Tải bản đầy đủ (.doc) (1 trang)

ĐỀ THI HỌC SINH GIỎI LỚP 6.2.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (57.33 KB, 1 trang )

ĐỀ THI HỌC SINH GIỎI
* Môn thi : Toán * Thời gian : 150 phút * Khóa thi : 2002 - 2003
Câu 1 : (4 điểm)
a) Tìm phân số tối giản lớn nhất mà khi chia các phân số cho phân
số ấy ta được kết quả là các số tự nhiên.
b) Cho a là một số nguyên có dạng : a = 3b + 7. Hỏi a có thể nhận những giá trị nào
trong các giá trị sau ? Tại sao ? a = 11 ; a = 2002 ; a = 2003 ; a = 11570 ; a =
22789 ; a = 29563 ; a = 299537.
Câu 2 : (6 điểm)
1) Cho : A = 1 - 2 + 3 - 4 + ... + 99 - 100.
a) Tính A.
b) A có chia hết cho 2, cho 3, cho 5 không ?
c) A có bao nhiêu ước tự nhiên ? Bao nhiêu ước nguyên ?
2) Cho A = 1 + 2 + 2
2
+ 2
3
+ 2
4
+ ... + 2
2001
+ 2
2002
và B = 2
2003
. So sánh A và B.
3) Tìm số nguyên tố P để P + 6 ; P + 8 ; P + 12 ; P + 14 đều là các số nguyên tố.
Câu 3 : (4 điểm)
Có 3 bình, nếu đổ đầy nước vào bình thứ nhất rồi rót hết lượng nước đó vào 2 bình
còn lại, ta thấy : Nếu bình thứ hai đầy thì bình thứ ba chỉ được 1/3 dung tích. Nếu
bình thứ ba đầy thì bình thứ hai chỉ được 1/2 dung tích. Tính dung tích của mỗi


bình, biết rằng tổng dung tích ba bình là 180 lít.
Câu 4 : (4 điểm)
Cho tam giác ABC có BC = 5,5 cm. Điểm M thuộc tia đối của tia CB sao cho CM
= 3 cm.
a) Tính độ dài BM.
b) Biết  BAM = 80
0
,  BAC = 60
0

c) Tính độ dài BK thuộc đoạn BM biết CK = 1 cm.
Câu 5 : (2 điểm)
Cho a = 1 + 2 + 3 + ... + n và b = 2n + 1 (với n thuộc N, n > 1).
Chứng minh : a và b là hai số nguyên tố cùng nhau.

×