Tải bản đầy đủ (.pdf) (6 trang)

A two-factor model (Duffie & Kan)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.39 KB, 6 trang )

Chapter 32
A two-factor model (Duffie & Kan)
Let us define:
X
1
t=
Interest rate at time
t
X
2
t=
Yield at time
t
on a bond maturing at time
t + 
0
Let
X
1
0  0
,
X
2
0  0
be given, and let
X
1
t
and
X
2


t
be given by the coupled stochastic
differential equations
dX
1
t=a
11
X
1
t+a
12
X
2
t+b
1
 dt + 
1
q

1
X
1
t+
2
X
2
t+dW
1
t;
(SDE1)

dX
2
t=a
21
X
1
t+a
22
X
2
t+b
2
 dt + 
2
q

1
X
1
t+
2
X
2
t+ dW
1
t+
q
1,
2
dW

2
t;
(SDE2)
where
W
1
and
W
2
are independent Brownian motions. To simplify notation, we define
Y t
4
= 
1
X
1
t+ 
2
X
2
t+;
W
3
t
4
= W
1
t+
q
1,

2
W
2
t:
Then
W
3
is a Brownian motion with
dW
1
t dW
3
t= dt;
and
dX
1
dX
1
= 
2
1
Y dt; dX
2
dX
2
= 
2
2
Y dt; dX
1

dX
2
= 
1

2
Y dt:
319
320
32.1 Non-negativity of
Y
dY = 
1
dX
1
+ 
2
dX
2
=
1
a
11
X
1
+ 
1
a
12
X

2
+ 
1
b
1
 dt +
2
a
21
X
1
+ 
2
a
22
X
2
+ 
2
b
2
 dt
+
p
Y 
1

1
dW
1

+ 
2

2
dW
1
+ 
2
q
1 , 
2

2
dW
2

=
1
a
11
+ 
2
a
21
X
1
+
1
a
12

+ 
2
a
22
X
2
 dt +
1
b
1
+
2
b
2
 dt
+
2
1

2
1
+2
1

2

1

2
+ 

2
2

2
2

1
2
q
Y t dW
4
t
where
W
4
t=

1

1
+
2

2
W
1
t+
2
p
1,

2

2
W
2
t
q

2
1

2
1
+2
1

2

1

2
+ 
2
2

2
2
is a Brownian motion. We shall choose the parameters so that:
Assumption 1: For some


,

1
a
11
+ 
2
a
21
= 
1
; 
1
a
12
+ 
2
a
22
= 
2
:
Then
dY =
1
X
1
+ 
2
X

2
+   dt +
1
b
1
+
2
b
2
,  dt
+
2
1

2
1
+2
1

2

1

2
+ 
2
2

2
2


1
2
p
YdW
4
=Y dt +
1
b
1
+
2
b
2
,  dt +
2
1

2
1
+2
1

2

1

2
+ 
2

2

2
2

1
2
p
YdW
4
:
From our discussion of the CIR process, we recall that
Y
will stay strictly positive provided that:
Assumption 2:
Y 0 = 
1
X
1
0 + 
2
X
2
0 + 0;
and
Assumption 3:

1
b
1

+ 
2
b
2
,  
1
2

2
1

2
1
+2
1

2

1

2
+ 
2
2

2
2
:
Under Assumptions 1,2, and 3,
Y t  0; 0  t1;

almost surely,
and (SDE1) and (SDE2) make sense. These can be rewritten as
dX
1
t=a
11
X
1
t+a
12
X
2
t+b
1
 dt + 
1
q
Y t dW
1
t;
(SDE1’)
dX
2
t=a
21
X
1
t+a
22
X

2
t+b
2
 dt + 
2
q
Y t dW
3
t:
(SDE2’)
CHAPTER 32. A two-factor model (Duffie & Kan)
321
32.2 Zero-coupon bond prices
The value at time
t  T
of a zero-coupon bond paying $1 at time
T
is
B t; T =IE
"
exp

,
Z
T
t
X
1
u du






F t

:
Since the pair
X
1
;X
2

of processes is Markov, this is random only through a dependence on
X
1
t;X
2
t
. Since the coefficients in (SDE1) and (SDE2) do not depend on time, the bond price
depends on
t
and
T
only through their difference
 = T , t
. Thus, there is a function
B x
1
;x

2
;
of the dummy variables
x
1
;x
2
and

,sothat
B X
1
t;X
2
t;T , t=IE
"
exp

,
Z
T
t
X
1
u du






F t

:
The usual tower property argument shows that
exp

,
Z
t
0
X
1
u du

B X
1
t;X
2
t;T , t
is a martingale. We compute its stochastic differential and set the
dt
term equal to zero.
d

exp

,
Z
t
0

X
1
u du

B X
1
t;X
2
t;T , t

= exp

,
Z
t
0
X
1
u du

,X
1
Bdt+B
x
1
dX
1
+ B
x
2

dX
2
, B

dt
+
1
2
B
x
1
x
1
dX
1
dX
1
+ B
x
1
x
2
dX
1
dX
2
+
1
2
B

x
2
x
2
dX
2
dX
2

= exp

,
Z
t
0
X
1
u du

,X
1
B +a
11
X
1
+ a
12
X
2
+ b

1
B
x
1
+a
21
X
1
+ a
22
X
2
+ b
2
B
x
2
, B

+
1
2

2
1
YB
x
1
x
1

+
1

2
YB
x
1
x
2
+
1
2

2
2
YB
x
2
x
2

dt
+ 
1
p
YB
x
1
dW
1

+ 
2
p
YB
x
2
dW
3

The partial differential equation for
B x
1
;x
2
;
is
, x
1
B , B

+a
11
x
1
+ a
12
x
2
+ b
1

B
x
1
+a
21
x
1
+ a
22
x
2
+ b
2
B
x
2
+
1
2

2
1

1
x
1
+ 
2
x
2

+ B
x
1
x
1
+ 
1

2

1
x
1
+ 
2
x
2
+ B
x
1
x
2
+
1
2

2
2

1

x
1
+ 
2
x
2
+ B
x
2
x
2
=0:
(PDE)
We seek a solution of the form
B x
1
;x
2
; = exp f,x
1
C
1
  , x
2
C
2
  , A g ;
valid for all
  0
and all

x
1
;x
2
satisfying

1
x
1
+ 
2
x
2
+ 0:
(*)
322
We must have
B x
1
;x
2
;0 = 1; 8x
1
;x
2
satisfying (*)
;
because
 =0
corresponds to

t = T
. This implies the initial conditions
C
1
0 = C
2
0 = A0 = 0:
(IC)
We want to find
C
1
 ;C
2
;A
for
0
.Wehave
B

x
1
;x
2
;=

,x
1
C
0
1

,x
2
C
0
2
,A
0


Bx
1
;x
2
;;
B
x
1
x
1
;x
2
;=,C
1
Bx
1
;x
2
;;
B
x

2
x
1
;x
2
;=,C
2
Bx
1
;x
2
;;
B
x
1
x
1
x
1
;x
2
;=C
2
1
Bx
1
;x
2
;;
B

x
1
x
2
x
1
;x
2
;=C
1
C
2
Bx
1
;x
2
;;
B
x
2
x
2
x
1
;x
2
;=C
2
2
Bx

1
;x
2
;:
(PDE) becomes
0=Bx
1
;x
2
;

,x
1
+ x
1
C
0
1
+x
2
C
0
2
+A
0
,a
11
x
1
+ a

12
x
2
+ b
1
C
1
 
, a
21
x
1
+ a
22
x
2
+ b
2
C
2
 
+
1
2

2
1

1
x

1
+ 
2
x
2
+ C
2
1
 +
1

2

1
x
1
+ 
2
x
2
+ C
1
 C
2
 
+
1
2

2

2

1
x
1
+ 
2
x
2
+ C
2
2
 

= x
1
B x
1
;x
2
;

, 1+C
0
1
,a
11
C
1
  , a

21
C
2
 
+
1
2

2
1

1
C
2
1
 +
1

2

1
C
1
 C
2
 +
1
2

2

2

1
C
2
2


+ x
2
Bx
1
;x
2
;

C
0
2
, a
12
C
1
  , a
22
C
2
 
+
1

2

2
1

2
C
2
1
 +
1

2

2
C
1
 C
2
 +
1
2

2
2

2
C
2
2



+ Bx
1
;x
2
;

A
0
 , b
1
C
1
, b
2
C
2

+
1
2

2
1
C
2
1
 +
1


2
C
1
 C
2
 +
1
2

2
2
C
2
2
 

We get three equations:
C
0
1
 =1+a
11
C
1
 + a
21
C
2
  ,

1
2

2
1

1
C
2
1
  , 
1

2

1
C
1
 C
2
  ,
1
2

2
2

1
C
2

2
 ;
(1)
C
1
0 = 0;
C
0
2
 =a
12
C
1
 +a
22
C
2
  ,
1
2

2
1

2
C
2
1
  , 
1


2

2
C
1
 C
2
  ,
1
2

2
2

2
C
2
2
 ;
(2)
C
2
0 = 0;
A
0
 =b
1
C
1

+b
2
C
2
,
1
2

2
1
C
2
1
  , 
1

2
C
1
 C
2
  ,
1
2

2
2
C
2
2

 ;
(3)
A0 = 0;
CHAPTER 32. A two-factor model (Duffie & Kan)
323
We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A 
.
32.3 Calibration
Let

0
 0
be given. The value at time
t
of a bond maturing at time
t + 
0
is
B X
1
t;X
2
t;
0
 = expf,X
1
tC
1


0
 , X
2
tC
2

0
 , A
0
g
and the yield is
,
1

0
log B X
1
t;X
2
t;
0
=
1

0
X
1
tC
1


0
+ X
2
tC
2

0
+A
0
 :
But we have set up the model so that
X
2
t
is the yield at time
t
of a bond maturing at time
t + 
0
.
Thus
X
2
t=
1

0
X
1
tC

1

0
+ X
2
tC
2

0
+A
0
 :
This equation must hold for every value of
X
1
t
and
X
2
t
, which implies that
C
1

0
=0;C
2

0
=

0
;A=0:
We must choose the parameters
a
11
;a
12
;b
1
; a
21
;a
22
;b
2
; 
1
;
2
;; 
1
;;
2
;
so that these three equations are satisfied.

×