Tải bản đầy đủ (.pdf) (90 trang)

Bai giang math4

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (673.18 KB, 90 trang )

H ANOI U NIVERSITY OF S CIENCE AND T ECHNOLOGY
S CHOOL OF A PPLIED M ATHEMATICS AND I NFORMATICS

N GUYEN T HI T HU H UONG AND T RAN M INH T OAN

Lecture on
M ATH 4
M ULTIPLE I NTEGRAL , I NTEGRAL THAT DEPENDS ON A PARAMETER ,
L INE I NTEGRAL , S URFACE I NTEGRAL , F IELD T HEORY AND S ERIES

Summary, Examples, Exercises and Solutions

Ha Noi - 2008


C ONTENTS
Contents.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Chapter 1 . Multiple Integral . . . . . . . . . . . . . . . . . . . . . . . .

5

1

Double Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Calculation of a double integral in Cartesian coordinate system


1.2
Change of variables in double integrals, polar coordinate . . . .
1.3
Applications of double integrals . . . . . . . . . . . . . . . . . . .
1.4
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Triple Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Calculation of a triple integral in Cartesian coordinate system .
2.2
Change of variables in triple integrals . . . . . . . . . . . . . . .
2.3
Calculate the triple integrals in cylindrical coordinate . . . . .
2.4
Calculate the triple integrals in spherical coordinate . . . . . .
2.5
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 2 . Integrals that depend on a parameter . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.

5
5
8
12
14
17
20
20
22
22
24
24
25
. 29

.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

29
29
29
32
32

33
33
34
35
. 39

Line integral of the first kind . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

1

The definite integrals that depend on a parameter . . .
1.1
Definition . . . . . . . . . . . . . . . . . . . . . . .
1.2
Properties . . . . . . . . . . . . . . . . . . . . . .
2
The generalized integarls that depend on a parameter .
2.1
The uniformly convergent integrals . . . . . . . .
2.2
Properties . . . . . . . . . . . . . . . . . . . . . .
2.3
Euler’s integrals . . . . . . . . . . . . . . . . . . .
3
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 3 . Line integral . . . . . . . . . . . . . . . .

1

1

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
. .

.
.
.

.
.
.
.
.
.
.

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .


2

CONTENTS
1.1
Definition . . . . . . . . . . . . . . . . . . .
1.2
Calculation formulae . . . . . . . . . . . .
2
Line integral of the second kind . . . . . . . . . .
2.1

Definition . . . . . . . . . . . . . . . . . . .
2.2
Calculation formulae . . . . . . . . . . . .
2.3
Theorem of four equivalent propositions .
2.4
Area of a plane domain . . . . . . . . . . .
3
Exercises . . . . . . . . . . . . . . . . . . . . . . .
4
Solution . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 4 . Surface integral . . . . . . . . . . . .
1

.
.
.
.
.
.
.
.
.
.

. . .
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .
. .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
. .

.

.
.
.
.
.
.
.
.
.

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

39
39
41
41
41
45
46

46
49
. 53

Surface integral of the first kind .
1.1
Definition . . . . . . . . . . .
1.2
Calculation formulae . . . .
2
Surface integral of the second kind
2.1
Definition . . . . . . . . . . .
2.2
Calculation formulae . . . .
2.3
Stokes’ formula . . . . . . .
3
Exercises . . . . . . . . . . . . . . .
4
Solution . . . . . . . . . . . . . . . .
Chapter 5 . Field theory . . . . . . . .

. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .
. . .
. .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
. .

.
.
.

.
.
.
.
.
.
.

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .

.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
. .

.
.
.
.
.
.
.
.
.
.

. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .
. . .
. .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

53
53
53
54
54
55
58
59
60
. 63

1
Scalar field
2
Vector field
3
Exercises .
4
Solution . .
Chapter 6 . Series

.
.
.

.

.
.
.
.

1

2

3

.
.
.
.
.

.
.
.
.

.
.
.
.

.

.
.
.
. .

.
.
.
.
.

. . .
. . .
. . .
. . .
. .

.
.
.
.
.

.
.
.
.
.

.

.
.
.

.
.
.
.

.
.
.
.
. .

.
.
.
.
.

. . .
. . .
. . .
. . .
. .

.
.
.

.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
. .

.
.
.
.
.

. . .
. . .
. . .
. . .

. .

.
.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
. .

.
.
.
.
.


. . .
. . .
. . .
. . .
. .

.
.
.
.
.

.
.
.
.
.

.
.
.
.

63
64
66
66
. 69


Number series . . . . . . . .
1.1
Definition . . . . . . .
1.2
Convergent criterion
1.3
Exercises . . . . . . .
1.4
Solution . . . . . . . .
Function series . . . . . . .
2.1
Function sequence .
2.2
Function series . . .
2.3
Power series . . . . .
2.4
Exercises . . . . . . .
2.5
Solution . . . . . . . .
Fourier series . . . . . . . .

.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

69

69
70
74
75
78
78
78
80
82
83
85

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.


CONTENTS
3.1
3.2
3.3

3
Decomposition theorem . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85
89
89


4

CONTENTS



CHAPTER

1

M ULTIPLE I NTEGRAL
§1. D OUBLE I NTEGRAL
1.1 Calculation of a double integral in Cartesian
coordinate system
Consider the integral
I=

f ( x, y)dxdy.

(1.1)

D

1. (The Corollary of Fubini’s theorem)
Suppose that D = [ a, b] × [c, d] and f : D → R is a continuous function on D. Then
I=

f ( x, y)dy =

dx
a

b

d


d

b

c

c

f ( x, y)dx

dy
a


a ≤ x ≤ b
2. If D is described as follows: D =
,
 ϕ( x ) ≤ y ≤ ψ( x )
where y = ϕ( x ), y = ψ( x) are continuous and have continuous derivatives on [ a, b]
ψ( x )

b

then I =

a





ϕ( x )


f ( x, y)dy dx or

ψ( x )

b

I=

f ( x, y)dy.

dx
a

ϕ( x )

5

(1.2)


6

Chapter 1. Multiple Integral

c ≤ y ≤ d
3. If D is described as follows: D =
,

 ϕ(y) ≤ x ≤ ψ(y)
where x = ϕ(y), x = ψ(y) are continuous and have continuous derivatives on [c, d]
then
ψ(y)

d

I=

f ( x, y)dx.

dy
c

(1.3)

ϕ(y)

Example 1.1. Calculate the double integral
x2 ydxdy,

I=
D

where D = [0, 1] × [0, 2].
Solution. We have
1
2

I=


x ydxdy =
D
1

=
0

2

x2

x ydy =

dx
0

1
2

0

0

y2
2

2
0


dx

x3 1 2
4
= .
x2 dx = 2.
2
3 0 3

x3 + xy dxdy where D is bounbed

Example 1.2. Calculate the double integral I =

by the curves y = x2 and y =



D

x.

Solution. We have the region D = 0 ≤ x ≤ 1, x2 ≤ y ≤



x (Figure 1.1).

y
y = x2
y=




x

1

O

1
Figure 1.1

x


1. Double Integral

7

Therefore


1

I=

x

0


x2
1

=
0

3

x + xy dy =

dx



y2
x y+x
2

3

x

x2

dx


1
5
1

x3 x − x5 + x2 − x5 dx = .
2
2
36

Example 1.3. Interchange the order of the following integrals:

i) I =

Solution.

2x

2
0

dx

x

f ( x, y)dy;

i) We have D =

e

ii) I =





 x = 0, x = 2
y=x



y = 2x

1

ln y

dy

0

f ( x, y)dx.

(Figure 1.2)

y

4

2

O

2


4

x

Figure 1.2
From above figure, we have
y

2

I=

ii) We have D =











f ( x, y)dx +

dy
0

4


y/2

y = 1, y = e
x=0
x = ln y

(Figure 1.3).

2

dy
2

y/2

f ( x, y)dx.


8

Chapter 1. Multiple Integral
y
e

1

O

x


1
Figure 1.3

Hence
e

1

I=

f ( x, y)dy.

dx
ex

0

1.2 Change of variables in double integrals, polar
coordinate
1. In general case
Put I =

f ( x, y)dxdy.
D

To calculate I, we can perform the tranformation

 x = x (u, v)
 y = y(u, v).


(1.4)

The two equations in (1.4) define a mapping which carries a point ( x, y) ∈ D ⊂ Oxy
′ (or inversion).
to (u, v) ∈ D ⊂ Ouv
We shall consider mapping for which the functions x = x (u, v), y = y(u, v) are continuous and have continuous partial derivatives on D. Then
I=
D

∂x
where J = ∂u
∂y
∂u

f ( x (u, v), y(u, v)) | J | dudv,

f ( x, y)dxdy =

∂x
∂v = D ( x, y) = 0.
∂y
D (u, v)
∂v

D


1. Double Integral


9

2. Polar coordinate
In this case we write r and ϕ instead of u and v and discrible the mapping by the
two equations

 x = r cos ϕ
; | J | = r ≥ 0.
(1.5)
y = r sin ϕ
Then

I=

f ( x, y)dxdy =

DOxy

f (r cos ϕ, r sin ϕ) rdrdϕ.

D Orϕ

Example 1.4. Calculate I =
D

y
dxdy, where the region D is bounded by
x

y = x, y = 2x, xy = 1, xy = 3 ( x > 0).

y
Solution. Because x > 0, put = u, xy = v (u > 0, v > 0). Therefore we perform the
x
tranformation



v 1
1
v

√ √

. √
x = √
1
D ( x, y)
u√ 2 u 2 √v u
u
=− .
=⇒ J =
=


v
u

D (u, v)
u
y = v. u



2 u
2 v

1 ≤ u ≤ 2
The region D → D =
.
1 ≤ v ≤ 3
Hence

2

3

I=

dv
1

1

u −

1
du =
u

v


3
1

u

2

= 2.

1

y
y = 2x
y=x

1

xy = 3
xy = 1

O

1

Figure 1.4

x


10


Chapter 1. Multiple Integral

Example 1.5. Tranform each of the given integrals to one or more interated integrals in
polar coordinate
1

1. I =



1

f ( x, y)dy;

dx
0

Solution.

1

2. I =

0

dx

1− x 2


f ( x, y)dy.

1− x

0

1. We have D = [0, 1] × [0, 1] (Figure 1.5).
y

1

O

x

1
Figure 1.5

To transform to polar coordinate, we put x = r cos ϕ; y = r sin ϕ.
We devide the region D into two subregions by the line y = x : D = D1 ∪ D2 , where
1
π
; 0≤r≤
;
4
cos ϕ
π
π
1
D2 :

≤ϕ≤ ; 0≤r≤
4
2
sin ϕ

D1 : 0 ≤ ϕ ≤

Therefore
π/4

I=

1/cos ϕ

f (r cos ϕ, r sin ϕ) rdr +


0

π/2

0

2. Rewrite the region D =







f (r cos ϕ, r sin ϕ) rdr


π/4







1/sin ϕ

0

x = 1, x = 2
(Figure 1.5)
y = 1−x

y = 1 − x2


1. Double Integral

11
y

1

O


x

1
y = 1−x

Figure 1.6


 x = r cos ϕ;
Put
y = r sin ϕ
Hence


π

0 ≤ ϕ ≤
2
, we have
1

≤r≤1

sin ϕ + cos ϕ
π/2

I=

1


f (r cos ϕ, r sin ϕ) rdr.


0

.

1/(sin ϕ+cos ϕ)

Note: Some regions used frequently in polar coordinate
i) If DOxy = x2 + y2 ≤ R2 then
D Orϕ = {0 ≤ ϕ ≤ 2π; 0 ≤ r ≤ R} .
ii) If D = x2 + y2 ≤ 2ax; a > 0 = ( x − a)2 + y2 ≤ a2

− π ≤ ϕ ≤ π
2
2
D=
0 ≤ r ≤ 2a cos ϕ.

iii) If D = x2 + y2 ≤ 2ay; a > 0 =

0 ≤ ϕ ≤ π
D=
0 ≤ r ≤ 2a sin ϕ.

x 2 + ( y − a )2 ≤ a2

then


then

iv) If

D=

x2 + y2 ≤ 2ax + 2ay, a > 0, b > 0

= ( x − a )2 + ( y − b )2 ≤ a2 + b2


12

Chapter 1. Multiple Integral

− arctg a ≤ ϕ ≤ − arctg a + π
b
b
then D =
0 ≤ r ≤ 2 ( a cos ϕ + b sin ϕ) .

v) If D = x2 + y2 = −2ax, a > 0 = ( x + a)2 + y2 = a2 then

 π ≤ ϕ ≤ 3π
2
D= 2
0 ≤ r ≤ −2a cos ϕ

vi) If D is ellipse


x 2 y2
+ 2 = 1 then we perform the transformation
a2
b

 x = ar cos ϕ
, | J | = abr.
 y = br sin ϕ


0 ≤ ϕ ≤ 2π
Then D → D =
0 ≤ r ≤ 1

and



I=

1

f ( ar cos ϕ, br sin ϕ) abrdr.


0

(1.6)


0

1.3 Applications of double integrals
1. To compute the area of a plane domain D
The area of the domain D in the plane Oxy is computed by the formula:
S=

(1.7)

dxdy
D

Example 1.6. Compute the area of the domain D bounded by the curves
xy = a2 , x + y =

5
a.
2

5a
Solution. The curve xy = a2 cuts the line x + y =
at two points that have abscis2
a
sas x = and x = 2a, respectively (Figure 1.7).
2
Therefore the area of D is
2a

S=


dx
a/2

5a/2− x

dy =

a2/x

15
− 2 ln 2 a2
8


1. Double Integral

13

y

O

1

x

4

Figure 1.7


2. To compute the area of a curved surface
Suppose that S is a curved surface whose equation is z = f ( x, y) (Figure 1.6) and D
is the projection of S on the plane Oxy. Then the area of S is




1 + z x2 + zy2 dxdy

S=

(1.8)

D

z = f ( x, y)

z

y

O
D

x
Figure 1.8
3. To compute the volume of a object
Suppose that the object Ω is bounded by the smooth curves
z = f ( x, y), z = g( x, y), f ≥ g ∀( x, y) ∈ D



14

Chapter 1. Multiple Integral
and the surrounding cylinder has the directrix that is the border of the region D :
ϕ( x, y) = 0 and has the element that is parallel with Oz.
Then the volume of Ω is
V=
D

[ f ( x, y) − g( x, y)] dxdy.

(1.9)

z = f ( x, y)

z


z = g( x, y)
y

O
D

x

Figure 1.9

Example 1.7. Use the double integral to compute the volume of the object bounded by

z = 1 + x + y, z = 0, x + y = 1, x = 0, y = 0.
Solution. We have
1

I=

dx
0

1− x

1

(1 + x + y) dy =

0

0

1
1
5
1 1
4 − (1 + x )2 dx = 2 − . (1 + x )3 = .
2
2 3
6
0

1.4 Exercises

Exercise 1.1. Interchange the order of the following integrals
1

1.

dx

− 1− x 2
1+

1



1− y2

f ( x, y)dx;

dy
0

f ( x, y)dy;



−1

2.

1− x 2


2− y


1. Double Integral


2

3.

2x

f ( x, y)dy;

dx


0



2x − x2

5

4.

y


dy
0

15

0



2

f ( x, y)dx +

4− y2

f ( x, y)dx.

dy


2

0

Exercise 1.2. Calculate the following integrals
1.
D

2.
D


3.
D

x sin ( x + y) dxdy, D = ( x, y) ∈ R2 : 0 ≤ x ≤

π
π
;0 ≤ y ≤
;
2
2

x2 (y − x ) dxdy, where D is bounded by curves y = x2 and x = y2 ;

| x + y| dxdy, D = ( x, y) ∈ R2 : | x | ≤ 1, |y| ≤ 1 ;
|y − x2 |dxdx, D = {| x | ≤ 1, 0 ≤ y ≤ 1};

4.
D

(| x | + |y|) dxdy.

5.
| x |+|y|≤1

Exercise 1.3. Transform the integral to polar coordinate and compute its value


R


1.

dx
0

dx
0

3.
D

4.
D

ln 1 + x2 + y2 dy, ( R > 0);

0



R

2.

R2 − x 2

Rx − x2



− Rx − x2

Rx − x2 − y2 dy, ( R > 0);

xydxdy, where D = ( x, y) ∈ R2 : ( x − 2)2 + y2 ≤ 1, y ≥ 0 .
xy2 dxdy, where D is bounded by the curves x2 + (y − 1)2 = 1 and x2 + y2 − 4y = 0.

Exercise 1.4. Calculate these following integrals:

4y ≤ x2 + y2 ≤ 8y
dxdy
1.
,
where
D
:

2
 x ≤ y ≤ 3x
( x 2 + y2 )
D

;


16

Chapter 1. Multiple Integral

2.

D

3.
D

4.
D

5.
D



x2 + y2 ≤ 12




 x2 + y2 ≥ 2x
xy
dxdy, where D :

2 + y2 ≥ 2 3y

x 2 + y2

x





x ≥ 0, y ≥ 0

;

1 − x 2 − y2
dxdy, where D : x2 + y2 ≤ 1;
1 + x 2 + y2

9x2 − 4y2 dxdy, where D :

4x2 − 2y2

x 2 y2
+
≤ 1;
4
9


1 ≤ xy ≤ 4
dxdy, where D :
 x ≤ y ≤ 4x



x


y = 2

Exercise 1.5. Compute the area of the domain D bounded by y = 2− x



y = 4.


y = 0; y2 = 4ax
Exercise 1.6. Compute the area of the domain D bounded by
 x + y = 3a; y ≤ 0, ( a > 0).


 x2 + y2 = 2x; x2 + y2 = 4x
Exercise 1.7. Compute the area of the domain D bounded by
 x = y, y = 0

Exercise 1.8. Compute the volume of the object bounded by the surfaces




3x + y ≥ 1
3x + 2y ≤ 2



y ≥ 0, 0 ≤ z ≤ 1 − x − y.

Exercise 1.9. Compute the volume of the object bounded by the surfaces


0 ≤ z ≤ 1 − x 2 − y2

y ≥ x, y ≤ x 3.


1. Double Integral

17

1.5 Solutions


0

1. I =

Solution 1.1.

dy
−1



2

2. I =

dx

1−


3.



4. I =

f ( x, y)dx;
1− y

4− x 2

1+



2

2

f ( x, y)dx +

dy
1

1− y2

f ( x, y)dx;

y2/2


f ( x, y)dy.

x

0

π/2

1. I =

Solution 1.2.

π/2



1

dx
x2

x sin( x + y)dy =

dx
0

0






2

0



dx

2. I =

0

dy

y2/2

2

dy

1− y2

1

f ( x, y)dx +




f ( x, y)dx +

1− y

f ( x, y)dy;

1− y2

dy
0



1

2− x

1
1

2x − x2





1− y2

0


x

x2 y − x3 dy = −

π
;
2

1
;
504

3. Divide D into two regions D = D1 ∪ D2 , where
D1 = {−1 ≤ x ≤ 1, − x ≤ y ≤ 1}

D2 = {−1 ≤ x ≤ 1, −1 ≤ y ≤ − x } .

Then

1

1

I=

dx
−x

−1


1

( x + y)dy −

dx

−x
−1

−1

8
( x + y)dy = .
3

4. Divide D into two regions D = D1 ∪ D2 , where
D1 = −1 ≤ x ≤ 1, x2 ≤ y ≤ 1
D2 = −1 ≤ x ≤ 1, 0 ≤ y ≤ x2 .
Hence
I=

dx
−1

x2

x2

1


1

1

y − x2 dy +

dx
−1

0

x2 − ydy =

3π + 4
.
12


18

Chapter 1. Multiple Integral
5. Note that D is axisymetric and the function f ( x, y) = | x | + |y| is even with respect
to x and y. Therefore I = 4

(| x | + |y|) dxdy, where

D1

D1 = {( x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1 − x } .

Hence

1

I=4

dx
0

1− x

4
( x + y)dy = .
3

0

Solution 1.3.
1. We have D = 0 ≤ x ≤ R; 0 ≤ y ≤

 x = r cos ϕ
π
Put
=⇒ 0 ≤ ϕ ≤ , 0 ≤ r ≤ R.
y = r sin ϕ
2
Hence

π/2


I=

R

ln 1 + r2 rdr =


0

0

π
4



R2 − x 2 .

R2 + 1 ln( R2 + 1) − R2 .



2. We have D = 0 ≤ x ≤ R, − Rx − x2 ≤ y ≤ RX − x2 .


 x = R + r cos ϕ
0 ≤ ϕ ≤ 2π
2
.
Put

=⇒ | J | = r,
y = r sin ϕ
0 ≤ r ≤ R
2
Hence


I=

R/2


0


 x = 2 + r cos ϕ
3. Put
y = r sin ϕ

0

R2
πR3
− r2 rdr =
.
4
12


0 ≤ r ≤ 1

=⇒
0 ≤ ϕ ≤ 2π


I=

. Then

1

(2 + r cos ϕ) r sin ϕrdr = 0


0

0

Note: The domain D is Ox-axisymetric and the function f ( x, y) = xy is odd with
respect to y. Therefore we have I = 0.


 x = r cos ϕ
0 ≤ ϕ ≤ π
4. Put
=⇒
. Hence
y = r sin ϕ
2 sin ϕ ≤ r ≤ 4 sin ϕ
4 sin ϕ


π

I=


0

2 sin ϕ

r cos ϕ (r sin ϕ)2 rdr = 0.


1. Double Integral

19

Note: The domain D is symetric to the axis Oy and the function f ( x, y) = xy2 is odd
with respect to x. Therefore we have I = 0.


 x = r cos ϕ
π ≤ ϕ ≤ π
3
. Hence
Solution 1.4.
1. Put
=⇒ 4
y = r sin ϕ
4 sin ϕ ≤ r ≤ 8 sin ϕ
8 sin ϕ


π/3

I=


4 sin ϕ

π/4

1
3
rdr =
4
128
r

1
1− √
3

.

2. Divide D into two regions D = D1 ∪ D2 , where


π
, 2 cos ϕ ≤ r ≤ 2 3
6



π
π
≤ ϕ ≤ , 2 3 sin ϕ ≤ r ≤ 2 3 .
6
2

D1 = 0 ≤ ϕ ≤
D2 =
Then

2 3

π/6

I=



r2 cos

ϕ sin ϕ
rdr +
r2

2 cos ϕ

0



 x = r cos ϕ
3. Put
y = r sin ϕ


0 ≤ ϕ ≤ 2π
=⇒
0 ≤ r ≤ 1


I=


0


 x = 2r cos ϕ
4. Put
y = 3r sin ϕ

0



2 3 sin ϕ

π/6

1


1 − r2
π2
.
rdr
=
2
1 + r2




1 ≤ u ≤ 4
=⇒
1 ≤ v ≤ 4

4

du
1

|cos 2ϕ| dϕ

and x =

4

I=

0


1

r2 cos ϕ sin ϕ
11
rdr = .
2
8
r

. Then


0 ≤ ϕ ≤ 2π
=⇒ | J | = 6r,
0 ≤ r ≤ 1
I = 6 × 36


u = xy
5. Put
v = y
x


2 3

π/2

. Then
1


r3 dr = 216.
0


u
, y = uv. Therefore
v

u
1
45
4 − 2uv . dv = − .
v
2v
4


20

Chapter 1. Multiple Integral

Solution 1.5. Divide the domain D into two subdomain D = D1 ∪ D2 , where
D1 = −2 ≤ x ≤ 0, 2− x ≤ y ≤ 4 ; D2 = {0 ≤ x ≤ 2, 2x ≤ y ≤ 4} .
Then

0

S=


2

4

dy +

dx
2− x

−2

4

dx
2x

0

dy = 2 8 −

3
ln 2

.

Solution 1.6. We have
3a−y

0


S=

dx =

dy
−6a

0

3a − y −

−6a

y2/4a

y2
4a


 x = r cos ϕ
Solution 1.7. Change to polar coordinate
y = r sin ϕ

Hence

4 cos ϕ

π/4

S=


rdr =


2 cos ϕ

0

dy = 18a2 .

0 ≤ ϕ ≤ π ,
4
=⇒
2 cos ϕ ≤ r ≤ 4 cos ϕ

.

3π 3
+ .
4
2

Solution 1.8. We have
(2−2y)/3

1

V=

dy

0

(1−y)/3

1
(1 − x − y) dx =
6

1

0

1 − 2y + y2 dy =

1
.
18

Solution 1.9. We have V = 2V1 , where
1

π/3

V1 =


0

π/4


Hence V =

1 − r2 rdr =

π
.
48

π
.
24

§2. T RIPLE I NTEGRAL
2.1 Calculation of a triple integral in Cartesian
coordinate system
Consider the integral
I=

f ( x, y, z)dxdydz,
V

(1.10)


2. Triple Integral

21

where f ( x, y, z) is three-variables function that is continuous on V.
If

V = ( x, y, z) ∈ R3 |( x, y) ∈ D; z1 ( x, y) ≤ z ≤ z2 ( x, y) ,
where D is the projection of V on the plane Oxy and z1 , z2 are continuous on D then


I=
D



z2 ( x,y)


dxdy 

z1 ( x,y)

dxdydz

Example 2.1. Calculate the integral I =

planes x = 0, y = 0, z = 0 and x + y + z = 1.


f ( x, y, z)dz .

V

( x + y + z )3

(1.11)


, where V is bounded by the

Solution. V is tetrahedron bounded by two planes z = 0 and z = 1 − x − y, ( x, y) ∈ D,
where D is the triangle OAB in the plane Oxy (Figure 2.1). Hence we have
1− x − y

I=

dxdy
D

1
=−
2

=−

1
2

1

dx
0

0
1

0


0
1− x

dz

( x + y + z )3

=
D

1
1

4 (1 + x + y )2

1
3 x
− −
4 4 1+x

dx =

(1 + x + y + z ) −2
−2
1
dy = −
2

1


0

1
5
ln 2 − .
2
16

C

B

A
x

Figure 2.1

z =0

dxdy

1
1−x 1
+ −
4
2 1+x

z


O

z =1− x − y

y

dx


22

Chapter 1. Multiple Integral

2.2 Change of variables in triple integrals
Consider the tranformation:




 x = x (u, v, w)
y = y(u, v, w)



z = z(u, v, w).

Suppose that the following conditions are satisfied:
i) (u, v, w) ∈ V ′ in O′ uvw-plane and x (u, v, w), y(u, v, w), z(u, v, w) are continuous and
have continuous partial derivatives on V ′ .
ii) The vecto-valued mapping Φ : V ′ → V is one-to-one.

iii) The Jacobian determinant

xu′ xv′ xw
D ( x, y, z)
= y′u y′v y′w = 0 in V ′ .
J=
D (u, v, w)
z′u z′v z′w

Then
I=

f ( x, y, z)dxdydz =
V′

V

f ( x (u, v, w), y(u, v, w), z(u, v, w)) | J | dudvdw.

(1.12)

2.3 Calculate the triple integrals in cylindrical
coordinate
Here we write r, ϕ, z for u, v, w and define the mapping by the equations:
x = r cos ϕ, y = r sin ϕ, z = z.

(1.13)

In other words, we replace x and y by their polar coordinate in the plane Oxy and retain
z.

Again, to get a one-to-one mapping we must keep r > 0 and restrict ϕ to be in an interval
of the form: ϕo ≤ ϕ < ϕo + 2π.
The Jacobian determinant of the mapping in (1.13) is
cos ϕ −r sin ϕ 0
J = sin ϕ r cos ϕ 0 = r cos2 ϕ + sin2 ϕ = r > 0
0
0
1


2. Triple Integral

23

and therefore we have the tranformation formula
f ( x, y, z)dxdydz =

f (r cos ϕ, r sin ϕ, z) rdrdϕdz.

(1.14)

V′

V

Note: In some cases we use the generalized cyclindrical coordinate
x = ar cos ϕ, y = br sin ϕ, z = z
and J = abr.
x2 + y2 dxdydz to cylindrical coordinate


Example 2.2. Transform the integral I =
V

and compute its value, where V is the region bounded by the surfaces x2 + y2 = 2z and
z = 2.
Solution. Transform to cylindrical coordinate : x = r cos ϕ, y = r sin ϕ, z = z, 0 ≤ ϕ ≤ 2π.
z
2

−2

O

y

2

Figure 2.2
x
We note that the paraboloid x2 + y2 = 2z cuts the plane x2 + y2 = 4 by the circle x2 + y2 =
4, therefore 0 ≤ r ≤ 2.
r2
On the other hand on the paraboloid we have r2 cos2 ϕ + r2 sin2 ϕ = 2z =⇒ z = .
2
r2
So that in B we have
≤ z ≤ 2.
2
Therefore we have



I=

2


0

dr
0

2

2

r2/2

3

r dz = 2π
0

r3 2 −

r2
2

dr =

16π

.
3


24

Chapter 1. Multiple Integral

2.4 Calculate the triple integrals in spherical
coordinate
In this case the symbols r, θ, ϕ are used instead of u, v, w and the mapping is defined
by the equations




 x = r sin θ cos ϕ
(1.15)
y = r sin θ sin ϕ



z = r cos θ

To get a one-to-one mapping we keep r > 0, 0 ≤ ϕ < 2π and 0 ≤ θ < π.
The Jacobian determinant of the mapping is
sin θ cos ϕ r cos θ cos ϕ −r sin θ sin ϕ
J = sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ = −r2 sin θ
cos θ
−r sin θ

0
Therefore we have the tranformation formula

f (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ) r2 sin θdrdθdϕ

f ( x, y, z)dxdydz =

(1.16)

V′

V

x2 + y2 + z2 dxdydz to spherical coordi-

Example 2.3. Transform the integral I =
V

nate and compute its value, where V is the sphere x2 + y2 + z2 ≤ z.
Solution. We have
1
x +y +z −z = x +y + z−
2
2

So that V =

2

2


( x, y, z) : x2 + y2 + z −

2

1
2

2

2



2

1
− .
4

1
, i.e V is sphere whose center is the
4

1
1
and radius R = .
2
2
Transform to spherical coordinate.


point

0, 0,

2.5 Exercises
Exercise 1.10. Calculate the following triple integrals:




0 ≤ x ≤ 4
1.

zdxdydz, where the region V is defined by

V

x ≤ y ≤ 2x



0 ≤ z ≤ 1 − x 2 − y2

.


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×