhbkhn

a0

19


Ex. 2

Signal – Flow Graph
& Block Diagram Models (7)

b3 s 3  b2 s 2  b1s  b0
b3s 1  b2 s 2  b1s 3  b0 s 4
Y ( s)
G( s) 
 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3s 1  a2 s 2  a1s 3  a0 s 4

P
 L

Y ( s)

G( s) 

U ( s) 1 

k

k



N

q 1 q

Sum of the forward-path factor
1  sum of the feedback loop factors

b3

1

1
s

b2
X4

U ( s)

a3


1/ s

1/ s

X3
 a2

1/ s

X2

b1 b
0

Y ( s)

X1

a1

a0

sites.google.com/site/ncpdhbkhn

20


Ex. 2


Signal – Flow Graph
& Block Diagram Models (8)

b3 s 3  b2 s 2  b1s  b0
b3s 1  b2 s 2  b1s 3  b0 s 4
Y ( s)
G( s) 
 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3s 1  a2 s 2  a1s 3  a0 s 4
b3

1

1
s

b2
X4

U ( s)

a3

1/ s

1/ s


X3
 a2

1/ s

X2

b1 b
0

Y ( s)

X1

a1

a0

 X1  X 2 / s
X  X / s
 2
3

X3  X4 / s
 X 4  (U  a3 X 4  a2 X 3  a1 X 2  a0 X 1 ) / s
Y  b0 X 1  b1 X 2  b2 X 3  b3 X 4
sites.google.com/site/ncpdhbkhn

21



Ex. 2

Signal – Flow Graph
& Block Diagram Models (9)

b3 s 3  b2 s 2  b1s  b0
b3s 1  b2 s 2  b1s 3  b0 s 4
Y ( s)
G( s) 
 4

3
2
U ( s ) s  a3 s  a2 s  a1s  a0 1  a3s 1  a2 s 2  a1s 3  a0 s 4
 X1  X 2 / s

 X 2  X 3 / s

 X 3  X 4 / s
  X  (U  a X  a X  a X  a X ) / s
3 4
2 3
1 2
0 1
 4
Y  b0 X 1  b1 X 2  b2 X 3  b3 X 4

  x2  x1


  x3  x2

   x4  x3
  x  u  a x  a x  a x  a x
3 4
2 3
1 2
0 1
 4
 y  b0 x1  b1 x2  b2 x3  b3 x4

  sX 1  X 2

  sX 2  X 3

   sX 3  X 4
  sX  (U  a X  a X  a X  a X )
3 4
2 3
1 2
0 1
 4
Y  b0 X 1  b1 X 2  b2 X 3  b3 X 4

1
0
  x1   0
   
0
1

 d  x2    0
 dt  x3   0
0
0
   
  x4    a0  a1  a2

 x1 

x 

 y (t )   b0 b1 b2 b3   2 
 x3 

 

 x4 


sites.google.com/site/ncpdhbkhn

0   x1   0
0   x2   0 
      u (t )
1   x3   0
   
 a3   x 4   1 

22



Ex. 2

Signal – Flow Graph
& Block Diagram Models (10)

b3 s 3  b2 s 2  b1s  b0
Y ( s)
G( s) 
 4
U ( s ) s  a3 s 3  a2 s 2  a1s  a0

b3 s 3  b2 s 2  b1s  b0
Y ( s)
Z ( s)
G( s) 
 4
.
U ( s ) s  a3 s 3  a2 s 2  a1s  a0 Z ( s )


d 3z
d 2z
dz
y

b

b


b
 b0 z

3
2
1
3
2
Y ( s )  (b3 s 3  b2 s 2  b1s  b0 ) Z ( s )

dt
dt
dt


4
3
2
4
3
2
U ( s )  ( s  a3 s  a2 s  a1s  a0 ) Z ( s )
u  d z  a d z  a d z  a dz  a z
3
2
1
0

dt
dt 4

dt 3
dt 2

 x1  z
 x  x  z
 2
1

z
 x3  x2  
 x4  x3  
z

  x2  x1

  x3  x2

   x4  x3
  x  u  a x  a x  a x  a x
3 4
2 3
1 2
0 1
 4
 y  b0 x1  b1 x2  b2 x3  b3 x4
sites.google.com/site/ncpdhbkhn

23



Ex. 2

Signal – Flow Graph
& Block Diagram Models (11)

b3 s 3  b2 s 2  b1s  b0
Y ( s)
G( s) 
 4
U ( s ) s  a3 s 3  a2 s 2  a1s  a0

b3
1
s

1

  x2  x1
U ( s)

  x3  x2

  x4  x3
  x  u  a x  a x  a x  a x
3 4
2 3
1 2
0 1
 4
 y  b0 x1  b1 x2  b2 x3  b3 x4


b2
X4

1/ s

1/ s

a3

X3
 a2

1/ s

X2

b1 b
0

Y ( s)

X1

a1

a0

phase variable canonical form


b3

b2
b1
U ( s)

( )

1
( ) s

X4

1
s

X3

1
s

X2

1
s

X1

b0


Y ( s)

a3
( )
( )

a2

a1
sites.google.com/site/ncpdhbkhn

a0

24


Ex. 2

Signal – Flow Graph
& Block Diagram Models (12)

b3 s 3  b2 s 2  b1s  b0
Y ( s)
G( s) 
 4
U ( s ) s  a3 s 3  a2 s 2  a1s  a0

b3
1
s


1

b2
X4

U ( s)

a3

1/ s

1/ s

X3
 a2

b1 b
0

1/ s

X2

Y ( s)

X1

a1


a0

phase variable canonical form

b3
b2

b1

U ( s)

b0 x4

1/ s

1/ s X 2

1/ s

X4

1

x3

X3

1

x2


a1

1

 a2

a0

x1 1/ s X 1

1

Y ( s)

a3

input feedforward canonical form
sites.google.com/site/ncpdhbkhn

25


×