Tải bản đầy đủ (.pdf) (10 trang)

Hull and White model

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (138.07 KB, 10 trang )

Chapter 30
Hull and White model
Consider
drt= t,trt dt +  t dW t;
where
t
,
 t
and
 t
are nonrandom functions of
t
.
We can solve the stochastic differential equation. Set
K t=
Z
t
0
udu:
Then
d

e
K t
rt

= e
K t

 trt dt + drt


= e
K t
t dt +  t dW t :
Integrating, we get
e
K t
rt=r0 +
Z
t
0
e
K u
u du +
Z
t
0
e
K u
u dW u;
so
rt= e
,Kt

r0 +
Z
t
0
e
K u
u du +

Z
t
0
e
K u
 u dW u

:
From Theorem 1.69 in Chapter 29, we see that
rt
is a Gaussian process with mean function
m
r
t=e
,Kt

r0 +
Z
t
0
e
K u
u du

(0.1)
and covariance function

r
s; t=e
,Ks,Kt

Z
s^t
0
e
2Ku

2
udu:
(0.2)
The process
rt
is also Markov.
293
294
We want to study
R
T
0
rt dt
.Todothis,wedefine
X t=
Z
t
0
e
Ku
udW u; Y T =
Z
T
0

e
,Kt
Xtdt:
Then
rt= e
,Kt

r0 +
Z
t
0
e
K u
u du

+ e
,K t
X t;
Z
T
0
rt dt =
Z
T
0
e
,K t

r0 +
Z

t
0
e
K u
u du

dt + Y T :
According to Theorem 1.70 in Chapter 29,
R
T
0
rt dt
is normal. Its mean is
IE
Z
T
0
rt dt =
Z
T
0
e
,K t

r0 +
Z
t
0
e
K u

u du

dt;
(0.3)
and its variance is
var

Z
T
0
rt dt
!
= IEY
2
T 
=
Z
T
0
e
2Kv

2
v

Z
T
v
e
,Ky

dy
!
2
dv :
The price at time 0 of a zero-coupon bond paying $1 at time
T
is
B 0;T= IEexp

,
Z
T
0
rt dt

= exp

,1IE
Z
T
0
rt dt +
1
2
,1
2
var

Z
T

0
rt dt
!
= exp

,r0
Z
T
0
e
,K t
dt ,
Z
T
0
Z
t
0
e
,K t+K u
u du dt
+
1
2
Z
T
0
e
2K v


2
v 

Z
T
v
e
,K y
dy
!
2
dv

= expf,r 0C 0;T,A0;Tg;
where
C 0;T=
Z
T
0
e
,Kt
dt;
A0;T=
Z
T
0
Z
t
0
e

,Kt+K u
u du dt ,
1
2
Z
T
0
e
2K v

2
v 

Z
T
v
e
,K y
dy
!
2
dv :
CHAPTER 30. Hull and White model
295
u
t
u = t
T
Figure 30.1: Range of values of
u; t

for the integral.
30.1 Fiddling with the formulas
Note that (see Fig 30.1)
Z
T
0
Z
t
0
e
,K t+K u
u du dt
=
Z
T
0
Z
T
u
e
,K t+K u
u dt du
y = t; v = u=
Z
T
0
e
Kv
v


Z
T
v
e
,Ky
dy
!
dv :
Therefore,
A0;T=
Z
T
0
2
4
e
Kv
v

Z
T
v
e
,Ky
dy
!
,
1
2
e

2K v

2
v 

Z
T
v
e
,K y
dy
!
2
3
5
dv ;
C 0;T=
Z
T
0
e
,Ky
dy ;
B 0;T = exp f,r0C 0;T, A0;Tg:
Consider the price at time
t 2 0;T
of the zero-coupon bond:
B t; T =IE
"
exp


,
Z
T
t
ru du





F t

:
Because
r
is a Markov process, this should be random only through a dependence on
rt
. In fact,
B t; T  = exp f,rtC t; T  , At; T g ;
296
where
At; T =
Z
T
t
2
4
e
Kv

v

Z
T
v
e
,Ky
dy
!
,
1
2
e
2K v

2
v 

Z
T
v
e
,K y
dy
!
2
3
5
dv ;
C t; T = e

Kt
Z
T
t
e
,Ky
dy :
The reason for these changes is the following. We are now taking the initial time to be
t
rather than
zero, so it is plausible that
R
T
0
::: dv
should be replaced by
R
T
t
::: dv:
Recall that
K v =
Z
v
0
udu;
and this should be replaced by
K v  , K t=
Z
v

t
udu:
Similarly,
K y 
should be replaced by
K y  , K t
. Making these replacements in
A0;T
,we
see that the
K t
terms cancel. In
C 0;T
,however,the
K t
term does not cancel.
30.2 Dynamics of the bond price
Let
C
t
t; T 
and
A
t
t; T 
denote the partial derivatives with respect to
t
. From the formula
B t; T  = exp f,rtC t; T  , At; T g ;
we have

dB t; T =Bt; T 
h
,C t; T  drt ,
1
2
C
2
t; T  drt drt , rtC
t
t; T  dt , A
t
t; T  dt
i
= B t; T 

, C t; T t , trt dt
, C t; T t dW t ,
1
2
C
2
t; T 
2
t dt
, rtC
t
t; T  dt , A
t
t; T  dt


:
Because we have used the risk-neutral pricing formula
B t; T =IE
"
exp

,
Z
T
t
ru du





F t

to obtain the bond price, its differential must be of the form
dB t; T =rtBt; T  dt +::: dW t:
CHAPTER 30. Hull and White model
297
Therefore, we must have
,C t; T t , trt ,
1
2
C
2
t; T 
2

t , rtC
t
t; T  , A
t
t; T = rt:
We leave the verification of this equation to the homework. After this verification, we have the
formula
dB t; T =rtBt; T  dt , tC t; T B t; T  dW t:
In particular, the volatility of the bond price is
 tC t; T 
.
30.3 Calibration of the Hull & White model
Recall:
drt= t,trt dt +  t dB t;
K t=
Z
t
0
udu;
At; T =
Z
T
t
2
4
e
Kv
v

Z

T
v
e
,Ky
dy
!
,
1
2
e
2K v

2
v 

Z
T
v
e
,K y
dy
!
2
3
5
dv ;
C t; T =e
Kt
Z
T

t
e
,Ky
dy ;
B t; T  = exp f,rtC t; T  , At; T g :
Suppose we obtain
B 0;T
for all
T 2 0;T


from market data (with some interpolation). Can we
determine the functions
t
,
 t
,and
 t
for all
t 2 0;T


? Not quite. Here is what we can do.
We take the following input data for the calibration:
1.
B 0;T; 0  T  T

;
2.
r0

;
3.
0
;
4.
t; 0  t  T

(usually assumed to be constant);
5.
0C 0;T; 0  T  T

, i.e., the volatility at time zero of bonds of all maturities.
Step 1. From4and5wesolvefor
C 0;T=
Z
T
0
e
,Ky
dy :

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×