Ngày soạn: 4/8/2008
Tiết: 2 CỰC TRỊ CỦA HÀM SỐ
(Chương trình chuẩn)
I-Mục tiêu:
+ Về kiến thức:
- Nắm vững định lí 1 và định lí 2
- Phát biểu được các bước để tìm cực trị của hàm số (quy tắc I và quy tắc II)
+ Về kỹ năng:
Vận dụng được quy tắc I và quy tắc II để tìm cực trị của hàm số
+ Về tư duy và thái độ:
- Áp dụng quy tắc I và II cho từng trường hợp
- Biết quy lạ về quen
- Tích cực học tập, chủ động tham gia các hoạt động
II-Chuẩn bị của GV và HS:
- GV: giáo án, bảng phụ
- HS: học bài cũ và xem trước bài mới ở nhà
III-Phương pháp giảng dạy: vấn đáp, gợi mở, hoạt động nhóm
IV-Tiến trình bài học:
1. Ổn định lớp: (1’)
2. Kiểm tra bài cũ:
TG Hoạt động của GV Hoạt động của HS Ghi bảng
5’ +Treo bảng phụ có ghi
câu hỏi
+Gọi HS lên bảng trả
lời
+Nhận xét, bổ sung
thêm
+HS lên bảng trả lời
1/Hãy nêu định lí 1
2/Áp dụng định lí 1, tìm các điểm cực trị
của hàm số sau:
x
xy
1
+=
Giải:
Tập xác định: D = R\{0}
10'
11
1'
2
2
2
±=⇔=
−
=−=
xy
x
x
x
y
BBT:
x
-∞ -1 0 1 +∞
y’ + 0 - - 0 +
y
-2 +∞ +∞
-∞ -∞ 2
Từ BBT suy ra x = -1 là điểm cực đại của
hàm số và x = 1 là điểm cực tiểu của hàm
số
3. Bài mới:
*Hoạt động 1: Dẫn dắt khái niệm
TG Hoạt động của GV Hoạt động của HS Ghi bảng
10’ +Yêu cầu HS nêu các
bước tìm cực trị của
hàm số từ định lí 1
+GV treo bảng phụ ghi
quy tắc I
+Yêu cầu HS tính thêm
y”(-1), y”(1) ở câu 2
trên
+Phát vấn: Quan hệ
giữa đạo hàm cấp hai
với cực trị của hàm số?
+GV thuyết trình và
treo bảng phụ ghi định
lí 2, quy tắc II
+HS trả lời
+Tính: y” =
3
2
x
y”(-1) = -2 < 0
y”(1) = 2 >0
III-Quy tắc tìm cực trị:
*Quy tắc I: sgk/trang 16
*Định lí 2: sgk/trang 16
*Quy tắc II: sgk/trang 17
*Hoạt động 2: Luyện tập, củng cố
TG Hoạt động của GV Hoạt động của HS Ghi bảng
10’ +Yêu cầu HS vận dụng
quy tắc II để tìm cực trị
của hàm số
+Phát vấn: Khi nào nên
dùng quy tắc I, khi nào
nên dùng quy tắc II ?
+Đối với hàm số không
có đạo hàm cấp 1 (và
do đó không có đạo
hàm cấp 2) thì không
thể dùng quy tắc II.
+HS giải
+HS trả lời
*Ví dụ 1:
Tìm các điểm cực trị của hàm số:
f(x) = x
4
– 2x
2
+ 1
Giải:
Tập xác định của hàm số: D = R
f’(x) = 4x
3
– 4x = 4x(x
2
– 1)
f’(x) = 0
1
±=⇔
x
; x = 0
f”(x) = 12x
2
- 4
f”(
±
1) = 8 >0
⇒
x = -1 và x = 1 là hai
điểm cực tiểu
f”(0) = -4 < 0
⇒
x = 0 là điểm cực đại
Kết luận:
f(x) đạt cực tiểu tại x = -1 và x = 1;
f
CT
= f(
±
1) = 0
f(x) đạt cực đại tại x = 0;
f
CĐ
= f(0) = 1
Riêng đối với hàm số
lượng giác nên sử dụng
quy tắc II để tìm các
cực trị
*Hoạt động 3: Luyện tập, củng cố
TG Hoạt động của GV Hoạt động của HS Ghi bảng
11’ +Yêu cầu HS hoạt
động nhóm. Nhóm nào
giải xong trước lên
bảng trình bày lời giải
+HS thực hiện hoạt
động nhóm
*Ví dụ 2:
Tìm các điểm cực trị của hàm số
f(x) = x – sin2x
Giải:
Tập xác định : D = R
f’(x) = 1 – 2cos2x
f’(x) = 0
⇔
cos2x =
+−=
+=
⇔
π
π
π
π
kx
kx
6
6
2
1
(k
Ζ∈
)
f”(x) = 4sin2x
f”(
π
π
k
+
6
) = 2
3
> 0
f”(-
π
π
k
+
6
) = -2
3
< 0
Kết luận:
x =
π
π
k
+
6
( k
Ζ∈
) là các điểm cực tiểu
của hàm số
x = -
π
π
k
+
6
( k
Ζ∈
) là các điểm cực đại
của hàm số
4. Củng cố toàn bài: (5’)
Các mệnh đề sau đúng hay sai?
1/ Số điểm cực tr ị của hàm số y = 2x
3
– 3x
2
là 3
2/ Hàm số y = - x
4
+ 2x
2
đạt cực trị tại điểm x = 0
Đáp án: 1/ Sai
2/ Đúng
5. Hư ớng dẫn học bài ở nhà và ra bài tập về nhà: (3’)
- Định lý 2 và các quy tắc I, II tìm cực trị của hàm số
- BTVN: làm các bài tập còn lại ở trang 18 sgk
- Đọc bài và tìm hiểu bài mới trước ở nhà
V-Phụ lục: bảng phụ ghi các quy tắc I, II và định lí 2