ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
PHẠM LÊ MINH
NÂNG CAO HIỆU QUẢ PHÁT HIỆN
MÃ ĐỘC SỬ DỤNG CÁC KỸ THUẬT HỌC MÁY
LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
Hà Nội – 2019
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
PHẠM LÊ MINH
NÂNG CAO HIỆU QUẢ PHÁT HIỆN
MÃ ĐỘC SỬ DỤNG CÁC KỸ THUẬT HỌC MÁY
Chuyên ngành: An toàn thông tin
Mã số: 8480202.01
LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN ĐẠI THỌ
Hà Nội – 2019
i
LỜI CAM ĐOAN
Tôi xin cam đoan rằng luận văn thạc sĩ công nghệ thông tin “Nâng cao
hiệu quả phát hiện mã độc sử dụng các kỹ thuật học máy” là công trình
nghiên cứu của riêng tôi, không sao chép lại của người khác. Trong toàn bộ
nội dung của luận văn, những điều đã được trình bày hoặc là của chính cá
nhân tôi hoặc là được tổng hợp từ nhiều nguồn tài liệu. Tất cả các nguồn tài
liệu tham khảo đều có xuất xứ rõ ràng và hợp pháp.
Tôi xin hoàn toàn chịu trách nhiệm và chịu mọi hình thức kỷ luật theo
quy định cho lời cam đoan này.
Hà Nội, ngày …. tháng 05 năm 2019
Phạm Lê Minh
ii
LỜI CẢM ƠN
Trước tiên tôi xin dành lời cảm ơn chân thành và sâu sắc đến thầy giáo,
TS. Nguyễn Đại Thọ – người đã hướng dẫn, khuyến khích, chỉ bảo và hỗ trợ
cho tôi những điều kiện tốt nhất từ khi bắt đầu cho tới khi hoàn thành công
việc của mình.
Tôi xin dành lời cảm ơn chân thành tới các thầy cô giáo khoa Công
nghệ thông tin, trường Đại học Công nghệ, ĐHQGHN đã tận tình đào tạo,
cung cấp cho tôi những kiến thức vô cùng quý giá và đã tạo điều kiện tốt nhất
cho tôi trong suốt quá trình học tập, nghiên cứu tại trường.
Đồng thời tôi xin cảm ơn tất cả những người thân yêu trong gia đình tôi
cùng toàn thể bạn bè những người đã luôn giúp đỡ, động viên tôi những khi
vấp phải những khó khăn, bế tắc.
Cuối cùng, tôi xin chân thành cảm ơn các đồng nghiệp của tôi tại Tổng
Công ty Viễn thông Viettel – Tập đoàn Công nghiệp Viễn thông Quân đội đã
giúp đỡ, tạo điều kiện thuận lợi cho tôi học tập và nghiên cứu chương trình
thạc sĩ tại Đại học Công nghệ, ĐH QGHN.
iii
MỤC LỤC
LỜI CAM ĐOAN ............................................................................................. i
LỜI CẢM ƠN .................................................................................................. ii
DANH MỤC HÌNH ......................................................................................... v
TÓM TẮT ....................................................................................................... vi
MỞ ĐẦU .......................................................................................................... 1
CHƯƠNG 1: TỔNG QUAN VỀ MÃ ĐỘC ................................................. 4
1.1. Giới thiệu về mã độc .................................................................................. 4
1.2. Phân loại mã độc ........................................................................................ 4
1.2.1. Virus [5]. ................................................................................................. 5
1.2.2. Worm [5] ................................................................................................. 7
1.2.3. Ransomware ............................................................................................ 8
1.2.4. Trojan .................................................................................................... 10
1.2.5. Backdoor [6].......................................................................................... 10
1.2.6. Rootkits ................................................................................................. 11
1.3. Mục đích phân tích mã độc ...................................................................... 12
1.4. Phương pháp phân tích mã độc ............................................................... 12
1.5. Trích xuất đặc trưng và các loại đặc trưng............................................... 14
1.5.1. Trích xuất đặc trưng .............................................................................. 14
1.5.2. Các loại đặc trưng ................................................................................. 15
CHƯƠNG 2: TỔNG QUAN VỀ HỌC MÁY ............................................. 17
2.1. Giới thiệu về học máy .............................................................................. 17
2.2. Phân loại các thuật toán học máy [2] ....................................................... 19
2.3. Thuật toán One-class SVM. ..................................................................... 20
2.3.1. Giới thiệu thuật toán One-class SVM ................................................... 20
2.3.2. Giới thiệu thuật toán SVM. ................................................................... 21
2.3.3. Thuật toán One-class SVM theo tác giả Schölkopf .............................. 25
iv
2.3.4. Thuật toán One-class SVM theo tác giả Tax và Duin .......................... 26
2.4. Đánh giá hiệu quả thuật toán.................................................................... 26
CHƯƠNG 3: PHƯƠNG PHÁP ÁP DỤNG HỌC MÁY VÀO PHÂN
TÍCH MÃ ĐỘC ............................................................................................. 30
3.1. Mô hình đề xuất thực hiện gồm các bước sau: ....................................... 30
3.2. Thu thập và tiền xử lý xử liệu dữ liệu ..................................................... 31
3.2.1. Thu thập dữ liệu gói tin mạng ............................................................... 31
3.2.2. Trích chọn đặc trưng trong header của gói tin ...................................... 32
3.2.3. Trích chọn đặc trưng từ payload gói tin ................................................ 33
3.3. Lựa chọn đặc trưng ................................................................................. 34
3.3.1. Lựa chọn đặc trưng từ header ............................................................... 34
3.3.2. Lựa chọn đặc trưng từ payload ............................................................. 35
3.4. Xây dựng mô hình học máy .................................................................... 36
3.5. Thực nghiệm và đánh giá kết quả ............................................................ 36
3.5.1. Dữ liệu thực nghiệm.............................................................................. 36
3.5.2. Chương trình thực nghiệm .................................................................... 36
3.5.3. Đánh giá hiệu quả thuật toán................................................................. 37
3.5.4. Kết quả thực nghiệm ............................................................................. 37
KẾT LUẬN .................................................................................................... 39
TÀI LIỆU THAM KHẢO ............................................................................ 41
v
DANH MỤC HÌNH
Hình 2.1: quy trình học máy ........................................................................... 17
Hình 2.2: phân tích bài toán SVM .................................................................. 23
Hình 2.3: các điểm gần mặt phân cách nhất của hai class được khoanh tròn. 24
Hình 3.1: mô hình phân tích mã độc ............................................................... 30
Hình 3.2: thông tin gói tin http ........................................................................ 31
Hình 3.3: thông tin header của giao thức http ................................................. 32
Hình 3.4: thông tin payload trong gói tin http ................................................ 32
Hình 3.5: trích xuất đặc trưng từ header ......................................................... 32
Hình 3.6: nội dung payload được trích xuất từ file .pcap ............................... 33
Hình 3.7: mô tả biểu diễn byte theo n-gram ................................................... 33
Hình 3.8: payload được trích xuất theo phương pháp 2-gram ........................ 34
vi
TÓM TẮT
Phần mềm độc hại (mã độc) là một trong những mối đe dọa bảo mật
gây thiệt hại lớn nhất đối với Internet hiện nay. Việc phát hiện chính xác phần
mềm độc hại hết sức khó khăn và nhiều thử thách do mã độc ngày càng tinh
vi trong việc che dấu bản thân bằng các kỹ thuật như mã hóa nội dung
(payload) và ngụy trang (obfucation). Ngoài ra, nhiều loại phần mềm độc hại
phát triển nhanh chóng với nhiều thể loại tiếp tục cản trở việc phát hiện mã
độc. Trong học máy, lựa chọn đặc trưng và trích xuất đặc trưng là một trong
những thành phần quan trọng ảnh hưởng đến kết quả xây dựng mô hình học
máy. Trong luận văn này chúng tôi tập trung vào hai cách trích xuất đặc trưng
của gói tin mạng từ tiêu đề (header) và từ nội dung (payload), sau đó đánh giá
hiệu quả của 02 phương pháp trích chọn đặc trưng mạng với cùng một thuật
toán học máy được áp dụng là one-class SVM để phát hiện, phân loại mã độc.
Kết quả thưc nghiệm với các độ đo F1, Precision, Recall để đánh giá hiệu quả
của thuật toán cho thấy phương pháp trích xuất từ header có độ chính xác cao
hơn so với phương pháp trích xuất từ payload, cụ thể: phương pháp trích xuất
từ header có kết quả với các độ đo Precision, Recall, F1 lần lượt là 95,93%,
95,83%, 95,84% so với phương pháp trích xuất từ payload cho kết quả lần
lượt là là 87,78%, 71,16%, 78,60% đối với tập dữ liệu huấn luyện và kết quả
95,91%, 95,73%, 95,82% so với kết quả 85,58%, 69,82%, 76,91% đối với tập
dữ liệu kiểm thử. Điều này cho thấy có thể phát hiện mã độc trong các gói tin
mạng một cách hiệu quả chỉ bằng cách xem xét các thông tin tiêu đề, không
cần tiêu tốn thời gian vào quét và phân tích nội dung của từng gói tin.
1
MỞ ĐẦU
Ngày nay cùng với sự phát triển mạnh mẽ của công nghệ thông tin và
sự phát triển của Internet toàn cầu là các nguy cơ mất an toàn thông tin đang
trở nên nguy hiểm và khó lường hơn, trong đó mã độc hại (malware) là một
trong những mối hiểm họa nghiêm trọng trên Internet. Mã độc ngày càng tiến
hóa với những biến thể đa dạng từ virus máy tính, worm, botnet…với các
hình thức xâm nhập, che dấu ngày càng tinh vi. Số lượng và hình thái đa dạng
của mã độc ngày càng tăng, trong khi các phần mềm phòng chống mã độc
không thể phát hiện, ngăn chặn được hết dẫn đến hàng triệu máy tính bị
nhiễm mã độc. Ở Việt Nam, theo số liệu thống kê của BKAV thì năm 2017 có
đến 15 triệu máy tính ở Việt Nam bị nhiễm mã độc tương ứng thiệt hại
khoảng 12.300 tỷ đồng. Ngoài ra, ngày nay để phát triển một mã độc mới
không yêu cầu nhiều kỹ năng cao do tính sẵn có các công cụ tấn công trên
internet. Tính sẵn sàng cao của các kỹ thuật chống phát hiện cũng như khả
năng mua phần mềm độc hại trên thị trường chợ đen dẫn đến cơ hội trở thành
một kẻ tấn công cho bất kỳ ai, không phụ thuộc vào cấp độ kỹ năng và trình
độ chuyên môn. Do đó, bảo vệ hệ thống máy tính khỏi các phần mềm độc hại
trên Intenet là một trong những nhiệm vụ quan trọng nhất về an ninh mạng
cho người dùng, doanh nghiệp. Một cuộc tấn công đơn lẻ có thể dẫn đến dữ
liệu bị xâm phạm và gây ra những hậu quả to lớn. Sự mất mát lớn và các cuộc
tấn công thường xuyên đặt ra yêu cầu cần thiết phải có các phương pháp phát
hiện chính xác và kịp thời. Các kỹ thuật phân tích tĩnh và phân tích động
thường dựa vào cơ sở dữ liệu được xây dựng trước đó nên có một số hạn chế
như khó có khả năng phát hiện ra các mã độc mới, các lỗ hổng chưa được
công bố (zero-day) hay các biến thể của mã độc đã biết. Hơn nữa, ngày nay số
lượng mã độc ngày càng tăng cao dẫn đến số lương mẫu ngày càng nhiểu đòi
hỏi phải có một phương pháp phù hợp để phát hiện mã độc. Do đó hướng
2
nghiên cứu dựa vào các mô hình học máy để phát hiện và phân loại mã độc tỏ
ra là phương pháp tìm năng và hiệu quả khi số lượng mẫu mã độc lớn và các
biến thể của mã độc ngày càng đa dạng. Tuy nhiên một trong những vấn đề
chính được quan tâm là làm thế nào để xây dựng được mô hình học máy hiệu
quả và mang lại kết quả chính xác cao. Trong đó có một yếu tố quan trọng
ảnh hưởng chính đến mô hình và hiệu qủa của các thuật toán học máy là lựa
chọn đặc trưng và các phương pháp trích chọn đặc trưng phù hợp. Trong phần
nghiên cứu của luận văn này chúng tôi lựa chọn đặc trưng mạng do đặc trưng
mạng có thể nâng cao khả năng phát hiện các lỗ hổng chưa được biết (zeroday) và khắc phục được hạn chế về hiệu quả học máy đối với việc lựa chon
các đặc trưng khác như đặc trưng về byte sequence, strings, API, opcode,
system call ... được sử dụng làm đầu vào cho các thuật toán học máy thường
cho kết quả không tốt đối với các mã độc được mã hóa, được ngụy trang
(obfucated), biến thể của mã độc. Đồng thời, chúng tôi trình bày về 02
phương pháp trích chọn đặc trưng gói tin mạng gồm phương pháp trích chọn
đặc trưng từ tiêu đề (header) của gói tin mạng và phương pháp trích chọn đặc
trưng từ tải (payload) của gói tin mạng dựa trên phương án 2-gram. Sau đó dữ
liệu đặc trưng này sẽ được trích chọn ra các đặc trưng phù hợp nhất làm đầu
vào cho thuật toán học máy, trong luận văn này chúng tôi lựa chọn thuật toán
one-class SVM do thuật toán one-class SVM là một trong những thuật toán
phân loại phổ biến nhất và có khả năng phát hiện mã độc đã biết, mã độc mới
(zero-day), các biến thể của mã độc và phân loại mã độc. Kết quả của luận
văn được thực nghiệm dựa trên dữ liệu mẫu Android Malware dataset
(CICAndMal2017) gồm 212788 mẫu, trong đó có 168186 mẫu sạch và 44202
mẫu mã độc thuộc họ Ransomware gồm các loại Charger, Jisut, Wannalocker.
Kết quả thực nghiệm với các độ đo F1, Precision, Recall để đánh giá hiệu quả
của thuật toán cho thấy phương pháp trích xuất từ header có độ chính xác cao
hơn so với phương pháp trích xuất từ payload, cụ thể: phương pháp trích xuất
từ header có kết quả với các độ đo Precision, Recall, F1 lần lượt là 95,93%,
3
95,83%, 95,84% so với phương pháp trích xuất từ payload cho kết quả lần
lượt là là 87,78%, 71,16%, 78,60% đối với tập dữ liệu huấn luyện và kết quả
95,91%, 95,73%, 95,82% so với kết quả 85,58%, 69,82%, 76,91% đối với tập
dữ liệu kiểm thử.
Nội dung tiếp theo của luận văn này được chia làm 04 phần như sau:
Chương 1: Tổng quan về mã độc. Chương này này sẽ giới thiệu về các
loại mã độc, phân loại mã độc, các kỹ thuật phân tích mã độc, các đặc trưng
và trích chọn đặc trưng.
Chương 2: Tổng quan về kỹ thuật học máy. Chương này sẽ giới thiệu
về học máy, phân loại các phương pháp học máy, thuật toán học máy svm,
thuật toán one-class svm và các phương pháp đánh giá hiệu quả của học máy.
Chương 3: Giải pháp áp dụng học máy vào phân tích mã độc. Chương
này sẽ trình bày về mô hình đề xuất, 02 phương pháp trích chọn đặc trưng gói
tin mạng, lựa chọn đặc trưng, thực nghiệm và đánh giá kết quả thực nghiệm.
Kết luận và hướng phát triển của đề tài
4
CHƯƠNG 1: TỔNG QUAN VỀ MÃ ĐỘC
Chương này giới thiệu khái niệm về mã độc, phân loại mã độc, mục
đích phân tích mã độc và các kỹ thuật phân tích mã độc.
1.1. Giới thiệu về mã độc
Mã độc (tên tiếng anh là malware – được viết tắt từ malicious software)
là loại phần mềm bất kỳ được thiết kế có mục đích để gây tổn hại cho một
máy tính, máy chủ, máy khách hoặc mạng máy tính. Các chương trình độc hại
này có thể thực hiện nhiều chức năng, bao gồm ăn cắp, mã hóa hoặc xóa dữ
liệu nhạy cảm, thay đổi hoặc chiếm đoạt các chức năng tính toán lõi và giám
sát hoạt động máy tính của người dùng mà không được sự cho phép của họ.
Mã độc chỉ gây thiệt hại sau khi được cấy hoặc đưa vào máy tính mục tiêu và
có thể ở dạng mã lệnh thực thi, tập lệnh, nội dung hoạt động và phần mềm
khác. Mã độc có mục đích xấu, hoạt động trái phép với người dùng máy tính
bình thường vì vậy mã độc không bao gồm phần mềm gây ra tác hại vô ý do
một số thiếu sót liên quan đến lỗi phần mềm.
Các chương trình được cung cấp chính thức bởi các công ty có thể
được coi là phần mềm độc hại nếu họ bí mật hành động chống lại lợi ích của
người dùng máy tính. Ví dụ, tại một thời điểm, đĩa nhạc Compact của hãng
Sony đã bí mật cài đặt một rootkit trên máy tính người mua với đích ngăn
chặn sự sao chép bất hợp pháp nhưng đồng thời cũng thu thập thông tin về
thói quen nghe nhạc của người dùng và vô tình tạo ra các lỗ hổng bảo mật.
Các giải pháp như phần mềm antivirus, tường lữa…thường được sử dụng để
kiểm tra sự tồn tại, các hoạt động độc hại cũng như ngăn chặn phần mềm độc
hại truy cập vào máy tính.
1.2. Phân loại mã độc
Có nhiều cách tiếp cận khác nhau để phân loại mã độc thành một số
loại nhật định với các đặc điểm cụ thể như: tính nhân bản, sự nhiễm độc, tàng
hình, lệnh và điểu khiển (C&C), các kỹ thuật che dấu, tập hợp các hành vi
5
được thể hiện trong quá trình chạy trên hệ điều hành. Hơn nữa, ngày càng khó
xác định các phần mềm độc hại vì ngày nay tác giả của phần mềm độc hại có
thể dễ dàng tiếp cận mã nguồn của một số mẫu phần mềm độc hại và kết hợp
các chức năng của chúng để tạo ra các mẫu mới có cơ chế tự mở rộng khả
năng và nhỏ gọn hơn. Mặc dù không có sự thống nhất chung về việc phân loại
phần mềm độc hại, các loại phần mềm độc hại dựa trên mục đích và hành vi
của chúng có thể được phân loại như sau:
1.2.1. Virus [5].
1.2.1.1. Khái niệm
Virus máy tính là một loại phần mềm độc hại phổ biến nhất, được ẩn
dấu trong một chương trình có vẻ vô hại, có thể tự tạo ra các bản sao và lây
lan vào các chương trình khác hoặc các tệp (file) khác để thực hiện một hành
vi độc hại như xóa file, sao chép nội dung, mã hóa file...
1.2.1.2. Thành phần
Một virus máy tình gồm 03 thành phần:
o Cơ chế lây nhiễm: các phương tiện mà virus lây lan, cho phép tự nhân
bản, cơ chế này gọi là vec-tơ lây nhiễm
o Bộ kích khởi (trigger): sự kiện hay điều kiện mà quyết định khi nào tải
(payload) được kích hoạt
o Payload: một đoạn mã được chạy trên máy nạn nhân, dùng để thực hiện
một số hoạt động phá hoại hoặc có thể liên quan đến hoạt động lành tính
nào đó nhưng đáng chú ý.
1.2.1.3. Vòng đời của Virus
Vòng đời của Virus, thường bao gồm 04 giai đoạn sau:
o Giai đoạn ngủ đông: Giai đoạn này virus không hoạt động, Virus được
kích hoạt bởi một số sự kiện như: như ngày, sự có mặt của chương trình
khác hoặc tệp tin hoặc dung lượng ổ đĩa vượt quá giới hạn. Không phải
tất cả các virus đều có giai đoạn này.
6
o Giai đoạn nhân bản: Virus sao chép bản sao của chính nó vào chương
trình khác hoặc vào các vùng của hệ thống trên ổ cứng. Bản sao của nó
có thể không giống với phiên bản lan truyền, virus thường biến hình để
tránh phát hiện. Mỗi chương trình đã bị nhiễm sẽ chứa một bản sao của
virus, bản thân virus sẽ bước vào giai đoạn nhân bản.
o Giai đoạn kích hoạt: Virus sẽ được kích hoạt để thực hiện chức năng mà
nó đã dự định. Cũng như giai đoạn không hoạt động, giai đoạn kích hoạt
có thể được thực hiện bởi một loạt các sự kiện hệ thống, bao gồm số lần
bản sao của virus đã tạo ra các bản sao của chính nó.
o Giai đoạn thực thi: Chức năng của virus được thực hiện, chức năng có
thể vô hại như một thông báo trên màn hình hoặc phá hoại chương trình
và các tệp dữ liệu
1.2.1.4. Phân loại virus:
Virus cơ bản được phân làm hai loại: theo loại mục đích mà virus cố
gắng lây nhiễm và theo phương pháp mà virus sử dụng để che dấu bản thân
nhằm tránh phát hiện bởi người dùng và các phần mềm chống virus. Phân loại
theo mục đích bao gồm các loại sau:
Lây nhiễm vào vùng khởi động (Boot sector infector): lây nhiễm một
bản ghi khởi động chính hoặc bản khi khởi động và lây lan khi một hệ
thống được khởi động từ đĩa chứa virus.
Lây nhiễm têp tin (file infector): lây nhiễm vào các tệp tin của hệ điều
hành hoặc shell được thực thi.
Macro virus: lây nhiễm các tệp tin với mã macro được biên dịch bởi một
ứng dụng.
Phân loại theo phương pháp mà Virus sử dụng bao gồm các loại sau:
Virus được mã hóa (Encrypted virus): phương pháp được thực hiện như
sau. Một phần của virus tạo ra một khóa mã hóa ngẫu nhiên và mã hóa
phần còn lại của virus. Khóa được lưu với virus. Khi một chương trình
bị nhiễm được gọi, virus sử dụng khóa ngẫu nhiên được lưu trữ để giải
7
mã virus. Khi virus nhân bản, một khóa ngẫu nhiên khác nhau được lựa
chọn. Bởi vì phần lớn virus được mã hóa bằng một khóa khác nhau cho
mỗi trường hợp dẫn đến không có mẫu bit cố định để quan sát.
Virus tàng hình (Stealth virus): một hình thức của virus được thiết kế để
che dấu bản thân nó khỏi sự phát hiện của phần mềm chống virus.
Virus đa hình (Polymorphic virus): một loại virus biến đổi theo mọi lây
nhiễm, khiến cho việc phát hiện virus bằng chữ ký trở nên không thể.
Virus biến hóa (Metamorphic virus): giống như một virus biến hình,
một virus biến hóa biến đổi với mọi sự lây nhiễm. Sự khác biệt là một
virus biến hóa tự viết lại hoàn toàn ở mỗi vòng lặp để tăng độ khó phát
hiện. Virus biến hóa có thể thay đổi hành vi, cũng như ngoại hình của
chúng.
1.2.2. Worm [5]
Sâu (Worm) là một chương trình có thể tự sao chép và gửi các bản sao
từ máy tính này sang máy tính khác qua các kết nối mạng. Khi đến nơi, worm
có thể được kích hoạt và nhân bản lần nữa. Ngoài việc nhân bản, worm
thường thực hiện một số chức năng không mong muốn như thu thập thông tin
hệ thống, tìm kiếm lỗ hổng bảo mật... Worm là một loại phần mềm độc hại
được ẩn náu trong máy tính, nhưng nó không phải là virus vì nó không được
nhúng vào chương trình khác.Worm lây nhiễm từ máy tính này đến máy tính
khác bằng cách khai thác lổ hổng bảo mật hoặc lỗ hổng do chính tác giả tạo ra.
Để tự nhân bản, một worm mạng sử dụng một số phương tiện mạng như sau:
Chức năng thư điện tử (Electronic mail facility): worm thư điện tử gửi
bản sao của nó đến hệ thống khác, mã của nó được kích hoạt khi thư
điện tử hoặc tệp đính kèm nhận được hoặc xem.
Khả năng thực thi từ xa (Remote execution capability): worm thực thi
bản sao của chính nó trên hệ thống khác bằng cách sử dụng một cơ chế
thực thi từ xa hoặc bằng cách khai thác lỗ hổng chương trình của một
dịch vụ mạng để phá hủy hoạt động của chúng.
8
Khả năng truy cập từ xa (Remote login capability): worm đăng nhập
vào hệ thống từ xa như một người dùng, sau đó sử dụng các lệnh để sao
chép chính nó từ hệ thống này đến hệ thống khác và thực thi lệnh.
Ví dụ, một trong những sâu máy tính nổi tiếng nhất trong lịch sử máy tính
có tên là Confiker. Confiker mục tiêu tấn công vào hệ điều hành Microsoft
Window, phiên bản đầu tiên của sâu Confiker được phát hiện vào tháng 10
năm 2008 và đã lây nhiễm hàng triệu máy tính trên thế giới. Confiker khai
thác một lỗ hổng về dịch vụ mạng được xây dựng trên hệ điều hành Window,
bao gồm tất các các phiên bản từ Window 2008 đến Windows server 2008
được nhân bản qua Internet. Lỗ hổng này có tên là MS08_067, cho phép một
kẻ tấn cống thực thi mã lệnh từ xa và chiếm toàn bộ quyền điều khiển máy
tính từ xa.
1.2.3. Ransomware
Ransomware (mã độc tống tiền) gồm nhiều lớp phần mềm độc hại với
mục đích hạn chế truy cập đến hệ thống máy tính mà nó đã lây nhiễm và đòi
hỏi phải trả một khoản tiền cho kẻ tấn công nhằm xóa bỏ hạn chế truy cập mà
nó đã tạo ra trước đó. Một vài dạng của ransomware mã hóa tệp tin, dữ liệu
trên ổ đĩa cứng nhằm tống tiền, trong khi một vài dạng khác thì đơn giản hơn
như chúng khóa hệ thống lại và hiển thị một thông báo để thuyết phục nạn
nhân trả tiền. Mã độc tống tiền thường lan truyền qua email với các file đính
kèm, như các virus máy tính khác, khi mở file đính kèm này thì máy tính của
người dùng sẽ bị kiểm soát. Khi đó, mã độc quét toàn bộ ổ đĩa của máy tính
và mã hóa các file bằng mã hóa công khai. Hầu hết các tập tin quan trọng trên
máy tính người dùng với định dạng .doc, pdf, xls, zip... sẽ không mở được
nữa. Để giải mã bắt buộc phải có khóa bí bật, mà khóa bí mật chỉ có kẻ tấn
công mới có và nạn nhân sẽ nhận được thông báo trên màn hình (desktop) đòi
tiền chuộc nếu muốn giải mã file. Một số loại mã độc ransomware như sau:
Charger: mã độc này sẽ sao chép tất cả các dữ liệu từ tin nhắn dạng text,
danh bạ, nhật ký ...và tìm kiếm quyền admin từ người dùng. Nếu người
9
dùng chấp nhận yêu cầu của mã độc, thì phần mềm mềm độc hại sẽ tấn
công người dùng và một tin nhắn cảnh báo cho người dùng biết là thiết
bị của người dùng đã bị khóa và các dữ liệu cá nhân sẽ được bán trên thị
trường nếu người dùng không chấp nhận trả tiền chuộc. Các nạn nhân
của mã độc Charger sẽ yêu cầu phải trả khoảng 0.2 bitcoins (khoảng
8000$ USD) nếu muốn mở khóa (unblock) thiết bị.
Jisut: Không giống như những mã độc ransomware khác thường yêu cầu
tiền chuộc thì Jisut tiếp cận theo một cách khác và không quan tâm về
sự nặc danh. Trên màn hình xuất hiện con ngựa con bao gồm thông tin
liên quan trên mạng xã hội QQ ở Trung Quốc và thuyết phục nạn nhân
liên hệ với tác giả để lấy lại các tệp tin của họ. Nếu thông tin trên QQ là
đúng thì chủ nhân của mã độc là các thanh niên từ 16 đến 21 tuổi sẽ
xuất hiện. Các biến thể đầu tiên của Jisut Android/LockScreen xuất hiện
nữa đầu năm 2014, từ thời điểm 2014 đến bây giờ đã phát hiện hàng
trăm biến thể của Jisut với các hành vi khác nhau hoặc các tin nhắn đòi
tiền chuộc khác nhau nhưng tất cả dựa trên cùng một mẫu mã độc. Khi
mã độc Jisut được kích hoạt thì nó sẽ tạo ra một màn hình hoạt động
được hiện lên với đầy đủ màn hình với màu đen, nếu người dùng thay
đổi giao diện hoặc tắt, khởi động lại thiết bị thì một thông báo sẽ được
hiển thị lên hoặc một bài hát sẽ được thực thi.
WannaLocker: mã độc này là một loại khác của ransomware Wannacry,
ban đầu nhắm đến người dùng Android ở Trung Quốc và mở rộng ra
toàn thế giới. Mã độc này lây nhiễm các tệp tin (files) trên bộ lưu trữ
của thiết bị và mã hóa các tệp tin bằng thuật toát mã hóa AES. Khi các
tệp tin bị mã hóa, mã độc sẽ hiện lên một thông báo đòi tiền chuộc
tương tự như WannaCry, nó cung cấp thông tin về dữ liệu đã được mã
hóa và các khả năng đê phục hội chúng bằng ngôn ngữ tiếng trung.
WannaLocker yêu cầu số tiền chuộc là 40 Renmibi Trung Quốc và cách
liên lạc để thực hiện giao dịch chuyển tiền và khôi phục dữ liệu.
10
1.2.4. Trojan
Trojan là một loại phần mềm giả mạo phổ biến, chúng thường ẩn náu
trong chương trình phần mềm hữu ích để thực hiện các nhiệm vụ mong muốn
và hợp pháp nhưng thực chất là thực hiện một số chức năng độc hại như xóa
file, thu thập thông tin hệ thống và gửi cho máy chủ điều khiển, ăn cắp thông
tin tài khoản người dùng ....Những chức năng mong muốn và hợp pháp chỉ là
phần bề mặt giả tạo nhằm che dấu cho các thao táo độc hại. Không giống như
virus, trojan không có chức năng tự sao chép nhưng lại có chức năng phá hoại
tương tự virus. Một số dạng Trojans cơ bản như sau:
Remote Access Trojans: cho phép kẻ tấn công kiểm soát toàn bộ hệ
thống từ xa
Data-Sending Trojans: Trojan gửi thông tin nhạy cảm của nạn nhân cho
kẻ tấn công
Destructive Trojans: Trojan phá hủy hệ thống
Denied-of-Service – DoS Attack Trojan: Trojan phục vụ tấn công Ddos
HTTP, FTP Trojans: Trojan tự tạo thành HTTP hay FTP server để kẻ
tấn công khai thác lỗi
Security Software Disable Trojan: Có tác dụng tắt tính năng bảo mật
trong các máy tính nạn nhân
1.2.5. Backdoor [6]
Backdoor (cửa hậu) là một loại phần mềm độc hại cung cấp cho kẻ tấn
công quyền truy cập từ xa vào máy nạn nhân. Backdoor là loại phần mềm độc
hại phổ biến nhất và chúng có đủ hình dạng, kích cỡ với khả năng khác nhau.
Mã backdoor thường thực hiện đầy đủ các khả năng, vì vậy khi sử dụng
backdoor kẻ tấn công thường không cần tải thêm các phần mềm độc hại khác
hoặc mã chương trình. Backdoor thường cho phép kẻ tấn công kết nối đến
máy tính từ xa với ít quyền hoặc không cần xác thực và đi kèm với một số
chức năng phổ biến như khả năng thao tác các khóa registry, liệt kê các cửa sổ
hiện thị, tạo thư mục, tìm kiếm tập tin, truy cập từ xa bằng tài khoản riêng,
thực thi lệnh hệ thống....Một số loại backdoor như sau:
11
Reverse Shell: là một kết nối bắt nguồn từ một máy bị nhiễm và cung
cắp quyền truy cập shell cho kẻ tấn công vào máy tính đó. Khi ở trong
reverse shell, kẻ tấn công có thể thực thi các lệnh trên máy của nạn nhân
ngay trên máy của kẻ tấn công.
RATs: công cụ quản trị từ xa (RAT) được sử dụng để quản lý các máy
tính từ xa. RAT thường được sử dụng trong các cuộc tấn công có chủ
đích với mục tiêu cụ thể, chẳng hạn như đánh cắp thông tin.
Botnet: là tập hợp các máy chủ bị xâm nhập, được gọi là zombie, được
điểu khiển bởi máy chủ botnet. Mục tiêu của botnet là tạo ra một mạng
lưới zombie lớn để botnet phát tán mềm mềm độc hại hoặc thực hiện tấn
công từ chối dịch vụ (DDoS).
1.2.6. Rootkits
Rootkit là một bộ công cụ phần mềm do kẻ xâm nhập đưa vào máy tính
nạn nhân nhằm mục đích cho phép mình quay lại xâm nhập máy tính đó và
dùng nó cho các mục đích xấu mà không bị phát hiện. Một số mục đích của
kẻ xâm nhập khi sử dụng rootkit bao gồm:
Thu thập dữ liệu về các máy tính trong cùng mạng và thông tin của
người dùng như mật khẩu, thông tin tài chính.
Tạo hoặc chuyển tiếp spam.
Gây lỗi hoặc sai trong hoạt động của máy tính.
Rootkit được thiết kế tốt có khả năng che giấu hoặc xóa bỏ bất cứ dấu
vết nào của việc nó truy cập vào máy tính, sự tồn tại và hoạt động của nó. Ví
dụ, nó có thể sữa nhật ký (log) của hệ thống để hệ điều hành không ghi hoặc
xóa bỏ tất cả các thông tin liên quan đến việc nó đăng nhập vào máy, thông
tin các lần truy cập tiếp theo của kẻ xâm nhập, thông tin về các chương trình
mà rootkit chạy. Rootkit không phải là virus do nó không tự nhân bản và
không có cơ chế hoạt động tự chủ. Rootkit nằm hoàn toàn dưới quyền kiểm
soát của kẻ tấn công.
12
1.3. Mục đích phân tích mã độc
Khái niệm: phân tích phần mềm độc hại là quá trình xác định chức
năng và mục đích của mẫu phần mềm độc hại đã cho là virus, worm, Trojan
Horse .. hay biến thể của mã độc đã biết hoặc mã độc mới.
Các mục đích của phân tích mã độc: có ba mục đích chính trong việc
phân tích mã độc bao gồm phát hiện mã độc, phân tích sự tương tự giữa các
phần mềm độc hại và phân loại các phần mềm độc hại. Chi tiết ba mục đích
của phân tích mã độc như sau: [2]
Phát hiện mã độc nhằm mục đích phát hiện một tập tin có phải là mã
độc hay không.
Phân tích sự tương tự giữa các phần mềm độc hại nhằm mục đích kiểm
tra sự giống nhau, khác nhau giữa các phần mềm độc hại để phát hiện
biến thể của mã độc đã biết hoặc lớp mã độc mới.
Phân loại phần mềm độc hại: cho phép phân loại phần mềm độc hại vào
các nhóm phần mềm đọc hại khác nhau như nhóm virus, horm, rootkit...
1.4. Phương pháp phân tích mã độc
Hiện tại có một số kỹ thuật được dùng để phân tích mã độc, gồm có phân
tích tĩnh, phân tích động và phân tích lai, chi tiết các các kỹ thuật như sau:
Phân tích tĩnh là phương pháp phân tích phần mềm mà không cần thực
thi chúng. Các thông tin thu được có thể bao gồm các metadata của chương
trình, định dạng, dung lượng…các chuỗi ký tự xuất hiên trong mã nguồn, các
thư viện được thêm vào (import), các lời gọi hàm có thể được sử dụng, mã
nguồn chương trình dưới dạng Assembly…Ưu điểm của phương pháp này là
có thể biết được tất cả các khả năng thực hiện có thể của chương trình, tuy
nhiên đối với mã độc thì việc phân tích tĩnh thường gặp khó khăn do việc mã
hóa (Encrypt), đóng gói (Packed), ngụy trang (Obfuscated). Một số kỹ thuật
được sử dụng cho phân tích tĩnh bao gồm [8]:
Kỹ thuật phát hiện dựa trên chữ ký (signature based detection
technique) còn gọi là khớp mẫu hoặc chuỗi hoặc mặt nạ hoặc kỹ thuật
13
dấu vân tay. Chữ ký là một chuỗi các bit được người viết phần mềm độc
hại chèn vào chương trình ứng dụng được viết bởi những người phát
triển mã độc và cho phép nhận ra một loại mã độc cụ thể. Để phát hiện
phần mềm độc hại trong mã của chương trình, người rà soát mã độc hại
sẽ tìm kiếm một số chữ ký đã được định nghĩa trước đó trong mã
chương trình. Ví dụ, các từ khóa được tìm kiếm như địa chỉ IP, lời gọi
chương trình….
Kỹ thuật phát hiện heuristic (heuristic detection technique) được biết
như là kỹ thuật chủ động. Có nhiều sự tương đồng giữa kỹ thuật phân
tích chữ ký số và kỹ thuật heuristic tuy nhiên có một sự khác nhau rõ
ràng của kỹ thuật phân tích heuristic là việc thay cho tìm kiềm một chữ
ký cụ thể trong đoạn mã chương trình thì người kiểm tra mã độc sẽ tìm
những lệnh và chỉ thị mà không có trong chương trình. Thuận lợi chính
của kỹ thuật này là có thể dễ dàng phát hiện ra các biến thể mới của mã
độc mà chưa được phát hiện trước đây.
Phân tích động là phương pháp theo dõi, phân tích hành vi thực hiện, các
tương tác của phần mềm với môi trường thông qua việc thực thi các phần
mềm đó. Khi phân tích động mã độc cũng đồng nghĩa với việc ta phải chạy
mã độc đó, do vậy chúng ta cần có một môi trường an toàn để tránh các tác
hại đối với hệ thống cũng như bên ngoài. Hộp cát (Sandbox) là một cơ chế
bảo mật để chạy các chương trình không đáng tin cậy trong một môi trường
an toàn mà không sợ làm hệ thống "thực". Ưu điểm của phương pháp phân
tích này đó là có thể theo dõi các hành động thực sự được thực hiện bởi mã
độc trong khi đối với phân tích tĩnh, khi gặp rẽ nhánh chúng ta không thể biết
mã độc sẽ đi theo nhánh nào. Thách thức của phương pháp này là môi trường
sandbox phải an toàn, tránh bị phát hiện đồng thời phải đáp ứng được các điều
kiện để mã độc bộc lộ tối đa hành vi của mình. Có hai cách tiếp cận chính cho
phương pháp phân tích động gồm có:
14
Phân tích sự khác biệt giữa các thời điểm được xác định: với phương
pháp này, mẫu phần mềm độc hại đã được phân tích trong một khoảng
thời gian nhất định, sau đó thay đổi cấu hình hệ thống và phân mềm độc
hại sẽ được phân tích lại như ban đầu [7]
Quan sát hành vi thời gian chạy: theo cách tiếp cận này, phần mềm độc
hại sẽ thực hiên các hành động độc hại được giám sát các hành vi bằng
công cụ chuyên dụng [7]
Phân tích lai (hybrid): kỹ thuật phân tích này là sự kết hợp giữa phân
tích tĩnh và phân tích động, thường tuân theo một quy trình đơn giản
ban đầu kiểm tra bất kỳ chữ ký trong mã chương trình, nếu phát hiện bất
kỳ chữ ký nào xuất hiện thì sẽ giám sát hành vi của mã này [8]
1.5. Trích xuất đặc trưng và các loại đặc trưng
1.5.1. Trích xuất đặc trưng
Quá trình trích xuất đặc trưng được thực hiện bằng việc phân tích tĩnh
hoặc phân tích động hoặc cả hai loại phân tích tĩnh và phân tích động. Cách
tiếp cận dựa trên phân tích tĩnh được thực hiện bằng cách xem xét nội dung
của các mẫu mã độc mà không cần chúng thực thi (không cần chạy chương
trình), trong khi cách tiếp cận dựa trên phân tích động được thực hiện dựa trên
các mẫu mã được được thực thi để kiểm tra các hành vi của nó. Mốt số kỹ
thuật có thể được sử dụng cho phân tích động như: trình sữa lỗi (debugger)
được sử dụng cho việc phân tích các lớp chỉ thị (instruction), các bộ mô
phỏng (simulators) biểu diễn và hiện thị các hành vi tương tự như trong môi
trường thật của mã độc, trong khi các bộ giả lập (emulators) nhân bản hành vi
của một hệ thống với độ chính xác cao hơn nhưng yêu cầu nhiều tài nguyên
hơn. Sandboxes là các hệ điều hành được ảo hóa cung cấp một môi trường
đánh tin cậy và cô lập để kích hoạt các mã độc. Các dấu vết thực thi (excution
traces) thường được sử dụng để trích xuất các đặc trưng khi sử dụng phân tích
động. Ngoài ra, một số công cụ và kỹ thuật khác thường được sử dụng để
trích xuất đặc như: các mã disassembly và biều đồ luồng dữ liệu (data-flow)
15
và điều khiển (control). Mã dịch ngược assembly là thành phần quan trọng
cho việc trích xuất các byte tuần tự (Byte sequence và Opcode), trong khi
biểu đồ luồng dữ liệu và điều khiển được sử dụng để trích xuất các lời gọi hệ
thống (system calls) và API.
1.5.2. Các loại đặc trưng
Có 8 loại đặc trưng điển hình bao gồm [2]:
Chuỗi byte (bytes sequence): phân tích các chuỗi byte cụ thể trong tệp
tin nhị phân được sử dụng phổ biến trong phân tích tĩnh. Một số công
trình sử dụng chuỗi các byte với kích thước cụ thể và đa số công trình
khác sử dụng n-grams (n-grams là một chuỗi các byte).
Opcodes: opcodes xác định các hoạt động (operation) ở mức máy được
thực thi bởi một file thực thi và có thể được trích xuất thông qua phân
tích tĩnh bằng cách kiểm tra các mã assembly. Chuỗi tuần tự opcode là
một trong những đặc trưng phổ biến được sử dụng, nó đếm số lần xuất
hiện của opcode cụ thể trong assemby.
API và các lời gọi hệ thống (System calls): tương tự opcodes, API và
các lời gọi hệ thống cho phép phân tích hành vi của mã độc nhưng ở
mức cao. Chúng có thể được trích xuất bằng phân tích tĩnh hoặc phân
tích động bằng cách phân tích mã assembly được dịch ngược hoặc một
danh sách các lời gọi hệ thống. Một trong những cấu trúc dữ liệu phổ
biến để biểu diễn hành vi PE và trích xuất cấu trúc chương trình là đồ
thị luồng điều khiển (control flow graph).
Hoạt động mạng (Network activity): một số lượng lớn các thông tin
chính có thể thu được bằng cách quan sát việc tương tác mã thực thi với
mạng. Địa chỉ kết nối và lưu lượng được tạo ra có thể rất có giá trị như
kết nối với một lệnh và trung tâm điều khiển. Một số đặc trưng được sử
dụng như giao thức, cổng TCP/UDP, các yêu cầu HTTP, kết nối DNS....
File system: các hành động của file được thực thi bởi các mã độc là
thành phần cơ bản khi thu thập chứng cứ về sự tương tác của mã độc với
16
môi trường, ví dụ loại file gì được thêm, sữa, xóa, thay đổi; file gì bị
nhiễm mã độc và file chưa bị nhiễm mã độc.
Các thanh ghi CPU (CPU Registers): cách các thanh ghi trong CPU
được sử dụng có thể có giá trị như thanh ghi ẩn nào được sử dụng và các
giá trị gì được lưu trong các thanh ghi, đặc biệt là các cờ (Flasgs).
Các đặc điểm file PE (PE file characteristics): phân tích tĩnh một PE có
thể mang lại tập hợp các thông tin có giá trị như các phần (sections), các
nhập (imports), các ký hiệu (symbols),
Chuỗi ký tự (Strings): một PE có thể được kiểm tra bằng cách tìm kiếm
các ký tự cụ thể như dấu hiệu tác giả, tên file, thông tin hệ thống.
17
CHƯƠNG 2: TỔNG QUAN VỀ HỌC MÁY
2.1. Giới thiệu về học máy
Thời gian gần đây, trí tuệ nhân tạo (AI – Artificial Intelligence) và cụ
thể hơn là học máy (Machine Learning) đang nổi lên như một bằng chứng của
cách mạng công nghiệp lần thứ tư (lần 1 – động cơ hơi nước, lần 2 – năng
lượng điện, lần 3 – công nghệ thông tin). Trí tuệ nhân tạo đang len lỏi vào
mọi lĩnh vực trong đời sống của chúng ta như xẹ tự lái của Google và Tesla,
hệ thống gợi ý sản phẩm của Amazon, hệ thống trợ lý ảo Siri của Apple, hệ
thống gợi ý phim của Netfix....chỉ là một trong những ứng dụng AI/Machine
Learning.
Học máy là một tập con của trí tuệ nhân tạo. Theo định nghĩa của
Wikipedia thì, học máy là một lĩnh vực nhỏ của khoa học máy tính, nó có khả
năng tự học hỏi dựa trên dữ liệu đưa vào mà không cần phải lập trình cụ thể.
Ý tưởng cơ bản của mọi quy trình học máy là xây dựng mô hình dựa
trên một số thuật toán để thực hiện một nhiệm vụ cụ thể như phân loại, phân
lớp, hồi quy... Giai đoạn huấn luyện được thực hiện dựa trên dữ liệu đầu vào
và mô hình được xây dựng để dự đoán đầu ra. Kết quả đầu ra phụ thuộc mục
tiêu ban đầu và việc thực hiện. Chi tiết quy trình học máy gồm các bước như
sau [13]:
Hình 2.1: quy trình học máy