Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (70.39 KB, 1 trang )
Đề A:
Bài 1: (2đ)
Cho A = [-1;3) và B = (2;+ ∞) .
Xác định A B, C
R
(A), C
R
(A B) và biểu diễn kết quả trên trục số.
Bài 2 (2đ): Xét sự biến thiên của hàm số y = trên (-∞;3)
Bài 3 (1.5đ): Cho hình vuông ABCD có độ dài cạnh là a. Gọi O là giao điểm 2 đường chéo AC và BD.
Tính | + | và | + |
Bài 4 (3đ): Cho ΔABC có D là trung điểm AC. Gọi I là điểm thỏa + 2 + 3 =
a. Chứng minh rằng I là trọng tâm ΔBCD
b. Tính theo và
c. Gọi M là điểm thỏa + 2 = . Chứng minh C, I, M thẳng hang.
Bài 5 (1.5đ): Cho sin x + cos x = . Tính sin
4
x + cos
4
x
Đề B:
Bài 1 (2đ): Cho A = (-∞;4) và B = (-3;5]
Xác định A B, C
R
(B), C
R
(A B)
Bài 2 (2đ): Xét sự biến thiên của hàm số y = trên (-∞;5)
Bài 3 (1.5đ): Cho hình vuông ABCD có độ dài cạnh là a. Gọi O là giao điểm 2 đường chéo AC và BD.
Tính: | + | và | + |
Bài 4 (3đ): Cho ΔABC có E là trung điểm AB. Gọi K là điểm thỏa + 3 + 2 = .