ĐỀ THI HKI TOÁN LỚP 9-ĐỀ SỐ 01
Bài 1: (1,5 điểm)
1) Tìm x để biểu thức
1
1x
x
+
có nghĩa:
2) Rút gọn biểu thức : A =
( )
2
2 3 2 288+ −
Bài 2. (1,5 điểm)
1) Rút gọn biểu thức A.
A =
2
1
x x x
x x x
−
−
− −
với ( x >0 và x ≠ 1)
2) Tính giá trị của biểu thức A tại
3 2 2x
= +
Bài 3. (2 điểm).
Cho hai đường thẳng (d
1
) : y = (2 + m)x + 1 và (d
2
) : y = (1 + 2m)x + 2
1) Tìm m để (d
1
) và (d
2
) cắt nhau:
2) Với m = – 1 , vẽ (d
1
) và (d
2
)
trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao
điểm của hai đường thẳng (d
1
) và (d
2
)
bằng phép tính.
Bài 4: (1 điểm)
Giải phương trình:
1
9 27 3 4 12 7
2
x x x
− + − − − =
Bài 5.(4 điểm)
Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho
·
0
60MAB =
. Kẻ dây MN vuông góc với AB tại H.
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM):
2. Chứng minh MN
2
= 4 AH .HB .
3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F.
Chứng minh ba điểm N; E; F thẳng hàng.
----HẾT----