Tải bản đầy đủ (.doc) (23 trang)

Sáng kiến kinh nghiệm Hóa học 12: Bài toán nhiệt hóa học và cân bằng hóa học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (160.74 KB, 23 trang )

BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
A. ĐẶT VẤN ĐỀ
I. LỜI MỞ ĐẦU:
Trong quá trình giảng dạy cho học sinh nhiệm vụ đặt ra cho giáo viên là làm sao có thể
phát triển tư duy cho học sinh, giúp học sinh có thể phát triển tư duy một cách tốt nhất đặc biệt
là trong bộ môn Hóa học (môn học nghiên cứu và sáng tạo). Việc vận dụng các kiến thức lý
thuyết vào trong các bài tập là một quá trình rất tốt để học sinh có thể phát triển tư duy cho học
sinh.
Vậy để học sinh có những kỹ năng như thế ngoài tự học, tự sáng tạo của học sinh thì giáo viên
cũng phải cung cấp cho học sinh những kiến thức cũng như những phương pháp các bài tập phù
hợp với mức độ yêu cầu của các kỳ thi. Trong quá trình giảng dạy đặc biệt là dạy đối tượng học
sinh giỏi chuẩn bị cho các kỳ thi học sinh giỏi các cấp, tôi thấy rằng có một số chuyên đề rất
mới và cần phải đào sâu kiến thức hơn thì hình như học sinh không có tài liệu và việc tự học
sinh nghiên cứu hay tự hệ thống cho mình những kiến thức như vậy là rất khó.Vì vậy thực tế
yêu cầu cần thiết người giáo viên sẽ bổ sung các kiến thức thêm cho học sinh cũng như hệ
thống các kiến thức và hệ thống các dạng bài tập cho học sinh. Với ý định đó, trong sáng kiến
kinh nghiệm (SKKN) này tôi muốn đưa ra hệ thống về lý thuyết cũng như một số dạng bài tập
thuộc chương trình ôn thi học sinh giỏi các cấp về bài toán nhiệt hóa học- cân bằng hóa học . Dĩ
nhiên phương pháp này nó là sự kết hợp giữa lý thuyết mà học sinh tiếp thu được trong quá
trình học tập ở phổ thông.
II. THỰC TRẠNG VẤN ĐỀ NGHIÊN CỨU:
* Thực trạng :
Trong các kỳ thi, đặc biệt trong các kỳ thi quan trọng của học sinh phổ thông đặc biệt là
trong các kỳ thi học sinh giỏi cấp tỉnh trở lên . Vấn đề đặt ra là khi gặp một bài toán ở dạng mới
và hầu như không có nhiều trong chương trình cơ bản ( Bài toán nhiệt động và cân bằng hóa
học) thì học sinh sẽ gặp rất nhiều khó khăn và thường không làm được.
Vì vậy trong quá trình giảng dạy giáo viên phải rèn luyện nghiên cứu và giảng dạy thêm cho
học sinh những kiến thức mới cũng như phương pháp giải các bài tập liên quan cho học sinh
đặc biệt là những kiến thức nâng cao nhằm phục vụ cho các kỳ thi quan trọng.
* Kết quả, hiệu quả:
Với thực trạng nêu trên với những học sinh có kỹ năng tốt sẽ suy luận để đưa ra những


cách giải hợp lý không không giải được. Từ đó ta thấy việc học sinh tự tìm hiểu các kiến thức
mới và tìm ra phương pháp giải các bài tập của học sinh còn nhiều hạn chế và chưa phù hợp với
mức độ của các kỳ thi.
1


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
Trước tình hình đó của học sinh tôi thấy cần thiết phải hình thành cho học sinh thói quen
khi gặp các vấn đề mới mà trong chương trình phổ thông còn hạn chế thì giáo viên phải là
người đưa ra các tình huống nhằm thúc đấy khả năng tự học kiến thức mới và đưa ra các
phương pháp phù hợp. Do đó trong quá trình giảng dạy tôi có đưa ra một phương pháp giải
nhanh bài toán hóa học : Bài toán nhiệt hóa học – cân bằng hóa học.
Trong sáng kiến kinh nghiệm này tôi muốn đưa ra một trong những phần kiến thức và
một số bài tập cơ bản phù hợp với một số kỳ thi. Nội dung được thiết lập và được sử dụng có
hiệu quả, nó được hình thành phát triển và mở rộng thông qua nội dung kiến thức, sự tích lũy
thành những kiến thức căn bản nhất cho học sinh trong chuyên đề.

2


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
B. CÁC BIỆN PHÁP THỰC HIỆN:
- Giáo viên sẽ tiến hành 2 phần riêng cho học sinh:
* PHẦN 1: HƯỚNG DẪN LÝ THUYẾT CƠ BẢN CHO HỌC SINH:
I. Phần 1:
Cung cáp lý thuyết cho học sinh về nhiệt phản ứng và cân bằng hóa học
A. Một số khái niệm cơ sở của nhiệt động học
I. Hệ:
1. Khái niệm:
* Hệ là tập hợp các đối tượng nghiên cứu giới hạn trong một khu vực không gian xác định.

* Hệ mở là hệ có thể trao đổi cả chất và năng lượng với môi trường ngoài.
* Hệ kín là hệ chỉ có thể trao đổi năng lượng mà không trao đổi chất với môi trường ngoài.
* Hệ cô lập là hệ không trao đổi cả chất và năng lượng với môi trường ngoài.
* Hệ đồng thể là hệ mà trong đó không có sự phân chia thành các khu vực khác nhau với
những
tính chất khác nhau. Hệ đồng thể cấu tạo bởi một pha duy nhất.
* Hệ dị thể là hệ được tạo thành bởi nhiều pha khác nhau.
2. Các đại lượng đặc trưng cho tính chất của hệ:
* Các đại lượng dung độ (khuếch độ) là các đại lượng phụ thuộc vào lượng chất như khối
lượng, thể tích …Các đại lượng này có tính chất cộng.
* Các đại lượng cường độ là các đại lượng không phụ thuộc vào lượng chất như nhiệt độ, áp
suất, khối lượng riêng…
B. Hiệu ứng nhiệt của phản ứng
I. Khái niệm: Hiệu ứng nhiệt của một phản ứng hoá học là lượng nhiệt toả ra hay hấp thụ trong
phản ứng đó.
II. Một vài tên gọi hiệu ứng nhiệt:
1. Nhiệt tạo thành (sinh nhiệt), nhiệt phân huỷ:


Nhiệt tạo thành tiêu chuẩn ∆Ho của một chất là hiệu ứng nhiệt của phản ứng tạo thành một
mol chất đó từ các đơn chất ở trạng thái bền vững ở điều kiện tiêu chuẩn.

3


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
* Chú ý: Nhiệt tạo thành tiêu chuẩn ∆Ho của đơn chất ở trạng thái bền vững ở điều kiện tiêu
chuẩn bằng không.



Nhiệt phân huỷ của một chất là hiệu ứng nhiệt của phản ứng phân huỷ một mol chất đó
thành các đơn chất ở trạng thái bền vững ở điều kiện tiêu chuẩn.

Như vậy, nhiệt tạo thành và nhiệt phân huỷ của cùng một chất có giá trị bằng nhau
nhưng trái dấu.
2. Nhiệt cháy (thiêu nhiệt) của một chất: là hiệu ứng nhiệt của phản ứng đốt cháy một mol
chất đó bằng O2 để tạo thành các sản phẩm ở dạng bền vững nhất ở điều kiện tiêu chuẩn.
3. Nhiệt hoà tan của một chất: là hiệu ứng nhiệt của quá trình hoà tan một mol chất đó.
III. Định luật Hess
“Hiệu ứng nhiệt của một phản ứng hoá học chỉ phụ thuộc vào trạng thái đầu của các chất
phản ứng và trạng thái cuối của sản phẩm phản ứng, không phụ thuộc vào các giai đoạn
trung gian, nghĩa là không phụ thuộc vào con đường từ trạng thái đầu tới trạng thái cuối”.
IV. Phương pháp xác định hiệu ứng nhiệt của phản ứng
1. Phương pháp thực nghiệm:
Trong phòng thí nghiệm hoá học, người ta có thể xác định hiệu ứng nhiệt của phản ứng
hoá học bằng cách dùng một dụng cụ gọi là nhiệt lượng kế. Nhiệt lượng kế được bố trí sao cho
không có sự trao đổi nhiệt với môi trường xung quanh. Nó gồm một thùng lớn đựng nước, trong
đó nhúng ngập một bom nhiệt lượng kế, đây là nơi thực hiện phản ứng hoá học. Trong thùng
còn đặt một nhiệt kế để đo sự thay đổi nhiệt độ của nước và một que khuấy để để duy trì cân
bằng nhiệt trong cả hệ.
Phản ứng được thực hiện trong bom nhiệt lượng kế. Nhiệt lượng giải phóng ra (phương
pháp này thường dùng cho các phản ứng toả nhiệt) được nước hấp thụ và làm tăng nhiệt độ của
nhiệt lượng kế từ T1 đến T2. Ta xác định được nhiệt lượng toả ra Q như sau:
Q = C(T2 – T1)

(1)

(C: nhiệt dung của nhiệt lượng kế (J/K))

Từ đó, xác định được hiệu ứng nhiệt của phản ứng.

2. Phương pháp xác định gián tiếp.
Dựa vào định luật Hess, ta có thể xác định gián tiếp hiệu ứng nhiệt của các quá trình đã
cho bằng các cách sau:
(1) Dựa vào chu trình nhiệt hoá học.
4


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
(2) Cộng đại số các quá trình.
(3) Dựa vào sinh nhiệt của các chất:
Hiệu ứng nhiệt của phản ứng bằng tổng sinh nhiệt của các chất sản phẩm trừ tổng sinh
nhiệt của các chất tham gia (có nhân với hệ số tỉ lượng tương ứng).
(4) Dựa vào thiêu nhiệt của các chất:
Hiệu ứng nhiệt của phản ứng bằng tổng thiêu nhiệt của các chất tham gia trừ tổng thiêu
nhiệt của các chất sản phẩm (có nhân với hệ số tỉ lượng tương ứng).
(5) Dựa vào năng lượng phân ly liên kết
Hiệu ứng nhiệt của phản ứng bằng tổng năng lượng phân ly liên kết của tất cả các liên
kết trong các chất tham gia trừ tổng năng lượng phân ly liên kết của tất cả các liên kết trong các
chất sản phẩm (có nhân với hệ số tỉ lượng tương ứng).
B. Nguyên lý I nhiệt động học
I. Nội dung
Nội dung của nguyên lý I nhiệt động học là sự bảo toàn năng lượng:
“Năng lượng không thể sinh ra cũng như không thể tự biến mất mà chỉ có thể chuyển từ
dạng này sang dạng khác”.
II. Nội năng U và entanpi H
* Nội năng của một hệ là tổng năng lượng tồn tại bên trong của hệ, bao gồm: năng
lượng hạt nhân, năng lượng chuyển động của electron trong nguyên tử, năng lượng liên kết,
năng lượng dao động của các nguyên tử, năng lượng chuyển động của phân tử …
* Ta không thể xác định giá trị tuyệt đối nội năng U của hệ mà chỉ xác định được sự
biến thiên nội năng khi hệ chuyển từ trạng thái này sang trạng thái khác. Giả sử ở trạng thái đầu

1, hệ nhận một nhiệt lượng là Q, sinh ra một công là W và chuyển thành trạng thái 2 thì biến
thiên nội năng của hệ là:

∆U = Q + W (Qui ước hệ nhận nhiệt thì Q > 0 và hệ sinh công thì

W < 0).
* Nếu phản ứng xảy ra trong bình kín, dung tích không đổi (quá trình đẳng tích) thì W =
0, khi đó: QV = ∆U.
* Nhưng nhiều phản ứng được thực hiện ở áp suất không đổi là áp suất khí quyển (quá
trình đẳng áp), khi đó: W = - P.∆V
∆U = QP – P.∆V

5


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
QP = ∆U + P.∆V
QP = (U2- U1) + P(V2 – V1)
QP = (U2 + PV2) – (U1 + PV1)
Người ta gọi (U + PV) là entanpi, ký hiệu là H. Do đó :
QP = H2 – H1 = ∆H
Khi áp suất không đổi, lượng nhiệt QP đúng bằng biến thiên entanpi ∆H.
III. Quan hệ giữa QP và QV
Ta có:
QP = ∆U + P.∆V
QP = ∆U + P.(V2 – V1)
QP = ∆U + (n2RT – n1RT)
QP = QV + ∆nRT

(2)


∆n: Độ biến thiên số mol khí
* Chú ý: So với thể tích mol của chất khí, thể tích mol của chất rắn và lỏng rất nhỏ,
không đáng kể. Do đó, biến thiên thể tích của chất rắn và lỏng trong các phản ứng hoá học được
coi bằng không. Vì vậy, khi xét công cơ học ta chỉ chú ý đến biến thiên thể tích của các chất
khí.
IV. Sự phụ thuộc của hiệu ứng nhiệt vào nhiệt độ. Định luật Kirchoff
T2

∆HT 2 = ∆HT 1 +

∫ ∆C

P

dT

T1

(3)

Trong đó:
∆HT i : Hiệu ứng nhiệt của phản ứng ở Ti K
∆CP: Biến thiên nhiệt dung đẳng áp của các chất trong phản ứng.
Nếu nhiệt dung của các chất không phụ thuộc vào nhiệt độ thì ∆CP = Const, khi đó:
(4)
∆HT 2 = ∆HT 1 + ∆CP(T2 – T1)
6



BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
C. Nguyên lý II nhiệt động học
I. Khái niệm entropi
* Về ý nghĩa vật lý, entropi là đại lượng đặc trưng cho mức độ hỗn độn phân tử của hệ
cần xét. Mức độ hỗn độn của hệ càng cao thì entropi của hệ có giá trị càng lớn.
* Đối với quá trình thay đổi trạng thái vật lý của các chất thì nhiệt độ không thay đổi và
nếu áp suất cũng không thay đổi thì biến thiên entropi của quá trình là:
∆S =

∆H
T

(5)

* Đối với phản ứng hoá học, biến thiên entropi là:
∆S =

∑ S (sản phẩm) - ∑ S (chất phản ứng)
(6)

* Chú ý: Entropi tiêu chuẩn của đơn chất bền ở điều kiện tiêu chuẩn không phải bằng
không.
II. Nội dung nguyên lý II nhiệt động học
“Trong bất cứ quá trình tự diễn biến nào, tổng biến thiên entropi của hệ và môi trường
xung quanh phải tăng”.
III. Năng lượng tự do Gibbs
* Các quá trình hoá, lý thường xảy ra trong các hệ kín, tức là có sự trao đổi nhiệt và
công với môi trường xung quanh, do đó, nếu dùng biến thiên entropi để đánh giá chiều hướng
của quá trình thì phức tạp vì phải quan tâm đến môi trường xung quanh. Vì vậy, người ta đã kết
hợp hiệu ứng năng lượng và hiệu ứng entropi của hệ để tìm điều kiện duy nhất xác định chiều

diễn biến của các quá trình tự phát. Năm 1875, nhà vật lý người Mỹ đưa ra đại lượng mới là
năng lượng tự do Gibbs và được định nghĩa: G = H – TS.
* Đối với quá trình đẳng nhiệt, đẳng áp thì:
∆G = ∆H –T.∆S

(7)

Trong hệ thức này, ∆G, ∆H và ∆S đều chỉ liên quan đến hệ cần xét.

7


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
∆G gọi là biến thiên thế đẳng nhiệt, đẳng áp (thường nói gọn là biến thiên thế đẳng áp hoặc
entanpi tự do hoặc năng lượng tự do Gibbs) là tiêu chuẩn để đánh giá quá trình có xảy ra hay
không?
Nếu ∆G < 0 thì quá trình tự xảy ra.
Nếu ∆G = 0 thì hệ ở trạng thái cân bằng.
Nếu ∆G > 0 thì quá trình không xảy ra (nhưng quá trình ngược lại sẽ tự xảy ra)
IV. Biến thiên thế đẳng áp trong các phản ứng hoá học
1. Thế đẳng áp hình thành tiêu chuẩn của một chất (∆ Go)
* Thế đẳng áp hình thành tiêu chuẩn của một chất là biến thiên thế đẳng áp của quá trình
hình thành một mol chất đó từ các đơn chất ở trạng thái bền vững ở điều kiện tiêu chuẩn.
* Chú ý: ∆Go của các đơn chất ở trạng thái bền vững ở điều kiện tiêu chuẩn bằng không.
(∆Go các chất có trong các tài liệu tra cứu).
2. Biến thiên thế đẳng áp của phản ứng hoá học
∆G =

∑ ∆G (sản phẩm) - ∑ ∆G (chất phản ứng)


(8)

∆G = ∆H – T.∆S
(9)
* Chú ý:


Người ta qui ước tại mọi nhiệt độ, ∆Ho(H+.aq) = 0 và ∆Go(H+.aq) = 0, nghĩa là phản ứng:
1/2H2(k) - 1e + H2O → H+(aq) có ∆Ho = 0 và ∆Go = 0
Từ đó xác định được ∆Ho và ∆Go của các ion khác trong dung dịch.



Người ta cũng thống nhất qui ước So(H+.aq) = 0 tại mọi nhiệt độ và từ đó cũng lập được
bảng So cho các ion khác trong dung dịch.

D. Cân bằng hoá học
I. Hằng số cân bằng
Xét phản ứng thuận nghịch: aA + bB

cC + dD

Người ta đã thiết lập được biến thiên thế đẳng nhiệt, đẳng áp của phản ứng là:

8


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
∆G = ∆G + RTln
o


aC .a D

c

d

a

b

a A .a B

(10)

trong đó:
∆Go: Biến thiên thế dẳng nhiệt, đẳng áp của phản ứng.
ai: Hoạt độ cấu tử i.
- Nếu i là chất khí thì ai = Pi / Po (Po là áp suất tiêu chuẩn và bằng 1 atm)
- Nếu i là chất tan trong dung dịch thì ai = Ci / Co (Co là nồng độ tiêu chuẩn và bằng 1M)
- Nếu i là dung môi hoặc chất rắn thì ai = 1.
Khi phản ứng đạt đến trạng thái cân bằng thì ∆G = 0, do đó:
 aC c .a D d
∆G = - RTln  a b
 a A .a B
o





 CB

(11)

(CB chỉ các cấu tử ở trạng thái cân bằng)

Đối với một phản ứng nhất định, tại một nhiệt độ xác định, ∆Go là một hằng số nên từ
(11) suy ra đại lượng sau dấu ln cũng là một hằng số, đại lượng này gọi là hằng số cân bằng
nhiệt động, ký hiệu là Ka.
 aC c .a D d
Ka =  a b
 a A .a B




 CB

(12)

(Khi không sợ nhầm lẫn thì không cần ghi ký hiệu CB ở chân)
Đặt Q =

aC .a D

c

d

a


b

a A .a B

(13)

(Q được gọi là hàm hoạt độ hay thương số phản ứng)
Từ (10) đến (13) suy ra:
∆G = RTln

Q
Ka

(14)

Do đó:
* Nếu Q < Ka, phản ứng xảy ra theo chiều thuận
* Nếu Q > Ka, phản ứng xảy ra theo chiều nghịch
* Nếu Q = Ka, phản ứng đang ở trạng thái cân bằng

9


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
II. Các biểu thức tính hằng số cân bằng
1. Hằng số cân bằng theo áp suất (Kp)
Xét phản ứng thuận nghịch xảy ra trong pha khí:
aA(k) + bB(k)
Kp =


PC .PD

c

d

a

b

PA .PB

cC(k) + dD(k)
(15)

(Pi: Giá trị áp suất riêng phần của cấu tử i ở TTCB tính

theo atm)
Pi = xi.P = niRT/V
2. Hằng số cân bằng theo nồng độ mol (KC)
Xét phản ứng đồng thể (xảy ra trong dung dịch hay pha khí):
aA + bB
KC =

[ C ] c .[ D] d
[ A] a .[ B] b

cC + dD
(16)


([i]: Giá trị nồng độ mol của cấu tử i ở TTCB)

* Chú ý: Đối với phản ứng xảy ra trong pha khí thì:
KP = KC.(RT)∆n

(17)

(∆n = (c + d) – (a + b); R = 0,082)

3. Đại lượng Kx
Xét phản ứng đồng thể: aA + bB
Kx =

x C .x D

c

d

a

b

x A .x B

(18)

(xi =


cC + dD
ni

∑n

)

Đối với phản ứng xảy ra trong pha khí thì:
KP = Kx.(P)∆n

(19)

(P: Ấp suất chung của hệ)

KP phụ thuộc vào nhiệt độ nên từ (19) cho thấy K x không những phụ thuộc vào nhiệt độ
mà còn phụ thuộc vào cả áp suất chung của hệ. Chỉ trong trường hợp ∆n = 0, Kx = Kp, thì Kx
mới không phụ thuộc vào áp suất chung của hệ.
* Chú ý: Khi ∆n = 0 thì: KP = KC = Kx
10


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
4. Hằng số cân bằng của phản ứng oxi hoá khử:
Xét bán phản ứng:

aOx + ne

bKh

Ta có:

∆Go = -RTlnK = -nFEo


lgK =

F
nEo
2,303.RT

Ở 25oC (298K) thì

1
F
=
, khi đó:
0,059(2)
2,303.RT

nE o
lgK =
0,059
K = 10 nE

o /0,059

(20)

Xét phản ứng oxi hoá - khử gồm hai bán phản ứng sau:
o /0,059


aOx1 + ne

bKh1

K1 = 10 nE 1

cKh2 - me

dOx2

K2 = 10 – mE 2

maOx1 + ncKh2

o /0,059

mbKh1 + ndOx2

Xm
Xn

K = 10 mn(E 1

o -E o )/0,059
2

III. Sự phụ thuộc hằng số cân bằng vào nhiệt độ
Ta có:
∆Go = ∆Ho – T.∆So = - RTlnK



lnK = -

∆H o
∆S o
+
RT
R

Gọi K1, K2 là hằng số cân bằng của phản ứng ở T1K và T2K
Giả sử ∆Ho và ∆So của phản ứng không phụ thuộc vào nhiệt độ thì:
∆H o
∆S o
lnK1 = +
RT1
R

11


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
∆H o
∆S o
lnK2 = +
RT2
R



ln


K2
∆H ° 1
1
( − )
=
R T1 T2
K1

(21)

(Công thức Van’t Hoff)

IV. Sự chuyển dịch cân bằng
1. Khái niệm về sự chuyển dịch cân bằng
Cân bằng hoá học là một cân bằng động, được đặc trưng bởi các giá trị hoàn toàn xác
định của các thông số như nhiệt độ, nồng độ, áp suất của các cấu tử trong hệ. Nếu người ta thay
đổi một hoặc nhiều thông số này thì trạng thái của hệ bị thay đổi, cân bằng hoá học của hệ bị
phá vỡ. Sau một thời gian, hệ sẽ chuyển đến trạng thái cân bằng mới. Hiện tượng này gọi là sự
chuyển dịch cân bằng.
2. Ảnh hưởng của sự thay đổi nồng độ các chất
Xét phản ứng đồng thể đang ở trạng thái cân bằng: aA + bB

cC + dD

* Nếu tăng nồng độ chất phản ứng A, B hoặc giảm nồng độ chất tạo thành C, D thì Q <
K nên cân bằng chuyển dịch theo chiều thuận.
* Nếu giảm nồng độ chất phản ứng A, B hoặc tăng nồng độ chất tạo thành C, D thì Q >
K nên cân bằng chuyển dịch theo chiều nghịch.
Kết luận: Cân bằng chuyển dich theo chiều chống lại sự thay đổi nồng độ các chất.

3. Ảnh hưởng của sự thay đổi áp suất (nhiệt độ không thay đổi)
Ở đây ta chỉ xét sự thay đổi áp suất chung của cả hệ đến sự chuyển dịch cân bằng. Ảnh
hưởng của sự thay đổi áp suất riêng của từng cấu tử giống như ảnh hưởng của sự thay đổi nồng
độ.
Xét phản ứng thuận nghịch xảy ra trong pha khí:
aA(k) + bB(k)

cC(k) + dD(k)

Ta có:
Kx = Kp(P)-∆n (P: Áp suất chung của hệ ở trạng thái cân bằng)
* ∆ n > 0:

12


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
Vì KP là hằng số ở nhiệt độ xác định nên khi P tăng thì K x giảm, suy ra cân bằng chuyển
dịch theo chiều nghịch hay là chiều có số phân tử khí ít hơn.
* ∆ n < 0:
Khi P tăng thì Kx tăng, suy ra cân bằng chuyển dịch theo chiều thuận hay là chiều có số
phân tử khí ít hơn.
Kết luận: Khi tăng áp suất của hệ ở trạng thái cân bằng, cân bằng sẽ chuyển dịch về
phía có số phân tử khí ít hơn và ngược lại.
* ∆ n = 0:
Khi đó, Kx = Kp, Kx không phụ thuộc vào áp suất chung của hệ ở trạng thái cân bằng nên
sự thay đổi áp suất không làm chuyển dịch cân bằng.
4. Ảnh hưởng của sự thay đổi nhiệt độ
Ta có:
∆Go = ∆Ho – T.∆So = - RTlnK



lnK = -

∆H o
∆S o
+
RT
R

∆Ho, ∆So thường ít phụ thuộc vào nhiệt độ nên:
* ∆ Ho < 0 (Phản ứng toả nhiệt):
Khi T tăng thì lnK giảm, tức là K giảm, suy ra cân bằng chuyển dịch theo chiều nghịch,
tức là chiều thu nhiệt.
* ∆ Ho > 0 (Phản ứng thu nhiệt)
Khi T tăng thì lnK tăng, tức là K tăng, suy ra cân bằng chuyển dịch theo chiều thuận, tức
là chiều thu nhiệt.
Kết luận: Khi tăng nhiệt độ, cân bằng chuyển dịch theo chiều thu nhiệt và ngược lại.
5. Nguyên lý chuyển dịch cân bằng Le Chatelier
Một phản ứng đang ở trạng thái cân bằng khi tác động các yếu tố bên ngoài ( Nồng độ,
nhiệt độ, áp suất) thì cân bằng chuyển dịch theo chiều chống lại các tác động đó.
PHẦN 2: HƯỚNG DẪN HỌC SINH MỘT SỐ BÀI TẬP ÁP DỤNG:
* Một số bài tập nhiệt hóa học:
Ví dụ 1:
13


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
Tính ∆H S , 2980 C cña Cl-(aq). Biết:
(a):


1
1
H2 + Cl2(k) ←
→ HCl(k)
2
2

∆H S , 2980 C = -92,2(kJ)
∆H S , 2980 C = -75,13(kJ)

(b): HCl(k) + aq ←
→ H+(aq) + Cl-(aq)
(c):

1
H2 + aq ←
→ H+(aq) + e
2

∆H So, 298 = 0

Lời giải:
Lấy: (a) + (b) – (c) ta được :

1
Cl2 + e + aq = Cl-(aq) ∆H S , 2980 C = - 167,33(kJ)
2

Ví dụ 2:

Tính hiệu ứng nhiệt của phản ứng :
3Fe(NO3)2(aq) + 4HNO3(aq) ←
→ 3Fe(NO3)3(aq) + NO(k) + 2H2O (l)
Diễn ra trong nước ở 250 C. Cho biết:
Fe2+(aq)

Fe3+(aq)

NO3-(aq)

NO(k)

H2O(l)

∆H S , 2980 C (kJ/mol) -87,86

- 47,7

-206,57

90,25

-285,6

Lời giải:
Phương trình ion của phản ứng :
3Fe2+(aq) + 4H+(aq) + NO3-(aq) ←
→ 3Fe3+(aq) + NO(k) + 2H2O (l)
∆ H=3. ∆H 0 S , 298 (Fe3+,aq)+ ∆H 0 S , 298 (NO)+2. ∆H 0 S , 298 (H2O(l))-3. ∆H 0 S , 298 (Fe2+,aq)- ∆H 0 S , 298 (NO3-,
)


aq

= 3.(-47,7) + 90,25 + 2.(-285,6) + 3.87,6 + 206,57 = -153,9(kJ)
Ví dụ 3: Tính ∆Ho của các phản ứng sau:
1) Fe2O3(r) + 2Al(r) 
→ 2Fe(r) + Al2O3(r) ( 1)
Cho biết ∆H 0 S , Fe2O3r = -822,2 kJ/mol;
2) S(r) +
Biết:

3
O2(k) 
→ SO3(k)
2

(3) : S(r) + O2(k) 
→ SO2(k)

∆H 0 S , Al2O3 r = -1676 (kJ/mol)
(2)
∆H 0 298 = -296,6 kJ

14


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
(4): 2SO2(k) + O2(k) 
→ 2SO3(k)


∆H 0 298 = -195,96 kJ

Từ kết quả thu được và khả năng diễn biến thực tế của 2 phản ứng trên có thể rút ra kết luận gì?
Lời giải:
1)
2)

o
∆H pu
(1)

o
∆H pu
( 2)

0
0
= ∆H S , Al2O3 r - ∆H S , Fe2O3r = -1676 + 822,2 = - 853,8(kJ)

=

o
∆H pu
( 3)

1 ∆H o
1
pu ( 4 )
+ 2
= -296,6 - 2 .195,96 = -394,58 (kJ)


KL: Hai phản ứng (1) , (2) đều tỏa nhiệt mạnh. Song thực tế 2 phản ứng trên không tự xảy ra.
Như vậy chỉ dựa vào ∆H không đủ để xác định chiều hướng của một quá trình hóa học.
Ví dụ 4: Tính hiệu ứng nhiệt đẳng tích tiêu chuẩn của các phản ứng sau ở 250C
a) Fe2O3(r) + 3CO(k) 
→ 2Fe(r) + 3CO2(k)

∆H 0 298 = 28,17 (kJ)

b) Cthan ch× + O2(k) 
→ CO2 (k)

∆H 0 298 = -393,1(kJ)

c) Zn(r) + S(r) 
→ ZnS(r)

∆H 0 298 = -202,9(kJ)

d) 2SO2(k) + O2(k) 
→ 2SO3(k)

∆H 0 298 = -195,96 (kJ)

Lời giải:
Ta có biểu thức ∆ H = ∆ U + ∆ n.RT
Do các phản ứng a), b), c) có ∆ n = 0 nên ∆ Uo = ∆ Ho
Phản ứng d): ∆ Uo = ∆ Ho - ∆ n.RT = -195,96+1.8,314. 298,15. 10-3 = -193,5 (kJ)
* Một số bài tập cân bằng hóa học:
Ví dụ 1 : Cho 1 (mol) PCl5 vào bình chân không thể tích V đưa lên nhiệt độ 525 0K :

PCl5(k) ←
→ PCl3(k) + Cl2(k)

(1)

Được thiết lập với Kp = 1,86 và áp suất của hệ là 2 atm.
a. Tính số mol mỗi chất tại cân bằng
b. Cho 1 mol PCl 5 và 1 mol He vào bình kín trên ở 525 0K. Tính số mol mỗi chất tại cân bằng
và cho nhận xét?
Lời giải:
PCl5(k)
Ban đầu

1 mol

←→

PCl3(k)
0

+

Cl2(k)

(1)

0

15



BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
Phản ứng:

x mol

x mol

x mol

Cân bằng 1-x mol

x mol

x mol

Vậy nhh sau phản ứng = (1-x) + x + x = 1+x (mol)
1− x
Ta có PPCl 5 = 1 + x .2

x
x
; pPCl 3 = 1 + x .2 và PCl 2 = 1 + x .2

Áp dụng biểu thức : Kp =

PPCl3 .PCl2
PPCl5

. Ta có


2x 2
= 1,86
1− x2

Giải phương trình ta có x = 0,694(mol)
Vậy tại cân bằng số mol của PCl5(k) ;PCl3(k) và Cl2(k) lần lượt là: 0,306 ; 0,694 và 0,694 mol
b, Tại cân bằng câu a ta có nhh sau = 1+ x
nên V(bình) =

(1 + x).0,082.525
= 36,44 (lít)
Phê

vậy theo câu b, nếu có thêm 1 mol He thì nhh sau = 2+x
Phệ =

(2 + x ).0,082.525
. Tương tự chúng ta tính được P PCl 5 ; PPCl 3 và PCl 2 tại cân bằng, thay
36,44

vào Kp của hệ nữa ta có biểu thức:
x 2 0,082.525
.
= 1,85.
36,44
1− x
Giải phương trình ta được x = 0,692 mol( t/mãn)
Vậy tại cân bằng mới thì số mol của PCl5(k) ;PCl3(k) và Cl2 lần lượt là 0,308; 0,692 và 0,692 mol
KL: Bài toán đúng với nguyên lý chuyển dịch cân bằng hóa học

Ví dụ 2: Có cân bằng : CO(K) + H2O(Hơi) ←
→ H2(K) + CO2(K) (1)
Cho vào bình phản ứng 6 (mol) hơi H2O và 1 mol CO ở 4600C thì thấy có 95%CO đã phản ứng.
a. Tính Kp của cân bằng trên ở 4600C
b. Cho ∆H của phản ứng ở nhiệt độ trên là – 41,0 (KJ/mol). Tìm nhiệt độ mà tại đó có 99% CO
bị phản ứng?
Lời giải:
a.

CO(K) + H2O(Hơi) ↔ H2(K) + CO2(K) (1)

16


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
ban đầu

1 mol

6 mol

0

0

Phản ứng:

0,95

0,95


0,95

0,95 mol

Cân bằng

0,05

5,05

0,95

0,95 mol

Ta có Kp =

PCO 2 .PH 2
nCO 2 .n H 2
=
PCO .PH 2O
nCO .n H 2O

Do ∆n =0

Thế các giá trị vào ta có : Kp = 3,574
b. Ta có ở nhiệt độ 4600C có Kp1 = 3,574
0,99.0,99
= 19,56
0,01.5,01

∆H ° 1
1
( − )
=
R T1 T2

Tương tự ở t20C ta có với 99% CO bị phản ứng thì : Kp2 =
Áp dụng biểu thức (21) ta có :

ln

K2
K1

Với K2 = 19,56 ở t20C và K1 = 3,574 ở 4600C ta có
ln

1
19,56
− 41,0
1
=
(
.
3,574
8,134 460 + 273 t 2 + 273)

Giải phương trình ta thu được t2 = 5850C
Ví dụ 3(Đề thi casio khu vực năm 2011-2012):
Cho cân bằng : N2(k) + 3H2(k) ←

→ 2NH3(k)

∆ H = -92KJ/mol

Nếu xuất phát từ hỗn hợp ban đầu là N 2 và H2 theo đúng tỉ lệ mol là 1: 3 thì khi đạt đến trạng
thái cân bằng ở 4500C và 300atm, NH3 chiếm 36% thể tích hỗn hợp
a. Tính hằng số Kp của cân bằng trên?
b. Tiến hành như trên vẫn ở nhiệt độ 450 0C, cần phải tiến hành ở áp suất bao nhiêu để khi đạt
cân bằng NH3 chiếm 50% thể tích hỗn hợp?
c. Giữ áp suất không đổi ở 300atm vậy cần phải tiến hành ở nhiệt độ bao nhiêu để khi cân bằng
NH3 chiếm 50% thể tích hỗn hợp?
Lời giải:
a. Giả sử số mol sau phản ứng là 1 mol. Vậy số mol của NH 3, N2 H2 lần lượt là : 0,36 ;
0,48 và 0,16 mol tương ứng với x3 , x2 , x1 (mol)
Thay vào biểu thức Kp =

x23
3

x1 x 2 . p 2

=

0,36 2
= 8,138.10-5
0,16.0,48 3.300 2
17


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC

b. Theo điều kiện cân bằng khi NH3 chiếm 50% thể tích (hay số mol) hỗn hợp thì : Vậy số mol
của NH3, N2 H2 lần lượt là : x3 = 0,50 ; x1 = 0,125 và x2 = 0,375
- Vì ở nhiệt độ không đổi nên Kp không đổi, thay vào biểu thức Kp ta có:
Kp =

0,50 2
= 8,138.10-5 .
0,125.0,375 3. p 2

Giải phương trình ta thu được p = 680atm
c. Áp dụng biểu thức tương tự như câu b ví dụ 2 ta có ngay t = 3800C
* Một số bài tập trong các đề thi:
Bài tập 1:( Đề thi casio khu vực 2008): Tại 4000C, P = 10atm phản ứng:

→ 2NH3 (k) có Kp = 1,64 × 10−4.
N2(k) + 3H2(k) ¬


Tìm % thể tích NH3 ở trạng thái cân bằng, giả thiết lúc đầu N2(k) và H2(k) có tỉ lệ số mol theo
đúng hệ số của phương trình
Bài tập 2:(Đề thi casio khu vực 2008):
Nitrosyl clorua là một chất rất độc, khi đun nóng sẽ phân huỷ thành nitơ monoxit và clo.
a) Hãy viết phương trình cho phản ứng này
b) Tính Kp của phản ứng ở 298K(theo atm và theo Pa).
Nitrosyl clorua

Nitơ monoxit

Cl2


∆H 0
298 (kJ/mol)

51,71

90,25

?

S0
298 (J/K.mol)

264

211

223

c) Tính gần đúng Kp của phản ứng ở 475K
Bài tập 3:(Đề thi casio khu vực 2008 dự bị):
Cho các số liệu nhiệt động của một số phản ứng sau ở 298K
Số phản ứng

Phản ứng

∆Ho298 (kJ)

(1)

2NH3 + 3N2O → 4N2 + 3H2O


− 1011

(2)

N2O + 3H2

→ N2H4 + H2O

− 317

18


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
2NH3 + 0,5O2 → N2H4 + H2O

(3)
(4)

H2

− 143

+ 0,5 O2 → H2O

− 286

S0298 (N2H4) = 240 J/K.mol ; S0298 (H2O) = 66,6 J/K.mol
S0298 (N2)


= 191 J/K.mol ; S0298 (O2)

= 205 J/K.mol

a) Tính nhiệt tạo thành ∆Ho298 của N2H4 ; N2O và NH3.
b) Viết phương trình của phản ứng cháy Hidrazin và tính ∆Ho298 , ∆Go298 và hằng số cân bằng K
của phản ứng này.
Bài tập 4:(Đề thi casio khu vực 2008 dự bị):
Tại 250C, phản ứng:

→ CH3COOC2H5 + H2O có hằng số cân bằng K = 4
CH3COOH + C2H5OH ¬


Ban đầu người ta trộn 1,0 mol C2H5OH với 0,6 mol CH3COOH. Tính số mol este thu được khi
phản ứng đạt tới trạng thái cân bằng.
Bài tập 5:( Đề thi casio Thanh hóa năm 2011-2012):
Thực hiện phản ứng: N2O4 ⇔ 2NO2 ở áp suất 1atm, với độ phân li là 11%
a) Tính hằng số cân bằng Kp theo atm và pa
b) Độ phân li sẽ thay đổi như thế nào khi áp suất của hệ giảm đi từ 1 atm xuống 0,8 atm.
Từ đó rút ra nhận xét về sự ảnh hưởng của áp suất đến phản ứng.
Bài tập 6 :(Đề thi casio tỉnh Đồng Tháp năm học 2011-2012):
Ở 100 0C hằng số cân bằng của phản ứng:


→ 2NO2(k) là 4
N2O4(k) ¬




Tính thành phần phần trăm số mol của hỗn hợp khi áp suất chung của hệ lần lượt là 2atm
và 20 atm.
Từ đó hãy rút ra kết luận về ảnh hưởng của áp suất đến sự chuyển dịch cân bằng.
Bài tập 7: ( Đề thi casio tỉnh Quảng Ngãi năm học 2009-2010):
Xác định nhiệt hình thành của AlCl3. Biết:
(1)Al2O3 (r) + 3COCl2 (k) →3CO2 (k) + 2AlCl3 (r), ∆H1 =− 232,24kJ

19


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
(2)CO (k) + Cl2 (k) →COCl2 (k) , ∆H2 =− 112,40kJ
(3)2Al (r) + 1,5O2 (k) →Al2O3 (r), ∆H3 =− 1668,20kJ
(4)Nhiệt hình thành của CO là −110,40 kJ/mol
(5)Nhiệt hình thành của CO2 là −393,13 kJ/mol
Bài tập 8:( Đề thi casio khu vực 2010)::
Tính nhiệt tạo thành chuẩn của phản ứng ( ở 250C):
(NH2)2 CO (r) + H2O(l) →CO2(k) + 2NH3(k) . Biết ở cùng điều kiện thì:
CO(k) + H2O(k) →CO2(k) + H2O(k)

-41,13 KJ

CO(k) + Cl2(k) →COCl2(k)

-112,5KJ

COCl2(k) + 2NH3(k) → (NH2)2 CO (r) + 2HCl(k) -201KJ
Nhiệt tạo thành HCl(k) = -92,3 KJ/mol.
Nhiệt hóa hơi H2O (2980K) là 40,01KJ/mol


20


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
MỘT VÀI KẾT QUẢ THU ĐƯỢC SAU BÀI KIỂM TRA:
- Để biết được hiệu quả của quá trình trên tôi tiến hành thực hiện giảng dạy và kiểm tra trên với
2 đối tượng học sinh thuộc 2 lớp khác nhau nhưng mức độ học tập tương đương ( Lớp 12A1 và
12A2 của trường THPT Hoằng Hóa 3) giữa một lớp (12A1) được nghiên cứu bài toán với lớp
(12A2) chưa được nghiên cứu. Tôi thu được những kết quả như sau:
+ Đối với các em lớp 12A2 khi chưa nghiên cứu thì hầu như học sinh không nắm bắt được các
cách làm dạng bài tập phần này
+ Đối với các em ở lớp 12A1 sau khi nghiên cứu xong vấn đề việc các em vận dụng vào các
bài toán tương đối dễ dàng và thu được các kết quả cao khi gặp các bài toán liên quan.
BẢNG THỐNG KÊ KẾT QUẢ KHI SO SÁNH Ở 2 LỚP NHƯ SAU:
Lớp

Sĩ số

% HS loại giỏi

%HS loại khá

%HS loại TB

%HS loại yếu-kém

12A2

50


0%

9%

13%

88%

12A1

50

50%

42%

5%

3%

Qua đó ta thấy việc giáo viên đưa ra những tình huống những kiến thức mới, dạy học sinh
thông qua các chuyên đề là rất cần thiết, đặc biệt với các đối tượng học sinh giỏi khi các em
tham gia các kỳ thi học sinh giỏi.
Tài liệu tham khảo:
- Giáo trình hóa lý tập 1,2 – NXB Giáo dục năm 2000(Nguyễn Đình Huề)
- Một số đề thi casio khu vực, các tỉnh và đề thi HSG quốc gia

21



BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
C. KẾT LUẬN
I. KẾT QUẢ THU ĐƯỢC:
Sau một thời gian kiểm nghiệm trên các đối tượng học sinh đã được nghiên cứu vấn đề cụ thể
mà tôi đưa ra tôi thấy ở học sinh có sự phát triển tư duy, có khả năng phát triển tư duy và bổ
sung những kiến thức, phương pháp làm các bài toán trong các kỳ thi hóa học. Ngoài thiết lập
cho học sinh kiến thức về một vấn đề như thế, tôi thấy còn hình thành cho học sinh rằng kiến
thức hóa học rất phong phú cần phải nghiên cứu nhiều, giúp hình thành cho học sinh những suy
nghĩ cần phải tự tìm tòi sáng tạo. Điều đó phản ánh hiệu quả của việc dạy học tích cực kết hợp
với sự tư duy sáng tạo của học sinh. Đó cũng chính là mục đích hiện thân của báo cáo sáng kiến
kinh nghiệm này.
Vấn đề đưa ra phù hợp với nhu cầu và mức độ của kỳ thi hiện nay, được áp dụng với rất nhiều
dạng toán hóa học khác nhau. Khi nghiên cứu phương pháp học sinh được cung cấp những kiến
thức quan trọng và khi vận dụng sẽ cho hiệu quả xác đáng. Để chuyên đề được học sinh nắm
vững một cách hiệu quả thì trước hết yêu cầu học sinh phải nắm vững các lý thuyết cũng như
nhìn nhận bản chất của các quá trình hóa học xảy ra. Sau đó giáo viên đưa ra những tình huống
có vấn đề, yêu cầu học sinh sáng tạo và đưa ra những phương hướng giải quyết dưới sự hướng
dẫn của giáo viên.
II. KIẾN NGHỊ:
Qua sự thành công bước đầu của phương pháp này thiết nghĩ rằng chúng ta cần phải có sự
nghiên cứu và hình thành đưa ra những chuyên đề cụ thể giúp học sinh có đủ các kiến thức
phục vụ các kỳ thi một cách có kết quả có hệ thống. Chúng ta không nên chỉ dạy những kiến
thức SGK mà chúng ta cần phải đưa ra những kiến thức mới phù hợp với mức độ yêu cầu cao
của các kỳ thi. Để rồi hình thành cho học sinh những thói quen không tốt khi nghiên cứu một
vấn đề, đó là sự bằng lòng với những kiến thức đã có mà không tự tìm tòi các kiến thức mới.
Do đó trong quá trình giảng dạy tôi luôn đưa học sinh vào những tình huống có vấn đề rồi yêu
cầu học sinh tự hình thành cho mình những kiến thức mới có hiệu quả cụ thể trong các kỳ thi.
Sáng kiến kinh nghiệm này là một phần nhỏ của bản thân thu được trong quá trình giảng dạy
trong một phạm vi nhỏ hẹp. Vì vậy việc phát hiện những ưu nhược điểm chưa được đầy đủ và

sâu sắc. Mong rằng báo cáo kinh nghiệm này các đồng nghiệp cho tôi thêm những ý kiến phản
hồi những ưu nhược điểm của chuyên đề này. Cuối cùng tôi mong chuyên đề này sẽ được các
đồng nghiệp nghiên cứu và áp dụng một cách hiệu quả trong thực tiễn để rút ra những điều bổ
ích.

22


BÀI TOÁN NHIỆT HÓA HỌC VÀ CÂN BẰNG HÓA HỌC
Bài viết chắc chắn không thể thiếu thiếu sót rất mong được sự đóng góp ý kiến, phê bình, phản
hồi của các đồng nghiệp.
Xác nhận của Hiệu Trưởng

Hoằng Hóa, Ngày 12/5/2013
Tôi xin cam đoan đây là SKKN của mình
viết, không sao chép nội dung của người khác
Người thực hiện

Lê Văn Cường

23



×