Tải bản đầy đủ (.pdf) (8 trang)

General Random Variables

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (195.52 KB, 8 trang )

Chapter 11
General Random Variables
11.1 Law of a Random Variable
Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variable
X :!IR
defined on the probability space
; F ; P
. Recall
that:
F
is a

-algebra of subsets of

.

IP is a probability measure on
F
, i.e.,
IP A
is defined for every
A 2F
.
A function
X :!IR
is a random variable if and only if for every
B 2BIR
(the

-algebra of


Borel subsets of IR), the set
fX 2 B g
4
= X
,1
B 
4
= f! ; X ! 2 B g2F;
i.e.,
X :!IR
is a random variable if and only if
X
,1
is a function from
BIR
to
F
(See Fig.
11.1)
Thus any random variable
X
induces a measure

X
on the measurable space
IR; BIR
defined
by

X

B =IP

X
,1
B

8B 2BIR;
where the probabiliy on the right is defined since
X
,1
B  2F
.

X
is often called the Law of
X

in Williams’ book this is denoted by
L
X
.
11.2 Density of a Random Variable
The density of
X
(if it exists) is a function
f
X
: IR!0; 1
such that


X
B =
Z
B
f
X
xdx 8B 2BIR:
123
124
R

B}ε
B
X
{X
Figure 11.1: Illustrating a real-valued random variable
X
.
We then write
d
X
x=f
X
xdx;
where the integral is with respect to the Lebesgue measure on IR.
f
X
is the Radon-Nikodym deriva-
tive of


X
with respect to the Lebesgue measure. Thus
X
has a density if and only if

X
is
absolutely continuous with respect to Lebesgue measure, which means that whenever
B 2BIR
has Lebesgue measure zero, then
IP fX 2 B g =0:
11.3 Expectation
Theorem 3.32 (Expectation of a function of
X
) Let
h : IR!IR
be given. Then
IEhX
4
=
Z

hX! dIP ! 
=
Z
IR
hx d
X
x
=

Z
IR
hxf
X
x dx:
Proof: (Sketch). If
hx=1
B
x
for some
B  IR
, then these equations are
IE 1
B
X 
4
= P fX 2 B g
= 
X
B 
=
Z
B
f
X
x dx;
which are true by definition. Now use the “standard machine” to get the equations for general
h
.
CHAPTER 11. General Random Variables

125

ε
(X,Y)
{ (X,Y) C}
C
x
y
Figure 11.2: Two real-valued random variables
X; Y
.
11.4 Two random variables
Let
X; Y
be two random variables
!IR
defined on the space
; F ; P
.Then
X; Y
induce a
measure on
BIR
2

(see Fig. 11.2) called the joint law of
X; Y 
,definedby

X;Y

C
4
= IP fX; Y  2 C g 8C 2BIR
2
:
The joint density of
X; Y 
is a function
f
X;Y
: IR
2
!0; 1
that satisfies

X;Y
C=
ZZ
C
f
X;Y
x; y  dxdy 8C 2BIR
2
:
f
X;Y
is the Radon-Nikodym derivative of

X;Y
with respect to the Lebesgue measure (area) on

IR
2
.
We compute the expectation of a function of
X; Y
in a manner analogous to the univariate case:
IEkX; Y 
4
=
Z

kX !;Y! dIP ! 
=
ZZ
IR
2
kx; y  d
X;Y
x; y 
=
ZZ
IR
2
kx; y f
X;Y
x; y  dxdy
126
11.5 Marginal Density
Suppose
X; Y 

has joint density
f
X;Y
.Let
B  IR
be given. Then

Y
B  = IP fY 2 B g
= IP fX; Y  2 IR  Bg
= 
X;Y
IR  B
=
Z
B
Z
IR
f
X;Y
x; y  dxdy
=
Z
B
f
Y
y  dy ;
where
f
Y

y 
4
=
Z
IR
f
X;Y
x; y  dx:
Therefore,
f
Y
y 
is the (marginal) density for
Y
.
11.6 Conditional Expectation
Suppose
X; Y 
has joint density
f
X;Y
.Let
h : IR!IR
be given. Recall that
IE hX jY 
4
=
IE hX jY 
depends on
!

through
Y
, i.e., there is a function
g y 
(
g
depending on
h
) such that
IE hX jY != gY!:
How do we determine
g
?
We can characterize
g
using partial averaging: Recall that
A 2 Y A = fY 2 B g
for some
B 2BIR
. Then the following are equivalent characterizations of
g
:
Z
A
g Y  dIP =
Z
A
hX  dIP 8A 2 Y ;
(6.1)
Z


1
B
Y g Y  dIP =
Z

1
B
Y hX  dIP 8B 2BIR;
(6.2)
Z
IR
1
B
y g y 
Y
dy =
ZZ
IR
2
1
B
yhx d
X;Y
x; y  8B 2BIR;
(6.3)
Z
B
g y f
Y

y  dy =
Z
B
Z
IR
hxf
X;Y
x; y  dxdy 8B 2BIR:
(6.4)
CHAPTER 11. General Random Variables
127
11.7 Conditional Density
A function
f
X jY
xjy :IR
2
!0; 1
is called a conditional density for
X
given
Y
provided that for
any function
h : IR!IR
:
g y =
Z
IR
hxf

XjY
xjydx:
(7.1)
(Here
g
is the function satisfying
IE hX jY =gY;
and
g
depends on
h
,but
f
X jY
does not.)
Theorem 7.33 If
X; Y 
has a joint density
f
X;Y
,then
f
X jY
xjy=
f
X;Y
x; y 
f
Y
y 

:
(7.2)
Proof: Just verify that
g
defined by (7.1) satisfies (6.4): For
B 2BIR;
Z
B
Z
IR
hxf
XjY
xjydx
| z 
gy 
f
Y
y  dy =
Z
B
Z
IR
hxf
X;Y
x; y  dxdy :
Notation 11.1 Let
g
be the function satisfying
IE hX jY =gY:
The function

g
is often written as
g y = IEhXjY = y;
and (7.1) becomes
IE hX jY = y =
Z
IR
hxf
XjY
xjydx:
In conclusion, to determine
IE hX jY 
(a function of
!
), first compute
g y =
Z
IR
hxf
XjY
xjydx;
and then replace the dummy variable
y
by the random variable
Y
:
IE hX jY != gY!:
Example 11.1 (Jointly normal random variables) Given parameters:

1

 0;
2
 0;,1 1
.Let
X; Y 
have the joint density
f
X;Y
x; y=
1
2
1

2
p
1 , 
2
exp

,
1
21 , 
2


x
2

2
1

, 2
x

1
y

2
+
y
2

2
2

:

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×