CHƯƠNG 1: TÁN XẠ RAMAN
1.1 Tổng quan về tán xạ Raman
1.1.1 Ánh sáng
Ánh sáng có tính lưỡng tính sóng hạt. Tính chất sóng của ánh sáng được quan sát thấy
qua các hiện tượng giao thoa, tán sắc. Ánh sáng có bản chất sóng điện từ. Các mode trường
điện từ là tập các nghiệm của phương trình sóng. Tính chất hạt của ánh sáng được thể hiện
qua khả năng đâm xuyên, hiện tượng quang điện, tác dụng ion hoá. Ánh sáng bao gồm các
photon mang năng lượng xác định bằng hf trong đó h là hằng số Plank còn f là tần số của
ánh sáng.
1.1.2 Tương tác của ánh sáng và môi trường
Một chùm sáng đi từ chân không vào môi trường bị phản xạ một phần ở mặt ngăn cách.
Phần khúc xạ vào môi trường lại bị tán sắc, bị môi trường hấp thụ và bị tán xạ một phần về
mọi phía.
Theo Lorentx ta thừa nhận những giả thiết cơ bản sau đây:
Phân tử của mọi chất được tạo thành từ ion và electron. Electron có khối lượng m và
mang điện tích nguyên tố
19
10.6,1
−
−=
e
C và được coi như điện tích điểm.
Bên trong vật dẫn, electron chuyển động hoàn toàn tự do. Chuyển động có hướng
của electron trong vật dẫn dưới ảnh hưởng của điện trường tạo nên dòng điện dẫn.
Trong điện môi, electron không thể chuyển động tự do. Nhưng cũng không liên hệ
cố kết với ion, mà có thể dịch chuyển một chút dưới tác dụng của những lực bên
ngoài. Ion mang điện tích âm hoặc dương cũng có thể dịch chuyển dưới tác dụng
của điện trường. Nhưng ion có khối lượng lớn hơn electron nhiều nên di chuyển
chậm. Trong điện trường biến đổi nhanh của sóng ánh sáng trong miền thấy được,
ion hầu như không kịp dịch chuyển. Chỉ khi nào khảo sát trong miền hồng ngoại ta
mới cần kể đến ảnh hưởng của ion.
Những electron có khả năng dao động cưỡng bức với tần số
ω
của sóng điện từ trong
vùng quang học gọi là electron quang học. Chúng là các electron lớp ngoài.
Các electron nằm trong lớp sâu, gần hạt nhân nguyên tử, liên hệ chặt chẽ hơn với hạt
nhân. Chúng chỉ có thể dao động với biên độ đáng kể khi tần số
ω
nằm vào vùng Rơngen.
Lực của dao động cưỡng bức do điện từ trường tác dụng lên electron được gọi là lực
Lorentx và bằng :
eEf
=
1
(1.)
Mặt khác electron vốn chịu một lực chuẩn đàn hồi, ràng buộc nó với hạt nhân
rmkrf
2
12
ω
−=−=
(1.)
Trong đó k là hằng số chuẩn của lực đàn hồi, xác định tần số dao động riêng của
electron theo hệ thức:
mk /
1
=
ω
, r là độ lệch của electron ra khỏi vị trí cân bằng. Hằng số
lực k phụ thuộc vào điện tích hạt nhân nguyên tử, hoặc cấu trúc phân tử nên
1
ω
là hoàn
toàn đặc trưng cho nguyên tử, phân tử đã cho. Do electron dao động trở thành lưỡng cực
dao động, bức xạ sóng điện từ thứ cấp. Lưỡng cực dao động cũng có thể va chạm với các
phân tử xung quanh, truyền năng lượng dao động cho chúng. Sự bảo tồn năng lượng dao
động vì phát sóng và vì va chạm tương đương với tác dụng của một lực hãm
,
3
grf
−=
(1.)
g là gia tốc của electron khi dao động, kết quả là phương trình chuyển động của electron
có dạng:
eErgrmrm
+
′
−−=
′′
2
1
ω
(1.)
Đặt
ξ
=mg /
, gọi đó là hệ số tắt dần, ta được phương trình dao động của electron
mEerrr /.
2
1
=+
′
+
′′
ωξ
(1.)
Phương trình (1.5) cùng với các giả thuyết của Lorentx là cơ sở cho việc giải các bài toán
tán sắc và hấp thụ ánh sáng.
1.1.3 Sợi quang
Sợi quang gồm một lõi hình trụ bằng thuỷ tinh có chiết suất
1
n
, bao quanh lõi là một
lớp vỏ phản xạ đồng tâm với lõi. Lớp vỏ có chiết suất
2
n
(
2
n
<
1
n
).
Sợi quang có thể được phân loại theo nhiều cách khác nhau. Nếu phân loại theo sự thay
đổi chiết suất của lõi sợi thì sợi quang được chia thành hai loại. Loại sợi có chiết suất đồng
đều ở lõi được gọi là sợi quang chiết suất bậc. Loại sợi có chỉ số chiết suất ở lõi giảm dần
từ tâm lõi ra tới lớp tiếp giáp giữa lõi và vỏ phản xạ được gọi là sợi có chiết suất Gradient
(GI-Graded Index). Nếu phân chia theo mode truyền dẫn thì có loại sợi quang đa mode và
sợi đơn mode. Sợi đa mode cho phép nhiều mode truyền dẫn trong nó còn sợi đơn mode chỉ
cho phép một mode truyền dẫn trong nó.
(a) (b)
(c)
Hình 1. Cấu tạo của sợi quang
(a) Sợi quang (b) Sợi chiết suất bậc (c) Sợi chiết suất giảm dần
Một trong các vật liệu được sử dụng rộng rãi để chế tạo sợi quang hiện nay là silic
dioxide SiO
2
. Mỗi nguyên tử trong thuỷ tinh liên kết với các nguyên tử khác theo cấu trúc
tứ diện như Hình 1.. Trong đó mỗi nguyên tử silic được bao quanh bởi bốn nguyên tử
Oxygen.
Hình 1. Cấu trúc tứ diện của Silic dioxide trong thuỷ tinh
Sợi quang cũng có thể được pha tạp với nhiều chất khác nhau để thay đổi chỉ số chiết
suất. Ví dụ
2
GeO
và
52
OP
được pha thêm vào để tăng chiết suất của lõi. Để giảm chiết suất
của lõi, có thể sử dụng các vật liệu như là Boron (B) và Fluorine (F)…Ngoài ra một số chất
khác như Eribium cũng được sử dụng trong các bộ khuyếch đại quang.
1.1.4 Quá trình truyền ánh sáng trong sợi quang
Suy hao
Vận tốc truyền ánh sáng trong sợi quang nhỏ hơn vận tốc truyền ánh sáng trong chân
không. Ký hiệu
c
là vận tốc truyền ánh sáng trong chân không, n là chiết suất của lõi sợi,
khi đó vận tốc truyền ánh sáng trong sợi quang được tính theo công thức (1.6)
n
c
v
=
,
( )
smc /10.3
8
=
(1.)
Ánh sáng khi truyền dọc theo sợi sẽ bị suy hao. Ký hiệu
α
[1/m] là hệ số suy hao của
sợi quang,
0
P
là công suất đầu vào sợi quang, công suất đầu ra sợi quang có chiều dài L
được tính theo công thức:
L
T
ePP
α
−
=
0
(1.)
Để tính toán hệ số suy hao, đơn vị thường được sử dụng là
dB
α
[ ]
kmdB /
.
Phương trình chuyển đổi đơn vị :
[ ]
m
dB
/1
1000
10ln
10
=
α
α
(1.)
Công suất quang cũng thường được tính theo đơn vị là dBm thay cho Watt. Quan hệ
giữa hai đơn vị này được biểu thị trong công thức (1.9).
[ ]
[ ]
=
−
W
WP
dBmP
3
10
10
log.10
(1.)
Tán sắc
Tán sắc là hiện tượng dãn rộng xung ánh sáng khi truyền trong sợi quang. Tán sắc có
nhiều loại như tán sắc mode, tán sắc màu và tán sắc mode phân cực.
Tán sắc mode chỉ xảy ra trong sợi quang đa mode. Do các mode có tốc độ lan truyền
khác nhau nên thời gian truyền các mode là khác nhau, gây ra tán sắc mode.
Tán sắc màu được phân chia thành tán sắc vật liệu và tán sắc ống dẫn sóng. Tán sắc vật
liệu xảy ra do sự phụ thuộc của chiết suất vào bước sóng. Tán sắc ống dẫn sóng xảy ra do
ánh sáng truyền trong sợi không phải là ánh sáng đơn sắc, hằng số lan truyền
β
là hàm của
bước sóng. Các thành phần bước sóng khác nhau có vận tốc nhóm khác nhau gây ra tán sắc
ống dẫn sóng. Tán sắc màu có ảnh hưởng rất lớn đến hệ thống thông tin quang. Tán sắc
màu làm tăng ảnh hưởng của các hiệu ứng phi tuyến trong sợi quang dẫn đến giới hạn về
khoảng cách truyền dẫn trong hệ thống thông tin quang.
Loại sợi quang phổ biến nhất trên thế giới hiện nay là sợi quang đơn mode tiêu chuẩn
(theo khuyến nghị G.652 của ITU-T) SMF-28
TM
có hệ số tán sắc:
( )
−≈
3
4
00
4
λ
λ
λλ
S
D
,
kmnm
ps
.
(1.)
Trong đó D là hệ số tán sắc,
λ
là bước sóng,
085.0
0
=
S
)./(
2
kmnmps
là độ dốc tán sắc
không,
0
λ
bước sóng tán sắc không (ZDW). Tán sắc của loại sợi này được biểu diễn trên
Hình 1.
Hình 1. Hệ số tán sắc của sợi quang SMF-28
TM
.
Chiều dài hiệu dụng
Khi một tín hiệu truyền dọc theo sợi quang, công suất tín hiệu bị giảm dần do suy hao.
Tuy nhiên, trong thực tế có thể giả sử rằng công suất là hằng số trên một chiều dài hiệu
dụng
eff
L
bởi vì hầu hết các hiệu ứng phi tuyến đều xảy ra ở phía đầu của sợi. Định nghĩa
chiều dài hiệu dụng của sợi quang được thể hiện trên Hình 1..
Hình 1. (a) Công suất truyền dọc theo sợi có chiều dài L (b) Mô hình tương ứng của chiều
dài hiệu dụng.
Ở Hình 1. (a) công suất bị suy hao khi truyền dọc theo toàn bộ sợi có chiều dài L, ở hình
1.4 (b) công suất được coi là không đổi trên một chiều dài sợi:
( )
ααα
α
ααα
L
LzLz
L
eff
e
eedzeP
P
L
−
−−−
−
=−−=−==
∫
1
1
1
/
11
0
0
0
0
(1.)
Diện tích hiệu dụng
Tất cả các hiệu ứng phi tuyến trong sợi quang đều phụ thuộc vào cường độ ánh sáng
truyền dọc theo sợi. Tuy nhiên trong thực tế các phép đo đều thực hiện đo công suất đầu
vào và đầu ra sợi quang. Công suất đi ra khỏi sợi quang chính là tích phân của phân bố
cường độ ánh sáng trên diện tích mặt cắt của sợi quang. Nếu gọi
core
A
là diện tích mặt cắt
của sợi quang,
meas
P
là công suất đo được ở đầu ra của sợi quang. Giả thiết cường độ I phân
bố đều trên diện tích mặt cắt của sợi. Ta có:
core
meas
A
P
I
=
(1.)
Tuy nhiên trong sợi quang đơn mode, cường độ ánh sáng không phân bố đều trên toàn
bộ diện tích mặt cắt của sợi, cường độ ánh sáng sẽ tăng dần từ lớp tiếp giáp giữa lõi và vỏ
tới trục của sợi. Mức độ tăng phụ thuộc vào chiết suất của sợi.
Do đó để tính toán trong trường hợp này, tham số diện tích hiệu dụng
eff
A
được tính
theo công thức:
( )
( )
rdrrE
rdrrE
A
eff
4
0
2
0
2
2
∫
∫
∞
∞
=
π
(1.)
Với
( )
rE
là cường độ điện trường của mode cơ bản tại khoảng cách r so với trục của
sợi. Đối với sợi chiết suất bậc diện tích hiệu dụng
eff
A
có thể được tính theo công thức:
( )
λπ
2
wA
eff
=
(1.)
Trong đó
( )
λ
w2
là đưòng kính trường mode của sợi ở bước sóng
λ
.
1.1.5 Tính chất phi tuyến của sợi quang
Trong nguyên tử có các điện tử mang điện tích âm và hạt nhân mang điện tích dương.
Do đó khi điện trường tác động vào vật liệu các điện tử và các hạt nhân bị dịch chuyển về
hai hướng ngược nhau. Lực điện trường làm cho các nguyên tử bị phân cực, ký hiệu là P,
phụ thuộc vào điện trường tác động và bản chất của vật liệu và được tính như sau:
...)...(
)3()2()1(
0
+++=
EEEEEEP
χχχε
(1.)
Trong đó
0
ε
là hằng số điện môi trong chân không.
)( j
χ
là độ điện cảm cấp j.
Độ điện cảm tuyến tính
)1(
χ
đóng vai trò rất lớn trong P, những ảnh hưởng do nó đem lại
được biểu hiện qua hệ số chiết suất n, hệ số suy hao
α
. Độ điện cảm cấp hai
)2(
χ
là nguyên
nhân gây ra các hiệu ứng như sinh hoà âm cấp hai. Tuy nhiên với các phân tử có cấu trúc
đối xứng như
2
SiO
,
)2(
χ
gần như bằng 0 nên có thể bỏ qua. Các độ điện cảm
)4(
χ
,
)5(
χ
rất
nhỏ so với
)3(
χ
. Vì vậy chỉ có
)3(
χ
là nguyên nhân chủ yếu gây ra các hiệu ứng phi tuyến.
Các hiệu ứng phi tuyến có thể chia thành hai loại. Loại thứ nhất sinh ra do sự tương tác
của sóng ánh sáng với các phonon. Loại này bao gồm hai hiệu ứng quan trọng là tán xạ
Raman kích thích (SRS-Stimulated Raman Scattering) và tán xạ Brilloin kích thích (SBS-
Stimulated Brilloin Scattering). Loại thứ hai gồm các hiệu ứng phi tuyến Kerr, sinh ra do sự
phụ thuộc của chiết suất phi tuyến vào cường độ điện trường E. Các hiệu ứng phi tuyến
Kerr bao gồm: SPM, XPM và FWM.
Hầu hết các hiệu ứng phi tuyến trong sợi quang đều sinh ra do chiết suất phi tuyến, đó
là sự phụ thuộc của cường độ ánh sáng lan truyền trong sợi vào chiết suất. Mối quan hệ
giữa cường độ ánh sáng, chiết suất và công suất P được biểu thị bằng phương trình:
P
A
n
nInnn
eff
.
2
020
+=+=
(1.)
Trong đó
0
n
là thành phần phụ thuộc bước sóng của chiết suất
n
,
eff
A
là diện tích hiệu
dụng của sợi quang,
2
n
được gọi là chỉ số chiết suất phi tuyến. Tỉ số
eff
An /
2
được gọi là hệ
số phi tuyến. Tham số này có thể đo được mà không cần biết diện tích hiệu dụng của sợi
quang.
Ngoài ra khi nghiên cứu các hiệu ứng phi tuyến trong sợi quang một tham số nữa cũng
được đưa ra là
γ
gọi là tham số phi tuyến (nonlinear parameter) và quan hệ với chiết suất
phi tuyến
2
n
theo công thức:
eff
cA
n
20
ω
γ
=
=
eff
A
n
2
2
λ
π
(1.)
0
ω
là tần số góc của ánh sáng, c là vận tốc ánh sáng trong chân không,
λ
là bước sóng
ánh sáng,
eff
A
là diện tích hiệu dụng của sợi.
Chỉ số chiết suất phi tuyến
2
n
(
20
2
104.32.2
−
×÷=n
Wm /
2
) liên quan với
)3(
χ
như sau:
( )
)3(
2
Re
8
3
χ
⋅=
n
n
(1.)
Với
( )
)3(
Re
χ
là phần thực của
)3(
χ
.
Ngoài ra đặc tính của các hiệu ứng phi tuyến trong sợi quang còn chịu ảnh hưởng của
nhiều tham số như cường độ của tín hiệu, chiều dài sợi, khoảng cách giữa các kênh (trong
hệ thống WDM).
1.1.6 Tán xạ ánh sáng
Khi ánh sáng truyền qua môi trường vật chất trong suốt thì phần lớn ánh sáng truyền
thẳng và một phần nhỏ sẽ bị tán xạ. Môi trường có thể gây ra nhiều loại tán xạ trong đó
điển hình là tán xạ Rayleigh, tán xạ Brillouin, tán xạ Raman… Tuỳ thuộc vào loại vật chất,
ánh sáng, điều kiện môi trường… mà mỗi loại tán xạ xảy ra khác nhau.
Tán xạ Rayleigh là quá trình tán xạ đàn hồi, tần số ánh sáng tán xạ bằng tần số ánh sáng
tới. Trạng thái của các phân tử vật chất do tán xạ Rayleigh không thay đổi sau khi ánh sáng
truyền qua. Ngược lại, tán xạ Brillouin và tán xạ Ramman là các quá trình tán xạ không đàn
hồi, các nguyên tử bị kích thích khi có ánh sáng đi qua và tần số ánh sáng tán xạ bị dịch
chuyển so với tần số của ánh sáng tới.
a-Quá trình tán xạ đàn hồi b-Quá trình tán xạ không đàn hồi.
Hình 1. Quá trình tán xạ ánh sáng
Quá trình tán xạ không đàn hồi có sự tham gia của các phonon. Trong quá trình này các
phonon có thể sinh ra hoặc bị hấp thụ. Mức thay đổi tần số của ánh sáng tán xạ so với ánh
sáng tới bằng với tần số của phonon. Tán xạ Brilloin liên quan đến các phonon âm học còn
tán xạ Raman liên quan đến các phonon quang học. Do đó ánh sáng tán xạ Raman có mức
dịch chuyển tần số lớn hơn ánh sáng tán xạ Brilloin. Nếu ánh sáng tán xạ có tần số nhỏ hơn
ánh sáng tới thì ánh sáng tán xạ được gọi là ánh sáng Stoke và quá trình tán xạ được gọi là
tán xạ Stoke. Ngược lại, nếu ánh sáng tán xạ có tần số lớn hơn ánh sáng tới thì ánh sáng
tán xạ được gọi là ánh sáng phản Stoke và quá trình tán xạ được gọi là tán xạ phản Stoke.
Với tán xạ không đàn hồi, đơn vị đo độ dịch tần của ánh sáng tán xạ là (rad/s) hoặc là cm
1
−
với
c
v
π
2
Ω
=
−
(
−
v
là dịch chuyển tần số theo cm
1
−
,
Ω
là dịch chuyển tần số theo rad/s và c là
vận tốc của ánh sáng trong chân không theo cm/s).
Các hiệu ứng tán xạ sẽ làm giới hạn công suất quang lớn nhất có thể truyền ở trong sợi.
Trong hệ thống WDM tán xạ là nguyên nhân gây nhiễu giữa các kênh. Tuy nhiên tán xạ
Raman cũng được ứng dụng trong các bộ khuyếch đại quang Raman ở những bước sóng
mà bộ khuyếch đại quang EDFA không phù hợp. Hiệu ứng tán xạ Brilloin là nguyên lý
trong các bộ cảm ứng đo nhiệt độ môi trường tại những nơi mà bộ cảm ứng điện không phù
hợp.
Tần số
Hình 1. Tần số của ánh sáng tán xạ.
1.1.7 Tán xạ Raman
Tán xạ Raman được phân chia thành hai loại: Tán xạ Raman tự phát (Spontaneous
Raman Scattering) và tán xạ Raman kích thích (Stimulated Raman Scattering). Hiệu ứng
tán xạ Raman tự phát đã được dự đoán bởi Smekal vào năm 1923 và đến năm 1928 được
Raman chỉ ra bằng thực nghiệm.
Trong quá trình tán xạ Raman tự phát, ánh sáng tới tương tác với môi trường làm sinh ra
các photon. Tuỳ thuộc vào bản chất của môi trường các photon sinh ra sẽ có tần số lớn hơn
hoặc nhỏ hơn tần số của ánh sáng tới.
Giản đồ năng lượng của quá trình tán xạ Raman được thể hiện trên Hình 1.. Electron sẽ
chuyển từ trạng thái khởi đầu (trạng thái cơ bản) lên trạng thái ảo (trạng thái kích thích) khi
hấp thụ một photon có năng lượng bằng hiệu năng lượng giữa trạng thái ảo và trạng thái
khởi đầu. Khi chuyển từ trạng thái ảo về trạng thái cuối electron sẽ phát xạ một photon có
năng lượng bằng hiệu năng lượng trạng thái ảo và trạng thái cuối.
Nếu như trạng thái khởi đầu có năng lượng thấp hơn năng lượng của trạng thái cuối, tần
số photon phát xạ sẽ nhỏ hơn tần số ánh sáng tới và quá trình tán xạ tạo ra ánh sáng Stoke.
Hình 1. Giản đồ năng lượng quá trình tán xạ Raman.
(a)Tán xạ Stoke (b)Tán xạ phản Stoke.
Giả sử
1
ω
,
2
ω
lần lượt là tần số của ánh sáng tới và ánh sáng tán xạ,
Ω
là tần số phonon
được sinh ra. Khi đó theo định luật bảo toàn chuyển hoá năng lượng thì
2
ω
≈
1
ω
-
Ω
.
Ngược lại nếu trạng thái cuối có năng lượng thấp hơn thì quá trình tán xạ tạo ra ánh
sáng phản Stoke có tần số
Ω+≈
12
ωω
, chêch lệch giữa mức năng lượng trạng thái khởi
đầu và trạng thái cuối chính là năng lượng của một phonon. Thực tế, tán xạ phản Stoke
thường yếu hơn tán xạ Stoke.
Tần số của các photon tán xạ được xác định bằng tần số dao động của nguyên tử. Với
thuỷ tinh, quang phổ của ánh sáng tán xạ Raman gồm nhiều thành phần tần số khác nhau là
do các nguyên tử trong thuỷ tinh dao động trong một khoảng tần số rất rộng.
Hiệu ứng tán xạ Raman tự phát được ứng dụng để xác định cấu trúc của các phân tử,
thành phần cấu tạo và loại liên kết trong các phân tử đó.
Khi ta tăng dần công suất bơm đầu vào thì công suất của sóng Stoke cũng tăng dần.
Nhưng nếu như công suất sóng bơm vượt quá một giá trị xác định thì công suất sóng Stoke
sẽ tăng lên rất nhanh theo hàm mũ. Nguyên nhân gây ra hiện tượng này là quá trình tán xạ
Raman kích thích.
1.2 Đặc tính của tán xạ Raman kích thích
1.2.1 Phổ khuếch đại Raman
Hình 1. Phổ khuyếch đại Raman của sợi Silic ở bước sóng bơm
m
p
µλ
1
=
.
Sự gia tăng của cường độ sóng Stoke được mô tả bởi công thức:
dz
dIs
=g
R
I
P
I
S
(1.)
Trong đó I
S
là cường độ sóng Stoke, I
P
là cường độ sóng bơm và g
R
là hệ số khuyếch
đại Raman. Hệ số khuếch đại Raman liên quan đến mặt cắt chiết suất của tán xạ tự phát
Raman và có thể đo lường được bằng thực nghiệm. Ở mức độ cơ bản g
R
liên quan đến
phần ảo của độ điện cảm phi tuyến cấp 3
)3(
χ
.