Tải bản đầy đủ (.doc) (8 trang)

ÔN HỌC KỲ I - BÀI TẬP TOÁN ĐẠI SỐ 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (139.5 KB, 8 trang )

ÔN HỌC KỲ I - BÀI TẬP TOÁN ĐẠI SỐ 9
Bài1 : 1) Trục căn thức ở mẫu :
532
26
+
2) Rút gọn biểu thức : A =
32)62(
−+
Giải
1)Trục căn thức ở mẫu :
532
26
+
532
26
+
=
)532)(532(
)532(26
−+

=
22
5)32(
)532(26


=
2512
)532(26



=
13
)532(26


= –2(2
3
– 5)
=–4
3
+10 = 10– 4
3

2)Rút gọn biểu thức : A =
32)62(
−+
A=
2
.
32

+
6
.
32


=
)32(2


+
)32(6

=
324

+
3612

=
3321
+−
+
333.29
+−
=
22
)3(321
+−
+
22
)3(33.23
+−
=
2
)31(

+
2

)33(

=
31

+
33

=
3
–1+ 3 –
3
= 2
Bài 2: Giải phương trình :
1)
6459
3
4
53204
=+++−+
xxx
2)
3144
2
=+−
xx
Giải
1)
6459
3

4
53204
=+++−+
xxx

6545352
=+++−+
xxx

6)432(5
=+−+
x

653
=+
x

25
=+
x

5
+
x
= 3
* x + 5 = 2 ( với x ≥ – 5 )
2)
3144
2
=+−

xx

3)12(
2
=+
x

12
+
x
= 3


* 2x + 1 = 3 ( x ≥
2
1

)
x = 1 Nhận
* – 2x – 1 = 3 ( x <
2
1

)
X= – 2 Nhận
Vậy S =
{ }
2;1

x = – 3 Nhận

* – x – 5 = 2 (Với x < – 5 )
x = – 7 Nhận
Vậy S =
{ }
7;2

Bài 3 : Tìm x thỏa điều kiện sau
a)
x
+
3
= 3
b)
x25

x16
= 9
Giải
Tìm x thỏa điều kiện sau
a)
x
+
3
= 3
Suy ra :3+
x
=9 hay
x
= 6 =
36


Vậy x = 36
b)
x25

x16
= 9
Suy ra
x5

x4
= 9 Hay
x
= 9
=
81

Vậy x = 81
Bài 4:
1/Giải phương trình :
699441
=−+−+−
xxx
2/Tính :
324

3/Rút gọn biểu thức: A=
3
132324
++−

Giải
1/ Giải phương trình :
699441
=−+−+−
xxx

613121
=−+−+−
xxx

)321(1
++−
x
=6 ⇔ 6
x

1
=6 ⇔
2/Tính :
324

324

=
3321
+−
=
22
)3(321
+−

=
2
)31(

=
31

=
3
–1
Vậy
324

=
3
–1
x

1
=1 ⇔
x

1
=1
* 1– x = 1 ( với x ≤ 1 )
⇔ x= –2 Nhận
* –(1 – x) = 1 (với x > 1)
⇔ – 1+ x = 1 ⇔ x= 2 Nhận
Vậy S =
{ }

2;2

3/Rút gọn biểu thức: A=
3
132324
++−
=
3
13213
++−
=
3
33
= 3

Bài 5 :
Cho biê
̉
u thư
́
c Q =








+

+

x
x
x
x
11
+
1
3


x
x
với x ≥0 và x ≠ 1
1) Rút gọn Q .
2) Tìm x để Q = – 1
Giải
a) Q =








+
+


x
x
x
x
11
+
1
3


x
x

=








−+

+
+−
+
)1)(1(
)1(
)1)(1(

)1(
xx
xx
xx
xx
+
1
3


x
x
=








+−
−++
)1)(1(
)1()1(
xx
xxxx
+
1
3



x
x
=
+









−++
x
xxxx
1
1
3


x
x
=
x
x

1

2
+
x
x


1
3
=
x
x


1
33

b)Với Q = – 1 Ta có
x
x


1
33
= – 1

)1)(1(
)1(3
xx
x
+−


= – 1

)1)(1(
)1(3
xx
x
+−
−−
= – 1

x
+

1
3
= – 1
⇔ 1+
x
= 3

x
= 2
⇔ x = 4
Bài 6 : Cho biểu thức P =









+
+

22 x
x
x
x
.
x
x
4
4

với x > 0 ; x ≠ 4
a/ Rút gọn biểu thức P.
b/ Tìm x để cho biểu thức P = 6
c/ Tìm x để P > 3
a/ P =








+

+

22 x
x
x
x
.
x
x
4
4

=








−+

+
+−
+
)2)(2(
)2(
)2)(2(
)2(

xx
xx
xx
xx
.
x
x
4
4


=









−++
2
2
)2()2(
x
xxxx
.
x
x

4
4

=









−++
4
22
x
xxxx
.
x
x
4
4


=
4
2

x

x
.
x
x
4
4


=
x
x
2
2
=
x
x
=
xx
xx
=
x

b) P = 6 ⇔
x
= 6 ⇔
x
=
36
⇔ x = 36
c) P > 3 ⇔

x
> 3 ⇔
x
>
9
⇔ x > 9

Bài 7: a / Vẽ đồ thị của các hàm số sau trên cùng mặt phẳng toạ độ :
(d) : y = 3x – 3 (d

) : y = -2x +4
b/ Tìm toạ độ giao điểm của (d) và (d

)
Giải
1)Tìm 2 giao điểm của (d) với 2 trục là A(0; -3) , B(1; 0)
Tìm 2 giao điểm của (d’) với 2 trục là A’(0:3) , B’(2;0)
Vẽ đúng 2 đồ thị Đường thẳng (d) đi qua A và B
Đường thẳng (d’) đi qua A’ và B’
2) 3x-3 = - 2x +4 ⇔ 3x+2x = 4+3 ⇔ 5x=7


x =
5
7

Thay vào tìm được y =
5
6


Vậy Tìm toạ độ giao điểm của (d) và (d

) là điểm M (
5
7
;
5
6
).
Bài 8: a / Vẽ đồ thị của các hàm số sau trên cùng mặt phẳng toạ độ :
(d) : y =
2
1
x -2 (d

) : y = -2x +3
b/ Tìm toạ độ giao điểm của (d) và (d

) .
Giải
a/ (d):y =
2
1
x -2 b/ Tìm hoành độ của giao điểm là
Có giao điểm với trục hoành
x= 0 ⇔ y=-2 A(0;-2)
Giao điểm trục tung
y=0 ⇔ 0 =
2
1

x -2⇔ x=4 B(4;0)
(d

) : y = -2x +3
Có giao điểm với trục hoành
x= 0 ⇔ y=3 A’(0;3)
Giao điểm trục tung
Y=0 ⇔ 0 = -2x +3
⇔ x=
2
3
=1,5 B’(1,5;0)
Vẽ đồ thị hai hàm số
-Xác định cá điểm A(0;-2) ,B(4;0),
A’(0;3) , B’(1,5;0)
Đường thẳng (d) đi qua A và B
Đường thẳng (d’) đi qua A’ và B’
2
1
x -2 = -2x +3 ⇔
2
1
x +2x=3+2

2
5
x =5
⇔ x = 2
Thay x=2 vào một trong hai phương trình
ta tìm được tung độ của giao điểm là

y = -2.2 +3 = -1
Vậy toa độ của giao điểm là I(2;-1)

Bài 9: Cho biê
̉
u thư
́
c A =
xx
xx
12241224
12241224
−−+
−++
1) Tính giá trị của biểu thức khi x = 1 . Sau đó rút gọn biểu thức .
2 Làm mất căn ở mẫu của biểu thức A . Sau đó rút gọn biểu thức .
3) Tìm điều kiện của x để biểu thức xác định .
Giải
1)Khi x=1 ta có
A =
1.12241.1224
1.12241.1224
−−+
−++
=
1236
1236

+
= A =

1236
)1236(
2

+
=
24
121236236
++
=
24
3.26248
22
+
=
24
3.2.6.248
+
=
24
3.2448
+
=
24
)3.2(24
+
= 2 +
3

×