Tải bản đầy đủ (.pdf) (102 trang)

(Luận văn thạc sĩ) nghiên cứu xây dựng trường chuẩn liều neutron sử dụng nguồn 252cf 06

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.98 MB, 102 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-------------o0o-------------

LÊ NGỌC THIỆM

NGHIÊN CỨU XÂY DỰNG
TRƯỜNG CHUẨN LIỀU NEUTRON SỬ DỤNG NGUỒN 252Cf

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội - 2014


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-------------o0o-------------

Lê Ngọc Thiệm

NGHIÊN CỨU XÂY DỰNG
TRƯỜNG CHUẨN LIỀU NEUTRON SỬ DỤNG NGUỒN 252Cf

Chuyên ngành: Vật lý Nguyên tử
Mã số: 60440106

LUẬN VĂN THẠC SĨ KHOA HỌC

Người hướng dẫn khoa học: TS. Nguyễn Tuấn Khải

Hà Nội - 2014




LỜI CẢM ƠN
Để hồn thành luận văn này, tơi xin gửi lời biết ơn sâu sắc tới tập thể các thầy,
cô giáo của trường Đại học Khoa học tự nhiên thuộc Đại học Quốc gia Hà Nội nói
chung và tập thể các thầy, cơ giáo của Khoa Vật lý nói riêng đã tận tâm chỉ dạy,
hướng dẫn tôi trên con đường tiếp cận với khoa học.
Tôi xin gửi lời biết ơn chân thành nhất tới tập thể các thầy, cô giáo của bộ môn
Vật lý Nguyên tử và Hạt nhân, những người thầy luôn gần gũi, động viên, chia sẻ
kinh nghiệm khoa học giúp tơi vượt qua những khó khăn gặp phải trong quá trình
học tập và thực hiện luận văn này.
Tôi xin gửi lời biết ơn vô hạn tới TS. Nguyễn Tuấn Khải, TS. Trịnh Văn Giáp
tại Viện Khoa học và Kỹ thuật Hạt nhân vì sự hướng dẫn tận tình về mặt khoa học
và đã tạo mọi điều kiện tốt nhất về thời gian, cơ sở vật chất trong q trình tơi thực
hiện luận văn này.
Thật thiếu sót nếu tơi khơng nói lời cảm ơn tới các thành viên trong gia đình:
bố, mẹ, anh, chị, vợ và các con tơi vì những sẻ chia, động viên và trên hết là lịng
cảm thơng, sự thấu hiểu sâu sắc của họ dành cho tơi trong q trình học tập cũng
như thực hiện luận văn này.
Tôi xin cảm ơn tất cả những đồng nghiệp, bạn bè đã trợ giúp và đưa ra những
trao đổi khoa học giúp cho luận văn này được hoàn thiện hơn.


MỤC LỤC
MỞ ĐẦU ............................................................................................................................... 1
CHƯƠNG 1: TỔNG QUAN .................................................................................................. 3
1.1. Các thuật ngữ, khái niệm cơ bản trong lĩnh vực chuẩn liều bức xạ ion hóa .................. 3
1.2. Các đại lượng đặc trưng cho một trường bức xạ neutron trong việc chuẩn liều neutron 6
1.3. Tương tác của neutron với vật chất ............................................................................ 12
CHƯƠNG 2: NGUYÊN LÝ CHUẨN THIẾT BỊ ĐO LIỀU NEUTRON .............................. 29

2.1. Đại lượng chuẩn và hệ số chuyển đổi trong đo liều neutron ....................................... 29
2.2. Nguồn bức xạ neutron chuẩn dùng trong chuẩn liều................................................... 30
2.3. Yêu cầu chung đối với một cơ sở chuẩn liều neutron .................................................. 32
2.4. Thiết bị chuẩn cần thiết .............................................................................................. 34
2.5. Nguyên lý chuẩn thiết bị đo liều neutron bằng nguồn phát xạ neutron ........................ 35
CHƯƠNG 3: CƠ SỞ VẬT CHẤT, CÔNG CỤ, THIẾT BỊ................................................... 43
3.1. Phòng chuẩn neutron ................................................................................................. 43
3.2. Nguồn phóng xạ ......................................................................................................... 44
3.3. Cơng cụ...................................................................................................................... 45
3.4. Thiết bị đo liều neutron .............................................................................................. 46
3.5. Tấm che chắn hình nón .............................................................................................. 46
3.6. Phương pháp nghiên cứu ........................................................................................... 46
CHƯƠNG 4: MÔ PHỎNG VÀ THỰC NGHIỆM ................................................................ 48
4.1. Thiết kế tấm che chắn ................................................................................................. 48
4.2. Mô phỏng ................................................................................................................... 50
4.3. Thực nghiệm .............................................................................................................. 55
CHƯƠNG 5: KẾT QUẢ VÀ SO SÁNH............................................................................... 57
5.1. Kết quả mô phỏng ...................................................................................................... 57
5.2. Kết quả thực nghiệm .................................................................................................. 64
5.3. So sánh mô phỏng và thực nghiệm ............................................................................. 65
KẾT LUẬN.......................................................................................................................... 67
TÀI LIỆU THAM KHẢO .................................................................................................... 69
PHỤ LỤC 1 ......................................................................................................................... 71
PHỤ LỤC 2 ......................................................................................................................... 75


DANH MỤC CÁC BẢNG BIỂU
Bảng 1.1: Các đại lượng hoạt động dùng trong an toàn bức xạ ............................. 11
Bảng 1.2: Số lần tán xạ đàn hồi trung bình cần thiết để giảm năng lượng của
neutron từ 2 MeV xuống 0.025 eV đối với một số nguyên tố.................. 15

Bảng 1.3: Tiết diện tương tác của neutron với một số vật liệu. Giá trị M (ở cột thứ
2) là khối lượng nguyên tử hoặc khối lượng mol. Giá trị “0” của tiết diện
tương tác nghĩa là 0 so với các giá trị minh họa trên hình vẽ................ 20
Bảng 1.4: Số liệu hạt nhân của natUO2 ................................................................... 23
Bảng 1.5: Công suất làm chậm và tỷ số làm chậm của một số chất làm chậm đối với
năng lượng neutron từ 1 eV đến 100 keV .............................................. 26
Bảng 1.6: Ví dụ về sự suy giảm số neutron sau tương tác ...................................... 27
Bảng 2.1: Nguồn neutron chuẩn dùng trong chuẩn các thiết bị đo liều neutron ..... 31
Bảng 2.2: Neutron đơn năng được sinh ra do máy gia tốc và một số hệ số chuyển
đổi thông lượng sang tương đương liều ................................................ 31
Bảng 2.3: Neutron đơn năng sinh ra từ lò phản ứng và một số hệ số chuyển đổi
thông lượng sang tương đương liều ...................................................... 32
Bảng 2.4: Một số thiết bị chuẩn dùng trong chuẩn liều neutron............................. 35
Bảng 2.5: Hệ số suy giảm tuyến tính S lấy trung bình qua tồn phổ của nguồn bức
xạ neutron (độ lệch chuẩn ±15%)[3,4,9] .............................................. 42
Bảng 3.1: Một số đặc tính cơ bản của máy đo liều neutron cầm tay Aloka - TPS
451C ..................................................................................................... 46
Bảng 4.1: Các mặt phẳng xung quanh của tấm che chắn ....................................... 50
Bảng 4.2: Các cấu hình mơ phỏng để xác định chiều dày thích hợp của tấm che
chắn...................................................................................................... 54
Bảng 4.3: Các cấu hình cơ bản của mơ phỏng và thí nghiệm ................................. 54
Bảng 5.1: Thông số chuẩn của trường bức xạ neutron, các giá trị tương đương liều
(DE) được sinh ra bởi một neutron tới từ nguồn 252Cf........................... 64
Bảng 5.2: Kết quả đo đạc thực nghiệm .................................................................. 65
Bảng 5.3: Tóm tắt kết quả mơ phỏng và thực nghiệm ............................................ 65
Bảng PL2.1: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 75 cm khi khơng có tấm che
chắn (cấu hình 1 - Bảng 4.2 và Bảng 4.3) ............................................. 75
Bảng PL2.2: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron

trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn

252

Cf và sai số


thống kê tương ứng tại vị trí cách nguồn 75 cm với tấm che chắn gồm
0.5cm chì + 10cm polyethylene (cấu hình 2 - Bảng 4.2)........................ 77
Bảng PL2.3: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 75 cm với tấm che chắn gồm
0.5cm chì + 20cm polyethylene (cấu hình 3 - Bảng 4.2)........................ 79
Bảng PL2.4: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 75 cm với tấm che chắn gồm
0.5cm chì + 30cm polyethylene (cấu hình 4 - Bảng 4.2)........................ 81
Bảng PL2.5: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 75 cm với tấm che chắn gồm
30cm PEB (cấu hình 2 - Bảng 4.3)....................................................... 83
Bảng PL2.6: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 125 cm khi khơng có tấm che
chắn (cấu hình 3 - Bảng 4.3)................................................................. 85
Bảng PL2.7: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 125 cm với tấm che chắn hình
nón cụt gồm 30 cm PEB (cấu hình 4 - Bảng 4.3)................................... 87
Bảng PL2.8: Kết quả mơ phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron

trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 150 cm khi khơng có tấm che
chắn (cấu hình 5 - Bảng 4.3)................................................................. 89
Bảng PL2.9: Kết quả mô phỏng phổ thông lượng neutron tổng cộng (Fn-tot), neutron
trực tiếp (Fn-dir) sinh ra bởi một neutron tới từ nguồn 252Cf và sai số
thống kê tương ứng tại vị trí cách nguồn 150 cm với tấm che chắn hình
nón cụt gồm 30 cm PEB (cấu hình 6 - Bảng 4.3)................................... 91
Bảng PL2.10: Tỷ lệ đóng góp của các đối tượng chính vào việc xác định thông
lượng neutron tổng cộng (Fn-tot) tại điểm khảo sát của các cấu hình mơ
phỏng trong Bảng 4.3 ........................................................................... 93


DANH MỤC CÁC HÌNH VẼ
Hình 1.1: Hình ảnh mơ tả a) trường bức xạ thực, b) trường bức xạ mở rộng và định
hướng, c) trường bức xạ định hướng. Hình trịn nét đứt trong hình b) và
c) mơ tả kích thước yêu cầu đối với trường bức xạ tương ứng đó ............ 9
Hình 1.2: Cấu trúc trường bức xạ của hình cầu ICRU tại điểm P’ mà tại đó tương
đương liều được xác định. Bức xạ có thể tương tác với hình cầu từ nhiều
hướng khác nhau trong trường bức xạ mở rộng. H’(d,W) định nghĩa cho
hướng W trên véctơ bán kính tại độ sâu d. Trong trường bức xạ mở rộng
và định hướng, véctơ bán kính trong việc xác định H*(d) luôn ngược
hướng với hướng của trường bức xạ ..................................................... 10
Hình 1.3: Mối quan hệ giữa đại lượng vật lý, đại lượng đặc trưng cho một trường
bức xạ neutron chuẩn và các đại lượng dùng trong chuẩn .................... 11
Hình 1.4: Mối quan hệ giữa vận tốc và động năng của neutron ............................. 13
Hình 1.5: Tương tác của neutron với vật chất; các ký hiệu trong ngoặc đơn lần lượt
diễn tả các hạt vào và hạt ra của phản ứng; n: neutron, p: proton, g:
photon, a: alpha, d: deuterium, f: mảnh phân hạch .............................. 14
Hình 1.6: Sự phụ thuộc năng lượng của tiết diện tương tác của một số hạt nhân.
Trục nằm ngang là năng lượng của neutron (tính theo eV), trục thẳng

đứng là tiết diện tương tác tổng cộng (tính theo barn) .......................... 18
Hình 1.7: Tiết diện phân hạch của một số đồng vị phân hạch quan trọng (235U,
239
Pu) và đồng vị làm giàu (238U, 240Pu). Trục nằm ngang là năng lượng
của neutron (tính theo eV), trục thẳng đứng là tiết diện phát xạ (tính theo
barn)..................................................................................................... 19
Hình 1.8: Cường độ chùm neutron song song khơng tương tác cịn lại khi đi qua bề
dày vật liệu làm bia. Trục nằm ngang là chiều dày bia, trục thẳng đứng
là cường độ chùm tia ............................................................................ 21
Hình 1.9: Quá trình nhân M như là một hàm của hệ số nhân keff. Chỉ trường hợp
dưới tới hạn (keff < 1) được đề cập ở hình này ..................................... 28
Hình 2.1: Tỷ số Hp(10,a)/Hp(10,0o) theo các hướng khác nhau a và năng lượng
khác nhau của neutron (chiếu trên phantom cơ thể người) ................... 29
Hình 3.1: Tiết diện bằng của phịng chuẩn neutron ............................................... 43
Hình 3.2: Tiết diện đứng của phòng chuẩn neutron ............................................... 44


Hình 3.3: Thiết kế của nguồn neutron.................................................................... 45
Hình 4.1: Cấu tạo tấm che chắn dùng trong mơ phỏng .......................................... 49
Hình 4.2: Cấu hình I cho việc mơ phỏng và đo đạc thực nghiệm; (+): nguồn tại gốc
tọa độ; (o): Vị trí tính tốn/ đo đạc. Trục X đi từ trái sang phải. Trục Y đi
từ ngoài vào trong trang giấy. Trục Z đi từ dưới lên trên ...................... 52
Hình 4.3: Cấu hình II cho việc mơ phỏng và đo đạc thực nghiệm; (+): nguồn tại
gốc tọa độ; (o): Vị trí tính tốn/ đo đạc; ( )Tấm chắn suy giảm. Trục X
đi từ trái sang phải. Trục Y đi từ ngoài vào trong trang giấy. Trục Z đi từ
dưới lên trên ......................................................................................... 53
Hình 5.1: Phổ thơng lượng neutron tại vị trí cách nguồn 75 cm theo các thành phần
sinh ra bởi một neutron tới từ nguồn 252Cf khi khơng có tấm suy giảm.
Tổng: Fn-tot; Trực tiếp: Fn-dir; Tán xạ (Tổng-Trực tiếp): Fn-sct .............. 57
Hình 5.2: Tỷ lệ bị rị của tấm che chắn gồm 30 cm PE+0.5 cm Pb và 30 cm PEB

theo năng lượng là tỷ số giữa Fn-dir của cấu hình 4 (trong Bảng 4.2) hoặc
cấu hình 2 (Bảng 4.3) chia cho Fn-dir của cấu hình 1 (Bảng 4.2 hoặc
Bảng 4.3). ............................................................................................. 58
Hình 5.3: Phổ thơng lượng neutron tại vị trí cách nguồn 75 cm theo các thành phần
sinh ra bởi một neutron tới từ nguồn

252

Cf. Tổng: Fn-tot; Tán xạ: Fn-sct;

Trực tiếp: Fn-dir = Fn-tot - Fn-sct.............................................................. 60
Hình 5.4: Phổ thơng lượng neutron tại vị trí cách nguồn 125 cm theo các thành
phần sinh ra bởi một neutron tới từ nguồn 252Cf. Tổng: Fn-tot; Tán xạ: Fnsct;

Trực tiếp: Fn-dir = Fn-tot - Fn-sct......................................................... 60

Hình 5.5: Phổ thơng lượng neutron tại vị trí cách nguồn 150 cm theo các thành
phần sinh ra bởi một neutron tới từ nguồn 252Cf. Tổng: Fn-tot; Tán xạ: Fnsct;

Trực tiếp: Fn-dir = Fn-tot - Fn-sct......................................................... 61

Hình 5.6: Tỷ lệ (%) đóng góp của các thành phần chính trong cấu hình của bài tốn
mơ phỏng vào giá trị thơng lượng neutron tổng cộng tại vị trí khảo sát
sinh ra bởi một neutron tới khi thay đổi khoảng cách từ nguồn đến điểm
khảo sát. Các tường được đánh số như trong Hình 4.2. ........................ 61
Hình 5.7: Tỷ lệ (%) đóng góp của các thành phần chính trong cấu hình của bài tốn
mơ phỏng vào giá trị thơng lượng neutron tổng cộng tại vị trí khảo sát
sinh ra bởi một neutron tới khi thay đổi khoảng cách từ nguồn đến điểm
khảo sát. Các tường được đánh số như trong Hình 4.3. ........................ 62



BẢNG KÝ HIỆU VÀ CHỮ VIẾT TẮT
Ký hiệu/
viết tắt
aE+0b
Att:iPb+jPE
DEn-tot
DEn-dir
DEn-dir(Shd-Tech)
En
Etb-tot
Etb-dir
Etb-dir(Shd-Tech)
IAEA
ICRU
ICRP
ISO
n/s

Fn
Fn-tot
Fn-dir
Fn-dir(Shd-Tech)
Fn-sct
PE
PEB
Pb
sr
SSDL-VN
VKHKTHN

VNLNTVN
WHO

Ý nghĩa
a x 10+b (a,b là hai số thực)
Tấm suy giảm gồm 2 lớp: i cm chì (Pb) và j cm polyethylene
(PE)
Tương đương liều neutron tổng cộng trên một neutron tới (pSv.n1
)
Tương đương liều neutron trực tiếp trên một neutron tới (pSv.n-1)
Tương đương liều neutron trực tiếp trên một neutron tới tính theo
phương pháp tấm che chắn (pSv.n-1)
Năng lượng neutron (MeV)
Năng lượng neutron trung bình trên tồn phổ thơng lượng
neutron tổng cộng (MeV)
Năng lượng neutron trung bình trên tồn phổ thơng lượng
neutron trực tiếp (MeV)
Năng lượng neutron trung bình trên tồn phổ thơng lượng
neutron trực tiếp tính theo phương pháp tấm che chắn (MeV)
Cơ quan năng lượng nguyên tử quốc tế
Cơ quan đo đạc và đơn vị bức xạ quốc tế
Cơ quan an toàn bức xạ quốc tế
Cơ quan tiêu chuẩn quốc tế
neutron trên giây
Thông lượng neutron (cm-2.n-1)
Thông lượng neutron tổng cộng trên một neutron tới (cm-2.n-1)
Thông lượng neutron trực tiếp trên một neutron tới (cm-2.n-1)
Thông lượng neutron trực tiếp trên một neutron tới tính theo
phương pháp tấm che chắn (cm-2.n-1)
Thơng lượng neutron tán xạ (Fn-tot - Fn-dir)

Lớp polyethylene của tấm che chắn
Lớp polyethylene pha với boron có mật độ khối 1.0 g/cm3
Lớp chì của tấm che chắn
Đơn vị của góc khối (steradian)
Phòng chuẩn cấp hai về đo liều bức xạ ion hóa - của Việt Nam
Viện Khoa học và kỹ thuật hạt nhân
Viện năng lượng nguyên tử Việt Nam
Tổ chức y tế thế giới


MỞ ĐẦU
Như chúng ta biết việc ứng dụng của năng lượng ngun tử vì mục đích hịa
bình, phục vụ dân sinh ngày càng được quan tâm khi ngày càng thiếu đi những
nguồn năng lượng truyền thống như: dầu mỏ, than đá, thủy năng hay những nguồn
năng lượng thiên nhiên khác. Mặt khác, nguồn năng lượng hạt nhân cũng thể hiện
thế mạnh ưu điểm của chúng so với các nguồn năng lượng truyền thống khác như:
phát thải năng lượng thấp, giảm sự gia tăng hiệu ứng nhà kính (

), đáp ứng sự

bền vững an ninh năng lượng quốc gia,… Ngoài những điểm mạnh rõ ràng, năng
lượng hạt nhân cũng thể hiện những yếu điểm nhất định như: tổn thất lớn khi có sự
cố xảy ra; tác động đến sức khỏe, thậm chí đến tính mạng con người khi cơng tác
ứng dụng không được thực hiện theo đúng cách, tôn trọng những quy định an toàn
bức xạ, an toàn hạt nhân. Theo Điều 24, Luật Năng Lượng Nguyên Tử Việt
Nam[1], các thiết bị đo liều bức xạ phải được hiệu chuẩn định kỳ. Theo khuyến cáo
của Cơ Quan Năng Lượng Nguyên Tử Quốc Tế (IAEA) thì mỗi thiết bị đo liều cầm
tay phải được chuẩn trước khi sử dụng lần đầu và định kỳ được hiệu chỉnh lại sau
khi sử dụng mỗi 12 đến 14 tháng[6].
Viện Khoa học và Kỹ thuật Hạt nhân (VKHKTHN) thuộc Viện Năng lượng

Nguyên tử Việt Nam (VNLNTVN) là một trong những cơ quan đi đầu trong việc
đưa các ứng dụng của hạt nhân, bức xạ vào cuộc sống. Cơng tác nghiên cứu an tồn
bức xạ, an tồn hạt nhân và đo liều bức xạ cũng được quan tâm phát triển một cách
đúng mức. VKHKTHN, tính đến nay, cũng là cơ quan duy nhất tại Việt Nam có
phịng chuẩn cấp hai về đo liều bức xạ ion hóa (SSDL-VN) nằm trong hệ thống
SSDL của WHO/IAEA. Tuy nhiên, hiện nay phịng chuẩn cũng chỉ có khả năng
chuẩn liều bức xạ ion hóa photon (chuẩn liều cho các thiết bị đo liều bức xạ
photon), chưa có khả năng chuẩn các thiết bị đo liều neutron (ví dụ như máy đo liều
neutron cầm tay). Mục đích của việc chuẩn các thiết bị đo liều là để chắc chắn rằng
chúng hoạt động bình thường với độ chính xác có thể tin cậy được. Do vậy việc đầu
tư mở rộng cơ sở, phát triển năng lực, đẩy mạnh khả năng đo liều neutron nhằm đáp
ứng tốt hơn nhu cầu chuẩn liều bức xạ ion hóa nói chung và chuẩn liều neutron nói

1


riêng đang được VKHKTHN xúc tiến thực hiện. Cũng với nguyên nhân đó mà luận
văn thạc sĩ này được đưa ra với nội dung “Nghiên cứu xây dựng trường chuẩn liều
neutron sử dụng nguồn

”, luận văn này có thể xem như là phần giới thiệu tới

bạn đọc các công tác chuẩn bị, những cơ sở vật chất hiện có, phương pháp chuẩn
máy đo liều bức xạ cầm tay.
Mục tiêu của luận văn này là nghiên cứu xây dựng trường chuẩn liều neutron
sử dụng nguồn

dùng cho mục đích chuẩn liều neutron cho các thiết bị đo liều

neutron cầm tay. Luận văn này cũng là tiền đề cho việc hiện thực hóa quá trình xây

dựng trường chuẩn liều neutron tại VKHKTHN.

2


CHƯƠNG 1: TỔNG QUAN
1.1. Các thuật ngữ, khái niệm cơ bản trong lĩnh vực chuẩn liều bức xạ ion hóa
Thiết bị chuẩn
+ là các thiết bị chuẩn cấp hai, được chuẩn với các thiết bị chuẩn cấp một thông qua
các phịng thí nghiệm chuẩn quốc gia hoặc các phịng thí nghiệm được công nhận
trên thế giới đang giữ chuẩn với các đại lượng chuẩn thích hợp. Ngồi ra, nếu
phịng thí nghiệm chuẩn cấp hai cũng là phịng thí nghiệm chuẩn quốc gia thì
thiết bị của họ có thể được chuẩn thơng qua phịng chuẩn cấp I trên thế giới (ví
dụ phịng thí nghiệm chuẩn cấp I BIPM – the Bureau International des Poids et
Mesures ở Paris).
+ khi thiết bị chuẩn khơng phải là chuẩn cấp hai thì chúng phải được chuẩn thông
qua chuẩn cấp hai hoặc chuẩn cấp ba mà đã được chuẩn dựa trên chuẩn cấp hai.
Nguồn chuẩn
+ là các nguồn chuẩn cấp hai, được chuẩn với chuẩn cấp một thơng qua các phịng
thí nghiệm chuẩn quốc gia hoặc các phịng thí nghiệm được cơng nhận trên thế
giới đang giữ chuẩn với các đại lượng chuẩn thích hợp. Ngồi ra, nếu nguồn
chuẩn cấp hai cũng là nguồn chuẩn quốc gia thì chúng có thể được chuẩn thơng
qua BIPM.
+ khi nguồn chuẩn khơng phải là chuẩn cấp hai thì chúng phải được chuẩn thông
qua chuẩn cấp hai hoặc chuẩn cấp ba mà đã được chuẩn dựa trên chuẩn cấp hai.
Chuẩn cấp một
+ là chuẩn cao nhất cho các đại lượng đo lường trong các lĩnh vực riêng. Chuẩn cấp
một được lưu giữ tại phịng thí nghiệm chuẩn quốc gia mà tại đó thực hiện các
nghiên cứu về mục đích của đo lường, tham gia các so sánh quốc tế (được tổ
chức bởi các phòng chuẩn như BIPM) với các phòng thí nghiệm chuẩn cấp một

khác.
Chuẩn cấp hai
+ là chuẩn mà giá trị của nó được xác định bằng cách so sánh trực tiếp với chuẩn
cấp một và được đi kèm với một chứng chỉ chuẩn xác định quá trình chuyển

3


chuẩn đó. Chuẩn cấp hai được lưu giữ tại hệ thống phịng thí nghiệm SSDL của
IAEA. Các phịng thí nghiệm chuẩn cấp hai được chứng nhận bởi quyết định
chính thức của quốc gia và được coi như là cơ sở cho việc xác định giá trị cho tất
cả các chuẩn khác về các đại lượng liên quan trong quốc gia đó.
Chuẩn cấp ba
+ là chuẩn mà giá trị của chúng được xác định bởi việc so sánh với chuẩn cấp hai
Chuẩn quốc gia
+ là chuẩn được công nhận bởi quyết định chính thức của quốc gia, được coi như là
cơ sở cho việc xác định giá trị của tất cả các chuẩn khác về các đại lượng liên
quan trong quốc gia đó. Nói chung có thể coi chuẩn quốc gia trong một đất nước
cũng chính là chuẩn cấp một trong đất nước đó.
Trường bức xạ chuẩn
+ là trường bức xạ mà các đại lượng liên quan đến trường đó đã được xác định bằng
hệ thiết bị chuẩn tương ứng.
Trường bức xạ tự do
+ là trường bức xạ mà các đại lượng liên quan đến trường đó được xác định với các
đặc tính trong một khơng gian tự do (nghĩa là trong khơng gian khơng có tán xạ,
khơng có phơng phóng xạ hay các hiệu ứng ảnh hưởng khác).
Thiết bị đo
+ là thiết bị nhằm thực hiện phép đo độc lập hoặc trong mối liên hệ với các thiết bị
khác, ví dụ: thiết bị đo suất liều cầm tay, máy đo liều cầm tay, nhiệt kế, áp kế, …
Hệ số chuẩn

+ hệ số chuẩn CF là tỷ số giữa giá trị thực của đại lượng cần đo H trên giá trị hiển
thị M của thiết bị đo.
=

(1.1)

+ Ví dụ: Hệ số chuẩn của một thiết bị đo tương đương liều môi trường được diễn tả
như sau:


=

(10)

4

(1.1 )


+ hệ số chuẩn là một chỉ số cho một trường bức xạ chuẩn với các điều kiện xác
định, không phải là một hệ số duy nhất có thể áp dụng cho tồn bộ dải đo của
thiết bị (khi đó thiết bị đo được coi là khơng tuyến tính trong dải đáp ứng của
nó).
+ hệ số chuẩn khơng có thứ nguyên khi mà thứ nguyên của giá trị thực và giá trị đo
là như nhau. Một thiết bị được coi là tốt khi hệ số chuẩn của nó gần 1. Hệ số
chuẩn luôn phải đi kèm với các điều kiện chuẩn xác định.
+ Nghịch đảo của hệ số chuẩn là đáp ứng của thiết bị đó dưới điều kiện chuẩn và
ngược lại.
Đáp ứng
+ đáp ứng R của thiết bị đo là tỷ số giữa chỉ số đo


của thiết bị đo với giá trị thực

của đại lượng đo.
Ghi chú: Loại đáp ứng cần phải được chỉ rõ, ví dụ:
 đáp ứng thông lượng,
F

=

F

(1.2)

F

 đáp ứng tương đương liều,
=

(1.3)

 đáp ứng tương đương liều cho photon,
g

=

g

(1.4)
g


Nếu M là phép đo chỉ suất lượng thì đại lượng “thơng lượng, F” và “tương
đương liều,

” lần lượt được thay thế bằng “suất thông lượng, j” và “suất tương

đương liều, ̇ ”
Giá trị thực (của một đại lượng)
+ là giá trị được đánh giá một cách tốt nhất bởi chuẩn cấp một hoặc chuẩn cấp hai
hoặc bởi thiết bị chuẩn được chuẩn tại phịng thí nghiệm chuẩn cấp một hoặc cấp
hai. Giá trị thực được coi là rất gần với giá trị chính xác với sự khác nhau khơng
đáng kể cho một mục đích xác định.

5


Hệ số chuyển đổi
+ hệ số chuyển đổi

là tỷ số giữa đại lượng A và đại lượng B
=

(1.5)

+ trong luận văn này chúng ta đề cập nhiều đến hệ số chuyển đổi thông lượng
neutron sang tương đương liều neutron, ℎF , là tỷ số giữa tương đương liều
neutron

và thông lượng neutron F tại một điểm trong trường bức xạ.
ℎF =


(1.6)

F

Sai số nội tại, I(%)
+ là tỷ số giữa sự khác biệt của giá trị thực

và giá trị đo

(nghĩa là:



) trên

giá trị thực , sai số nội tại được diễn tả theo công thức.
(%) =



. 100

(1.7)

Thời gian đáp ứng
+ là khoảng thời gian từ khi bức xạ chiếu vào thiết bị đo cho tới khi giá trị của thiết
bị đo đạt tới 90% giá trị hiển thị của nó.
Điểm chuẩn của thiết bị đo
+ là điểm dùng để định vị thiết bị đo tại điểm kiểm tra. Điểm chuẩn của thiết bị

thường được đánh dấu trên thiết bị bởi nhà sản xuất, nếu khơng thể đánh dấu trên
thiết bị thì chúng phải được chỉ ra trong các tài liệu đi kèm cùng thiết bị.
Điểm kiểm tra
+ là điểm mà thiết bị đo sẽ được đặt tại đó để chuẩn, tại điểm này thì giá trị thực của
đại lượng đo đã được xác định.
1.2. Các đại lượng đặc trưng cho một trường bức xạ neutron trong việc chuẩn
liều neutron
Thông lượng neutron, F
+ thông lượng neutron F là tỷ số giữa số neutron đến
cầu

6

trên diện tích tiết diện mặt


F =

(1.8)

+ đơn vị đo của thông lượng neutron là

, đơn vị thường dùng là

.

Suất thông lượng neutron, j
+ suất thơng lượng neutron (hay cịn gọi là mật độ dịng neutron - j) là tỷ số giữa
lượng biến thiên thông lượng neutron F trên một đơn vị thời gian


j =

F

=

(1.9)

.
.

+ đơn vị đo của suất thông lượng neutron là
.

, đơn vị thường dùng là

.

Thông lượng neutron phổ, F
+ là phân bố năng lượng của phổ neutron, được thể hiện là tỷ số giữa độ biến thiên
thông lượng neutron, F, trên khoảng năng lượng

giữa hai điểm năng lượng

+



F =


F

(1.10)
.

+ đơn vị của thông lượng neutron phổ là
.

, đơn vị thông dụng là

.

Suất thông lượng neutron phổ, j
+ suất thông lượng neutron phổ (hay còn gọi là mật độ dòng neutron phổ - j ) là
biến thiên của thông lượng neutron phổ, F , theo thời gian, dt.

j =

F

F

=

+ đơn vị của suất thông lượng neutron phổ là
.

(1.11)

.

.

.

, đơn vị thường dùng là

.

Năng lượng neutron trung bình trên tồn phổ thơng lượng,
+ là năng lượng neutron được lấy trung bình trên tồn phổ thơng lượng neutron và
được biểu diễn qua cơng thức:
=

1

F

¥

.F ( )

7

(1.12)


Năng lượng neutron trung bình tương đương liều,
+ là năng lượng neutron được lấy trung bình trên tồn phổ tương đương liều
=


¥

1

. ℎF ( ). F

(1.13)

+ trong đó:
¥

ℎF ( ) . F

=

(1.14)

Hoạt độ phóng xạ, A
+ hoạt độ phóng xạ A của một lượng chất phóng xạ ở trạng thái năng lượng xác
định tại một thời điểm nhất định là tỷ số giữa số dịch chuyển hạt nhân tự phát ở
trạng thái năng lượng đó,

, trong khoảng thời gian

.

=

(1.15)


+ đơn vị của hoạt độ phóng xạ là Becquerel (Bq), 1 Bq = 1
Liều hấp thụ, D
+ là tỷ số giữa năng lượng trung bình e của bức xạ ion hóa truyền cho khối lượng

=
+ đơn vị của liều hấp thụ là

e

.

(1.16)
, đơn vị thường dùng là Gray (

); 1

=

1 .
Tương đương liều, H
+ là tích số của liều hấp thụ,
bức xạ gây ra liều hấp thụ

, tại một vị trí trong mơ với hệ số phẩm chất,

, của

tại điểm đó
= .


+ đơn vị của liều hấp thụ là .

(1.17)

, đơn vị thường dùng là Sievert (Sv)

Suất tương đương liều, ̇
+ là tỷ số giữa độ biến thiên tương đương liều
̇ =

trong khoảng thời gian
(1.18)

8


+ đơn vị của suất tương đương liều là .
Tương đương liều môi trường,



.

, đơn vị thường dùng là

.

( )



+ tương đương liều môi trường,

( ), tại một điểm trong trường bức xạ là tương

đương liều tạo ra bởi trường bức xạ mở rộng và định hướng trong quả cầu ICRU
tại độ sâu

trên bán kính ngược hướng của trường bức xạ (minh họa trong Hình

1.2b). Đơn vị của tương đương liều mơi trường là .

a)

, đơn vị thường dùng là

b)

c)

Hình 1.1: Hình ảnh mơ tả a) trường bức xạ thực, b) trường bức xạ mở rộng và định
hướng, c) trường bức xạ định hướng. Hình trịn nét đứt trong hình b) và c)
mơ tả kích thước u cầu đối với trường bức xạ tương ứng đó

+ đối với bức xạ đâm xuyên mạnh, độ sâu

= 10 mm hiện tại đang được khuyến

cáo sử dụng. Tương đương liều môi trường trong trường hợp này ký hiệu là



(10).

+ đối với bức xạ đâm xuyên yếu, độ sâu

= 0.07 mm và

= 3 mm hiện tại đang

được khuyến cáo sử dụng cho da và mắt. Tương đương liều môi trường trong
trường hợp này được ký hiệu lần lượt là
Tương đương liều định hướng,

∗(

0.07) và

∗(

3).

( , W)

+ tương đương liều định hướng,

( , W), tại một điểm trong trường bức xạ là

tương đương liều được tạo ra bởi trường bức xạ mở rộng tại độ sâu

trên bán


kính của quả cầu ICRU theo hướng W xác định (minh họa trong Hình 1.2a). Đơn
vị đo của tương đương liều định hướng là .

9

, đơn vị thường dùng là

.


a) trường bức xạ mở rộng

b) trường bức xạ mở rộng và định hướng

Hình 1.2: Cấu trúc trường bức xạ của hình cầu ICRU tại điểm P’ mà tại đó tương
đương liều được xác định. Bức xạ có thể tương tác với hình cầu từ
nhiều hướng khác nhau trong trường bức xạ mở rộng. H’(d,W) định
nghĩa cho hướng W trên véctơ bán kính tại độ sâu d. Trong trường bức
xạ mở rộng và định hướng, véctơ bán kính trong việc xác định H*(d)
luôn ngược hướng với hướng của trường bức xạ

Tương đương liều cá nhân,

( )

+ là tương đương liều trong mơ ICRU, tại một điểm thích hợp
Đơn vị của tương đương liều cá nhân là .

bên dưới cơ thể.


, đơn vị thường dùng là

. Mọi

giá trị tương đương liều cá nhân cần phải đưa ra giá trị độ sâu .
+ đối với bức xạ đâm xuyên mạnh, độ sâu

= 10 mm hiện tại đang được khuyến

cáo sử dụng. Tương đương liều cá nhân trong trường hợp này ký hiệu là
+ đối với bức xạ đâm xuyên yếu, độ sâu

= 0.07 mm và

(10).

= 3 mm hiện tại đang

được khuyến cáo sử dụng cho da và mắt. Tương đương liều cá nhân trong trường
hợp này được ký hiệu lần lượt là

(0.07) và

(3).

+ Việc chuẩn liều kế cá nhân, các đại lượng được định nghĩa

( ), phải quan tâm

tới các phantom tương ứng chứa mô ICRU như sau:

 phantom cơ thể người với kích thước 30 cm x 30 cm x 15 cm để mô tả
cơ thể người (cho việc chuẩn liều toàn thân)

10


 phantom gối, là một hình trụ trịn với đường kính 7.3 cm, dài 30 cm,
để mơ tả cẳng tay hoặc cẳng chân (cho việc chuẩn liều kế đeo tại cổ
tay hoặc mắt cá chân)
 phantom que, là một hình trụ trịn với đường kính 1.9 cm, dài 30 cm,
để mơ tả ngón tay (cho việc chuẩn liều kế nhẫn)
Bảng tóm tắt các đại lượng hoạt động dùng trong an toàn bức xạ
Bảng 1.1: Các đại lượng hoạt động dùng trong an toàn bức xạ

Đại lượng hoạt động
Bức xạ chiếu ngoài

Đại lượng giới hạn

Bức xạ
đâm xuyên mạnh

Liều hiệu dụng

Bức xạ
đâm xuyên yếu

Liều da

đo liều

môi trường



đo liều
cá nhân

(10)

(10)

(0.07, W)

(0.07)

Liều cho thủy tinh thể của mắt



(3, W)

(3)

Mối quan hệ giữa đại lượng vật lý, đại lượng hoạt động và trường bức xạ neutron
Trường bức xạ neutron chuẩn

Đại lượng vật lý mô tả trường bức xạ neutron chuẩn
Thông lượng neutron, F ( , W)
Liều hấp thụ,


Đại lượng dùng trong chuẩn, bắt nguồn từ đại lượng vật lý
Tương đương liều môi trường, ∗ ( )
Tương đương liều định hướng, ( , W)
Tương đương liều cá nhân, ( ), trong phantom với thành phần mơ
Hình 1.3: Mối quan hệ giữa đại lượng vật lý, đại lượng đặc trưng cho một trường
bức xạ neutron chuẩn và các đại lượng dùng trong chuẩn

11


1.3. Tương tác của neutron với vật chất
Để ghi nhận neutron hay để che chắn an toàn bức xạ đối với neutron người ta
dựa trên tương tác của neutron với vật chất. Trong phần này, tác giả của luận văn
muốn giới thiệu những kiến thức cơ bản về tương tác của neutron với vật chất nhằm
giúp đọc giả có cái nhìn tổng quan về đo đạc neutron nói chung và chuẩn liều
neutron nói riêng theo hai cấp độ khác nhau:
 mức độ vi mô: tương tác của neutron với các hạt và hạt nhân
 mức độ vĩ mô: tương tác của neutron với vật liệu hỗn hợp
1.3.1. Tương tác ở cấp độ vi mô
Khái niệm tiết diện tương tác vi mơ, s
+ khi một chùm neutron có cùng năng lượng đi hướng tới một lớp vật liệu mỏng thì
một số neutron có thể đi xuyên qua lớp vật liệu đó mà không xảy ra bất kỳ tương
tác nào, một số khác có thể tương tác với các phân tử hay nguyên tử của vật liệu
và thay đổi hướng chuyển động cũng như năng lượng của chúng. Một số neutron
có tương tác với vật chất có thể vẫn đi xuyên qua vật chất, tuy nhiên một số khác
có thể bị hấp thụ bởi vật chất mà chúng tương tác. Xác suất các neutron bị hấp
thụ bởi vật chất tương tác ta gọi đó là tiết diện hấp thụ neutron (là tỷ số giữa số
neutron bị hấp thụ trên mật độ nguyên tử của vật chất bia trong một đơn vị diện
tích). Do đó đơn vị của tiết diện tương tác giống như đơn vị của diện tích, đơn vị
thường dùng là


.

Mối quan hệ giữa vận tốc và năng lượng của neutron
Tiết diện tương tác tổng cộng của neutron phụ thuộc nhiều vào vận tốc của nó.
Trong mục này, mối quan hệ giữa vận tốc và năng lượng của neutron được đề cập
đến, giúp cho đọc giả có thể ước lượng được thời gian neutron có mặt trong vùng
ghi nhận của thiết bị đo. Theo thuyết cổ điển, khi một hạt có khối lượng
động với vận tốc

thì động năng
=

chuyển

nó nhận được sẽ là:
.
2

(1.19)

12


Đối với neutron có động năng

(tính theo MeV) và vận tốc

(tính theo m/s)


thì mối quan hệ giữa chúng được biểu diễn qua cơng thức[14]:
= 5.227 × 10 .

(1.20)

và:
/

(1.21)

Vận tốc của neutron (m/s)

= 1.383 × 10 .

Động năng của neutron (MeV)
Hình 1.4: Mối quan hệ giữa vận tốc và động năng của neutron

từ mối quan hệ này ta có thể ước lượng được khoảng thời gian
neutron với năng lượng nhất định
có bề dày là

(tính theo s) mà

(tính theo MeV) đi qua một lớp vật chất mỏng

(tính theo m) theo cơng thức sau:
=

1.383 × 10 .


(1.22)

/

Các loại tương tác của neutron
Neutron khi tương tác với vật chất có rất nhiều loại phản ứng xảy ra, tuy nhiên
có hai loại phản ứng chính đó là tán xạ và hấp thụ neutron như được phân loại trong
Hình 1.5. Khi neutron
hạt

tương tác với hạt nhân

sinh ra hạt nhân

và giải phóng

thì phản ứng đó được ký hiệu là ( , ) , hạt nhân nặng được đặt ngồi dấu

ngoặc đơn. Ví dụ khi neutron ( ) tương tác với
được ký hiệu là:

( , )

tạo thành

và proton ( )

.

Trong phản ứng tán xạ neutron có hai loại tán xạ là tán xạ đàn hồi và tán xạ

không đàn hồi. Ở tán xạ đàn hồi, tổng động năng của neutron và hạt nhân là không
thay đổi, trong tán xạ này một phần năng lượng của neutron được truyền cho hạt

13


nhân bia. Khi neutron có động năng ban đầu
khối
2.

tương tác với hạt nhân bia với số

thì độ mất năng lượng trung bình của neutron sau một lần tương tác sẽ là
. /( + 1) .
Tương tác của neutron

Phản ứng tán xạ neutron

Phản ứng hấp thụ neutron

Tán xạ
đàn hồi

Tán xạ
phản đàn
hồi

Sinh ra
bức xạ
điện từ


Sinh ra
hạt mang
điện

Sinh ra
neutron

Sinh ra
mảnh
phân hạch

( , )

( , ’)

( , g)

( , )
( , a)
( , )
…v.v...

( ,2 )
( ,3 )
( ,4 )
…v.v...

( , )


Hình 1.5: Tương tác của neutron với vật chất; các ký hiệu trong ngoặc đơn lần lượt diễn tả
các hạt vào và hạt ra của phản ứng; n: neutron, p: proton, g: photon, a: alpha,
d: deuterium, f: mảnh phân hạch

Nghĩa là sau một lần tương tác động năng của neutron tán xạ còn lại sẽ là:
=

+1
( + 1)

.

(1.23)

sau n lần tương tác, động năng của neutron tán xạ còn lại là:
=

.

+1
( + 1)

từ cơng thức (1.24) nhận thấy các vật liệu có số khối

(1.24)
nhỏ sẽ rất hiệu quả trong

việc làm chậm neutron và ta có thể tính được số lần tương tác, n, để động năng của
neutron giảm từ


xuống

theo công thức:
=

lg ( / )
lg [( + 1)/( + 1) ]

14

(1.25)


tán xạ đàn hồi là quá trình quan trọng nhất trong việc làm nhiệt hóa neutron. Bảng
1.2 là một số ví dụ về số lần tán xạ đàn bồi cần thiết để nhiệt hóa neutron từ năng
lượng 2 MeV xuống còn 0.025 eV.
Bảng 1.2: Số lần tán xạ đàn hồi trung bình cần thiết để giảm năng lượng
của neutron từ 2 MeV xuống 0.025 eV đối với một số nguyên tố.

Nguyên tố

Số khối

Số tương tác cần thiết

H

1

27


D

2

31

He

4

48

Be

5

92

C

12

119

U

238

2175


Ở tán xạ phản đàn hồi, hạt nhân bia sau tương tác có sự thay đổi trạng thái
(chuyển sang trạng thái kích thích) và cuối cùng phát ra bức xạ. Trong trường hợp
này tổng động năng của neutron và của hạt nhân sau tán xạ nhỏ hơn động năng ban
đầu của neutron tới vì một phần động năng ban đầu của neutron đã tham gia vào
q trình kích thích hạt nhân bia. Trong trường hợp này rất khó nói về lượng động
năng bị mất đi của neutron tới vì nó tùy thuộc rất nhiều vào các yếu tố khác nhau
(như mức năng lượng bên trong hạt nhân, loại bức xạ phát ra), tuy nhiên một điều
hiển nhiên rằng neutron sau tương tác sẽ giảm tốc độ và thay đổi hướng chuyển
động. Nếu trạng thái năng lượng kích thích của hạt nhân quá lớn so với năng lượng
của neutron tới thì tán xạ phản đàn hồi không thể xảy ra. Đặc biệt, hạt nhân của
nguyên tử

khơng có trạng thái kích thích, do đó trong trường hợp này chỉ có tán

xạ đàn hồi có thể xảy ra. Nói chung, q trình tán xạ làm chậm neutron chính là
nguyên lý cơ bản cho việc chế tạo một số đầu đo neutron.
Thay vì bị tán xạ bởi hạt nhân, neutron cũng có thể bị hấp thụ và sau phản ứng
có thể cho ra các sản phẩm rất đa dạng (như được chỉ ra trong Hình 1.5). Cấu trúc
bên trong của hạt nhân có thể bị sắp xếp lại và một hoặc nhiều tia gamma hay các

15


hạt tích điện (phổ biến hơn cả là proton, deuteron và hạt alpha) có thể được phát ra.
Hạt nhân cũng có thể tự nó giải thốt các neutron thừa. Việc phát ra một neutron là
không thể phân biệt được ở những sự kiện tán xạ. Nếu hơn một neutron được phát
ra sau phản ứng khi đó số neutron sau phản ứng sẽ lớn hơn số neutron trước phản
ứng (số neutron trong trường hợp này được nhân lên). Cuối cùng có thể dẫn đến sự
kiện phân hạch (phát ra hai hoặc nhiều hơn các mảnh phân hạch - là các hạt nhân có

số khối ở mức trung gian) và sinh ra số neutron nhiều hơn trạng thái ban đầu.
Nhiều loại đầu đo neutron được sản xuất sử dụng nguyên lý hấp thụ neutron
(

,

,

thường được sử dụng trong đầu đo vì tiết diện hấp thụ neutron

chậm để tạo ra các hạt mang điện của chúng lớn).
Khi chúng ta chỉ cần làm chậm neutron thì phải chọn các vật liệu mà tiết diện
hấp thụ neutron thấp. Ví dụ:

có tiết diện tán xạ lớn hơn

có tiết diện hấp thụ neutron lớn hơn của
hơn

dẫn đến

. Do đó trên thực tế người ta thường dùng

thay vì dùng

, tuy nhiên

cũng lại

lại tạo ra nhiều neutron nhiệt

cho mục đích làm chậm neutron

.

Ta quy ước, tiết diện tương tác của các loại phản ứng khác nhau như được đề
cập trong Hình 1.5 ở trên lần lượt như sau:
: tiết diện tương tác tổng cộng (

+

)

: tiết diện tương tác tổng cộng của hiệu ứng tán xạ (
(hay
(hay

,
,

+

)

): tiết diện tương tác của hiệu ứng tán xạ đàn hồi
): tiết diện tương tác của hiệu ứng tán xạ phản đàn hồi

σ (hay σ ): tiết diện tương tác của hiệu ứng hấp thụ (bắt)
σ : tiết diện tương tác của hiệu ứng không tán xạ đàn hồi (σ - σ )
σ ,g: tiết diện tương tác của hiệu ứng bắt phát xạ
σ (hay σ , ): tiết diện tương tác của hiệu ứng phân hạch

σ

,

: tiết diện tương tác của phản ứng (n, p)

Sự phụ thuộc năng lượng của tiết diện tương tác
Tiết diện tương tác của tất cả các loại tương tác có thể của neutron với vật chất
đều phụ thuộc vào năng lượng của neutron tới (nói cách khác là phụ thuộc vào vận

16


×