Tải bản đầy đủ (.pdf) (52 trang)

Luận văn tốt nghiệp khảo sát sự phụ thuộc nhiệt độ chế tạo của tính chất từ vật liệu bán dẫn từ indium iron antimonide

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.47 MB, 52 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH

Nguyễn Bình An

KHẢO SÁT SỰ PHỤ THUỘC NHIỆT ĐỘ
CHẾ TẠO CỦA TÍNH CHẤT TỪ
CỦA VẬT LIỆU BÁN DẪN TỪ
INDIUM IRON ANTIMONIDE (In,Fe)Sb

KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC

Thành phố Hồ Chí Minh – 2020


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH

Nguyễn Bình An
KHĨA LUẬN TỐT NGHIỆP ĐẠI HỌC

KHẢO SÁT SỰ PHỤ THUỘC NHIỆT ĐỘ
CHẾ TẠO CỦA TÍNH CHẤT TỪ
CỦA VẬT LIỆU BÁN DẪN TỪ
INDIUM IRON ANTIMONIDE (In,Fe)Sb
Ngành Sư phạm Vật lý
Mã số sinh viên: 42.01.102.001

Giảng viên hướng dẫn

Giảng viên phản biện



TS. NGUYỄN THANH TÚ

TS. CAO ANH TUẤN

TP. Hồ Chí Minh, năm 2020


MỤC LỤC
DANH MỤC CÁC TỪ VIẾT TẮT ......................................................................................... 1
DANH MỤC BẢNG BIỂU VÀ HÌNH ẢNH .......................................................................... 2
MỞ ĐẦU.................................................................................................................................... 6
CHƯƠNG 1. TỔNG QUAN VỀ VẬT LIỆU BÁN DẪN TỪ................................................ 8
1.1. Điện tử học spin (spintronics) ....................................................................................... 8
1.2. Vật liệu bán dẫn từ (ferromagnetic semiconductors - FMSs) ................................. 12
1.2.1. Giới thiệu về vật liệu bán dẫn từ. ........................................................................ 12
1.2.2. Vật liệu bán dẫn từ pha tạp Mn và hạn chế của nó ........................................... 14
1.2.3. Vật liệu bán dẫn từ pha tạp sắt ........................................................................... 17
CHƯƠNG 2. PHƯƠNG PHÁP PHÂN TÍCH MÀNG MỎNG (In,Fe)Sb ......................... 23
2.1. Phương pháp Epitaxy chùm phân tử (molecular beam epitaxy - MBE) ................ 23
2.2. Phương pháp kiểm tra chất lượng bề mặt của màng mỏng .................................... 25
2.3. Quang phổ lưỡng sắc tròn (magnetic circular dichroism spectra - MCD) ............ 28
2.4. Xác định nhiệt độ Curie bằng phương pháp vẽ Arrott plot .................................... 31
CHƯƠNG 3. KẾT QUẢ VÀ BÀN LUẬN ............................................................................ 32
3.1. Các thông số của mẫu nghiên cứu: ............................................................................ 32
3.2. Khảo sát hình thái bề mặt và cấu trúc tinh thể của màng mỏng (In,Fe)Sb ........... 34
3.3. Khảo sát tính chất quang-từ (magneto-optical) của màng mỏng (In,Fe)Sb........... 36
CHƯƠNG 4. KẾT LUẬN ...................................................................................................... 46
4.1 Kết luận ......................................................................................................................... 46
4.2 Hướng phát triển của đề tài ......................................................................................... 46

TÀI LIỆU THAM KHẢO...................................................................................................... 48


DANH MỤC CÁC TỪ VIẾT TẮT
(Theo thứ tự bảng chữ cái)

Chữ viết tắt

Nội dung

FMS

Ferromagnetic semiconductor – Bán dẫn từ

MBE

Molecular-beam epitaxy: Epitaxy chùm phân tử

MCD

Magnetic circular dichroism - Lưỡng sắc tròn từ tính

RHEED

Reflection high-energy electron diffraction - Nhiễu xạ electron phản
xạ năng lượng cao

GMR

Giant magnetoresistance effect - Hiệu ứng từ điện trở khổng lồ


TMR

Tunnel magnetoresistance effect - Hiệu ứng từ điện trở chui hầm

1


DANH MỤC BẢNG BIỂU VÀ HÌNH ẢNH
Số thứ tự

Tên bảng

Trang

Thơng số các mẫu bán dẫn từ (In,Fe)Sb trong đề tài. Các mẫu
Bảng 3.1

(In1-x,Fex)Sb từ A0 đến A4 với nhiệt độ đế từ 2100C đến

33

2700C, trong đó mẫu A0 là mẫu InSb đối chiếu.

Số thứ tự

Tên hình

Trang


Định luật Moore cho thấy dự đốn tốc độ tăng số lượng
Hình 1.1

transistor trên một đơn vị diện tích theo thời gian. (Nguồn

8

Intel.com)

Hình 1.2

Hình 1.3

Minh họa lĩnh vực spintronic ứng dụng cả tính chất điện và từ
của electron.
(a) Hiệu ứng từ điện trở khổng lồ. (b) Hiệu ứng từ điện trở
chui hầm.

9

10

Cách ghi dữ liệu của các loại MRAM. (a) MRAM đảo bằng từ
Hình 1.4

trường (b) MRAM đảo bằng dịng phân cực spin. (Nguồn:

12

Wikipedia.com)

Hình 1.5

Minh họa sự tạo thành vật liệu bán dẫn từ.

13

Sự phụ thuộc của độ từ hóa M theo từ trường của màng mỏng
Hình 1.6

(Ga,Mn)As có nồng độ 3.5%Mn ở 5K. Hình bên trong biễu

15

diễn độ từ dư theo nhiệt độ của mẫu này.

Hình 1.7

Hình 1.8

Quang phổ MCD của các màng mỏng (Ga,Mn)As với nồng
độ pha tạp 0.5% và 7.4%Mn.
Điều khiển tính chất từ bằng dịng điện trên (In,Mn)As. Trong
đó RHall là điện trở Hall phụ thuộc vào độ từ hóa M.
2

15

16



Nhiệt độ Curie cao nhất được báo cáo cho tới nay của một số
Hình 1.9

vật liệu bán dẫn từ nhóm III-V pha tạp Mn gồm (Ga,Mn)As,

17

(In,Mn)As, (Ga,Mn)Sb, (In,Mn)Sb.
Ảnh chụp cấu trúc tinh thể bằng kính hiển vi điện tử truyền
Hình 1.10

qua (STEM) của các mẫu bán dẫn từ pha tạp sắt như
(In,Fe)As, (Ga,Fe)Sb và (In,Fe)Sb chế tạo bằng phương pháp

19

epitaxy chùm phân tử.
Quang phổ MCD của (a) các màng mỏng (Ga,Fe)Sb với nồng
Hình 1.11 độ pha tạp Fe từ 3.9 - 25% và (b) (In,Fe)Sb với nồng độ pha

20

tạp Fe từ 5 - 16%.
Nhiệt độ Curie cao nhất được báo cáo cho tới nay của một số
Hình 1.12 vật liệu bán dẫn từ nhóm III-V pha tạp Fe gồm (Ga,Fe)As,

21

(In,Fe)As, (Ga,Fe)Sb, và (In,Fe)Sb.
Điều khiển tính chất từ của màng mỏng (In,Fe)Sb bằng điện

Hình 1.13

trường. Trong đó RHall là điện trở Hall phụ thuộc vào độ từ
hóa M. Khi đặt vào cổng điện áp dương (+5V) RHall tăng lên

22

cho thấy độ từ hóa M hay từ tính của màng (In,Fe)Sb tăng lên.
Hình 2.1

Hình 2.2

Hình 2.3

Hình 2.4

Sơ đồ minh họa hệ thống epitaxy chùm phân tử.
Mô tả sự tăng trưởng của chùm phân tử trong phương pháp
MBE.
Ảnh chụp buồng tăng trưởng EpiQuest III-V MBE tại đại học
Tokyo.
Sơ đồ bố trí thiết bị để thu phổ RHEED.

23

24

25

25


Ảnh RHEED thu được trong quá trình chế tạo màng mỏng
Hình 2.5

bán dẫn TiO2 trên đế LaAlO3 bằng phương pháp MBE. Bên
trái là ảnh RHEED, còn bên phải là ảnh minh họa hình thái bề
3

26


mặt tương ứng. (a) Ảnh RHEED của đế LaAlO3 trước khi phủ
TiO2 có dạng bằng phẳng. (b) – (d) Ảnh RHEED của lớp TiO2
ứng với bề dày 4, 30, 40nm.
Ảnh RHEED chụp theo phương [110] của các màng mỏng (a)
Hình 2.6

GaAs chế tạo ở nhiệt độ 250oC, (b) (Ga,Mn)As ở 250oC, (c)

27

(Ga,Mn)As 170oC, và (d) (Ga,Mn)As 320oC.

Hình 2.7a

Sơ đồ minh họa cách bố trí thu phổ MCD của màng mỏng bán
dẫn từ.

Hình 2.7b Ảnh chụp máy đo phổ MCD ở trường đại học Tokyo.


28

28

(a) Quang phổ MCD của (In,Fe)As cho thấy có sự tăng cường
Hình 2.8

độ mạnh mẽ tại các peak quan trọng của InAs. (b) Phổ MCD
của lớp Fe dày 44nm thể hiện một peak nền rộng, khác biệt

30

hoàn tồn so với (In,Fe)As.

Hình 3.1

Hình 3.2

Hình 3.3

Hình vẽ cấu trúc của các mẫu bán dẫn từ (In,Fe)Sb trên đế
GaAs.
(a) – (d) Hình ảnh RHEED của các lớp đệm AlSb của các
mẫu theo thứ tự tương ứng A1 – A4.
Hình ảnh RHEED của lớp (In,Fe)Sb của các mẫu theo thứ tự.

32

34


35

Phổ MCD của các mẫu (In,Fe)Sb (A0-A4) chế tạo ở các nhiệt
Hình 3.4

độ khác nhau (210oC, 230oC, 250oC, 270oC). Phổ MCD được

37

đo ở nhiệt độ 5K khi đặt trong từ trường 1T.

Hình 3.5

(a) – (d) Phổ MCD tương ứng của các mẫu (In,Fe)Sb (A1-A4)
đo ở 5K dưới các từ trường khác nhau 0.2T, 0.5T và 1T.

39

(a) – (d) Phổ MCD tương ứng của các mẫu (In,Fe)Sb (A1-A4)
Hình 3.6

đo ở 5K dưới các từ trường khác nhau 0.2T, 0.5T và 1T sau
khi đã được chuẩn hóa.
4

40


Đồ thị thể hiện sự phụ thuộc của cường độ MCD theo từ
Hình 3.7


trường của các mẫu A1, A2, A3, A4, theo thứ tự được đo ở

42

các nhiệt độ khác nhau từ 5K đến 300K.
Đồ thị Arrott plot của 4 mẫu (In,Fe)Sb từ A1 – A4 chế tạo ở
Hình 3.8

các nhiệt độ khác nhau lần lượt 210oC, 230oC, 250oC, và

44

270oC.

Hình 3.9

Đồ thị biễu diễn mối liên hệ giữa nhiệt độ Curie TC theo nhiệt
độ chế tạo mẫu Tđế.

5

45


MỞ ĐẦU

1. Lý do chọn đề tài
Những năm gần đây vật liệu “bán dẫn từ” (ferromagnetic semiconductor FMS) thu hút sự quan tâm nghiên cứu vì nó sở hữu cả hai tính chất quan trọng là tính
bán dẫn và từ tính. Sự kết hợp của hai tính chất này giúp cho các nhà khoa học có thể

tạo ra những thiết bị điện tử mới như spin-transistor, máy tính lượng tử…với nhiều chức
năng hơn, nhanh hơn, và tiêu thụ ít điện năng hơn so với các thiết bị điện tử hiện nay.1,2
Để có thể đưa vào sử dụng trong thực tế, nhiệt độ Curie TC (nhiệt độ chuyển pha giữa
thuận từ và sắt từ) của vật liệu bán dẫn từ phải lớn hơn nhiệt độ phòng (khoảng 300
Kelvin (K)). Tuy nhiên, tất cả các vật liệu bán dẫn từ được phát hiện cho đến nay đều
có nhiệt độ Curie rất thấp. Chẳng hạn, chất bán dẫn từ được nghiên cứu nhiều nhất hiện
nay là Galium Manganese Asenide ((Ga,Mn)As) có nhiệt độ Curie cao nhất cũng chỉ
200K (-730C),3 điều này gây khó khăn cho việc đưa vào ứng dụng trong các thiết bị điện
tử.
Gần đây, nhóm hợp tác nghiên cứu giữa trường Đại học Tokyo (Nhật Bản) và trường
đại học Sư phạm TP Hồ Chí Minh đã chế tạo thành cơng chất bán dẫn từ mới Indium
Iron Antimonide (In,Fe)Sb có nhiệt độ Curie cao đến 385K (tức 1120C) bằng phương
pháp epitaxy chùm phân tử.4, 5 Đây được xem là vật liệu bán dẫn từ có nhiệt độ Curie
cao nhất được báo cáo cho đến nay, vì vậy chúng có rất nhiều tiềm năng để ứng dụng
trong lĩnh vực điện tử. Tuy nhiên việc tối ưu hóa các điều kiện chế tạo vật liệu (In,Fe)Sb
như nhiệt độ chế tạo, bề dày màng mỏng,… vẫn chưa được nghiên cứu và thực hiện. Vì
vậy với mong muốn được tìm hiểu nghiên cứu sâu hơn về vật liệu (In,Fe)Sb và tìm điều
kiện để cải thiện tính chất từ của màng mỏng (In,Fe)Sb, tôi mong muốn thực hiện đề tài
“Khảo sát sự phụ thuộc vào nhiệt độ chế tạo của tính chất từ của vật liệu bán dẫn từ
Indium Iron Antimonide (In,Fe)Sb”
2. Mục đích nghiên cứu
Khảo sát sự thay đổi tính chất từ của màng mỏng bán dẫn từ (In,Fe)Sb theo
nhiệt độ chế tạo từ đó tìm ra nhiệt độ tốt nhất để chế tạo màng mỏng (In,Fe)Sb.

6


3. Đối tượng và phạm vi nghiên cứu
- Tìm hiểu về vật liệu bán dẫn từ (In,Fe)Sb.
- Tìm hiểu về phương pháp chế tạo màng mỏng (phương pháp epitaxy chùm phân tử)

và các phương pháp phân tích tính chất của màng mỏng.
- Tiến hành xử lý các số liệu đo đạc thực nghiệm của nhóm nghiên cứu ở trường đại học
Tokyo và phân tích các kết quả từ số liệu thu được.
- So sánh, đánh giá kết quả và đưa ra kết luận về nhiệt độ tối ưu để chế tạo màng.
4. Những đóng góp của đề tài
Thơng qua q trình xử lý và đánh giá số liệu được đo đạc thực nghiệm, đề tài đã
đưa ra được nhiệt độ tối ưu tốt nhất để chế tạo vật liệu bán dẫn từ (In,Fe)Sb bằng phương
pháp epitaxy chùm phân tử, ngoài ra kết quả nghiên cứu cũng cho biết quy luật ảnh
hưởng của nhiệt độ chế tạo lên tính chất của màng mỏng (In,Fe)Sb, từ đó chọn được
nhiệt độ chế tạo thích hợp cho từng mục đích sử dụng khác nhau.

7


CHƯƠNG 1. TỔNG QUAN VỀ VẬT LIỆU BÁN DẪN TỪ

1.1. Điện tử học spin (spintronics)
Nhờ những phát minh ra các thiết bị điện tử như transitor, mạch tích hợp (ICs) và
laser các nhà khoa học đã tạo nên cuộc cách mạng của công nghệ thông tin và cải thiện
chất lượng của cuộc sống con người. Để phục vụ nhu cầu ngày càng tăng của con
người, các thiết bị điện tử đã được phát triển liên tục, cứ sau 18 tháng số lượng
transistor trên một đơn vị diện tích cho mỗi bộ vi xử lý được tăng gấp đơi, đó là nội
dung của định luật Moore như thể hiện trên hình 1.1. Điều này dẫn đến sự cải thiện về
tốc độ và năng lực của máy tính cũng như làm giảm chi phí của máy tính. Tuy nhiên,
quy luật này được dự đoán sẽ kết thúc sớm do những hạn chế vật lí của các thiết bị điện
tử sử dụng Silicon (silicon-based) xảy ra ở quy mơ nano.

Hình 1.1 Định luật Moore cho thấy dự đoán tốc độ tăng số lượng transistor trên
một đơn vị diện tích theo thời gian. (Nguồn Intel.com)
Để khắc phục những hạn chế này, rất nhiều phương pháp tiếp cận đã được đề xuất

như thay thế Silic bằng các vật liệu mới hoặc đề xuất các thiết bị có các nguyên lý làm
việc mới. Trong số nhiều phương pháp tiếp cận có một lĩnh vực mới nổi gọi là
"spintronics", đây được xem là một giải pháp đầy hứa hẹn cho các thiết bị điện tử trong
tương lai.
8


Các thiết bị spintronics khơng chỉ sử dụng "điện tích" của electron, mà cịn khai
thác một đặc tính nội tại của các electron được gọi là "spin", như trong hình 1.2. Trong
các thiết bị spintronics, bit "0" và "1" của dữ liệu kỹ thuật số nhị phân có thể được thể
hiện bằng trạng thái spin up () và spin down (), thay vì "có" hoặc "khơng có" các điện
tích. Bởi vì spin khơng thay đổi hay mất đi khi ngưng cung cấp năng lượng cho nên các
thiết bị spintronics dự kiến sẽ có nhiều ưu điểm như tiêu thụ điện năng thấp, không cần
cung cấp điện xuyên suốt, tốc độ cao,...6 Ngồi ra, vì spin có thể dễ dàng điều chỉnh bởi
từ trường bên ngồi nên vật liệu spintronics có thể cung cấp các chức năng mới chưa
từng có trong vật liệu Silicon thơng thường.

Hình 1.2 Minh họa lĩnh vực spintronic ứng dụng cả tính chất điện và từ của
electron.
Các thiết bị spintronic thuộc thế hệ đầu tiên hoạt động bằng cách sử dụng hiệu
ứng từ điện trở khổng lồ (Giant magnetoresistance effect - GMR) và hiệu ứng từ điện
trở chui hầm (Tunnel magnetoresistance effect - TMR). Trong các thiết bị hoạt động
dựa trên các hiệu ứng từ điện trở khổng lồ và hiệu ứng từ điện trở chui hầm, điện trở có
thể điều chỉnh bằng cách kiểm sốt từ trường của các lớp kim loại sắt từ. Hình 1.3(a)
mơ tả hiệu ứng GMR ở hai bản kim loại sắt từ ngăn cách nhau bởi một lớp kim loại
khơng có từ tính. Khi từ trường trong hai bản kim loại từ tính song song nhau điện trở
của hệ nhỏ, ngược lại khi từ trường ở hai bản ngược chiều điện trở của hệ trở nên rất
lớn. Hiện tượng này được phát hiện vào cuối những năm 1980 bởi nhóm của A. Fert và
P. Grunberg (được trao giải Nobel năm 2007)I, và được giải thích dựa vào sự tán xạ phụ
9



thuộc spin (spin-dependent scattering) của electron tại mặt tiếp xúc các lớp7, 8. Ngoài ra
sự tán xạ phụ thuộc spin của electron cũng xảy ra trong các tiếp xúc từ chui hầm
(magnetic tunnel junction (MTJ)) là các màng mỏng đa lớp có các lớp sắt từ ngăn cách
bởi các lớp điện mơi được mơ tả trong hình 1.3(b), hiện tượng này được khám phá vào
năm 1995 bởi Miyazaki và Mooder và được đặt tên là hiệu ứng từ điện trở chui hầm9, 10.
Khi từ trường trong hai bản kim loại từ tính song song nhau điện trở của hệ nhỏ, ngược
lại khi từ trường ở hai bản ngược chiều điện trở của hệ trở nên rất lớn.

Hình 1.3 (a) Hiệu ứng từ điện trở khổng lồ. (b) Hiệu ứng từ điện trở chui hầm.
Những thiết bị spintronic dựa trên hiệu ứng từ điện trở khổng lồ hay hiệu ứng từ
điện trở chui hầm có nhiều ưu điểm như khơng cần duy trì nguồn điện, tiêu thụ điện
năng thấp, tuy nhiên do chúng có thành phần là các kim loại sắt từ nên một số tính chất
như nồng độ hạt mang điện khơng thể thay đổi. Do đó thế hệ các thiệt bị spintronic này
chỉ được sử dụng trong các thiết bị thụ động như MRAM (Magnetoresistive Random
Access Memory - bộ nhớ truy nhập ngẫu nhiên từ điện trở) và cảm biến dựa trên GMR
(hay TMR) cho đầu đọc của đĩa cứng.
MRAM có cấu trúc là một lớp tiếp xúc chui hầm từ tính có hiệu ứng từ điện trở
chui hầm. Trong MRAM, thông tin được lưu trữ bởi độ từ hóa của lớp màng mỏng từ.
10


Các bit thơng tin được đảo khi độ từ hóa của lớp màng mỏng được đảo chiều. Thông tin
được đọc thông qua sự thay đổi điện trở của lớp tiếp xúc từ. Khi độ từ hóa của các lớp
màng mỏng từ ở trạng thái đối song song, điện trở của tiếp xúc từ lớn, tương ứng với bit
(1), còn khi hệ ở trạng thái song song thì điện trở giảm mạnh, và tương ứng với bit (0).
Trong những thế hệ ban đầu của MRAM, người ta sử dụng cấu trúc màng mỏng từ đa
lớp với hiệu ứng từ điện trở khổng lồ, nhưng cấu trúc kiểu này gây khó khăn cho sự phát
triển do các lớp đều là kim loại, điện trở của linh kiện trở nên rất nhỏ và tạo ra tín hiệu

yếu. Sau sự phát triển của hiệu ứng từ điện trở chui hầm (đặc biệt là hiệu ứng trong các
lớp tiếp xúc sử dụng MgO với tỉ số từ điện trở tới hàng trăm phần trăm ở nhiệt độ phòng),
các tiếp xúc từ chui hầm với điện trở lớn (và sự thay đổi điện trở rất lớn) đã thay thế cấu
trúc GMR truyền thống và tạo sự phát triển nhanh chóng của MRAM.
Ở thế hệ MRAM đầu tiên, trạng thái của các lớp từ tính được đảo bằng cách sử
dụng một từ trường ngoài. Cấu trúc kiểu này yêu cầu có một bộ phận tạo từ trường và
do đó tạo ra kích thước ơ nhớ rất lớn, tiêu tốn khá nhiều năng lượng cho bộ phận đảo từ.
Thế hệ mới nhất của MRAM là Spin Transfer Torque MRAM (STT-MRAM) được đảo
từ bằng dòng phân cực spin (spin polarized current). Hoạt động của STT-MRAM dựa
trên hiệu ứng truyền momen spin (spin transfer torque) là hiệu ứng truyền moment động
lượng spin của điện tử cho một momen từ và kết quả là moment từ bị quay đi theo chiều
của moment động lượng spin đó. Khi dịng phân cực spin chạy qua lớp từ tính thì
moment từ của lớp này bị quay theo chiều của dòng phân cực spin. Cơ cấu kiểu này cho
phép loại bỏ hoàn toàn các bộ phận phụ, giảm kích thước ơ nhớ đồng thời tăng tốc độ
và giảm lỗi địa chỉ.II

11


Hình 1.4 Cách ghi dữ liệu của các loại MRAM. (a) MRAM đảo bằng từ trường
(b) MRAM đảo bằng dòng phân cực spin. (Nguồn: Wikipedia.com)
Thế hệ tiếp theo của các thiết bị spintronic cần có thêm những chức năng hấp dẫn
hơn, vì vậy spin của electron cần được khai thác vào ứng dụng vào chất bán dẫn. Do đó
chất bán dẫn từ (ferromagnetic semiconductors) đã được nghiên cứu rộng rãi trong hai
thập kỷ qua.

1.2. Vật liệu bán dẫn từ (ferromagnetic semiconductors - FMSs)
1.2.1. Giới thiệu về vật liệu bán dẫn từ.
Chất bán dẫn từ là loại vật liệu bán dẫn được pha trộn một tỉ lệ kim loại chuyển tiếp
nhất định (các nguyên tố có mang điện tử trong quỹ đạo lớp d như sắt (Fe), mangan

(Mn), coban (Co), crom (Cr)…) giúp bán dẫn đó thể hiện cả tính chất từ và tính chất của
bán dẫn. Cho đến nay, vật liệu bán dẫn là nguyên liệu cho hầu hết các thiết bị của nền
công nghiệp điện tử như diode, LED, và đặc biệt là transitor, linh kiện cơ bản cấu thành
nên bộ xử lý trung tâm (Central Processing Unit – CPU) của máy tính. Trong khi đó, vật
liệu sắt từ với khả năng duy trì trạng thái từ hóa một cách bền vững và không tiêu tốn
năng lượng là nguyên liệu chính trong các thiết bị lưu trữ thơng tin như ổ cứng ngồi.
Vì mang các tính chất hồn tồn khác nhau, các vật liệu bán dẫn và vật liệu sắt từ cũng
như các thiết bị điện tử sử dụng chúng tồn tại một cách riêng biệt và giữ vai trị khác
nhau trong máy tính: Bộ phận xử lý thơng tin và bộ phận lưu trữ thông tin. Việc kết hợp
các đặc tính của vật liệu bán dẫn và vật liệu sắt từ trên cùng một thiết bị là vấn đề mới
được đặt ra trong vòng ba thập kỷ gần đây, khi nhu cầu cắt giảm năng lượng hao phí và
12


tăng tốc độ hoạt động của hệ thống thông tin trở nên cấp thiết. Nếu các thiết bị điện tử
như transistor có khả năng “nhớ” được trạng thái của mình mà không cần cung cấp năng
lượng một cách liên tục, biên giới và độ trễ giữa việc lưu trữ thông tin và xử lý thông
tin sẽ được cải thiện đáng kể, dẫn đến một thế hệ máy tính mới hoạt động đặc biệt nhanh
hơn và tiết kiệm năng lượng hơn. Chất bán dẫn từ chính là chìa khóa để mở ra cánh cửa
tương lai đó.
Trong vật liệu bán dẫn từ một số nguyên tử trong tinh thể bán dẫn được thay thế
bằng các nguyên tử kim loại chuyển tiếp có từ tính như Mn, Cr, Fe,.. Ngun tử có từ
tính cung cấp các moment từ do đó làm tăng trật tự sắt từ trong khi vẫn duy trì tính chất
của bán dẫn. Kết quả là bán dẫn từ thể hiện cả tính chất của bán dẫn và của kim loại sắt
từ, có thể sử dụng cho các thiết bị điện tử khơng cần duy trì nguồn điện và tiêu thụ điện
năng thấp. Hình 1.5 minh họa sự tạo thành các vật liệu bán dẫn từ.11 Ban đầu khi chưa
pha tạp các kim loại thì bán dẫn khơng có từ tính. Sau khi một số nguyên tử trong tinh
thể bán dẫn được thay thế bởi các ngun tử có từ tính thì các moment từ của các ngun
tử này có thể sắp xếp ngẫu nhiên nên vật liệu có tính thuận từ, nhưng khi có sự hỗ trợ
của các hạt tải điện như electron hay lỗ trống thông qua tương tác trao đổi (exchange

interaction) thì các moment từ này sắp xếp có trật từ và hình thành nên trạng thái sắt từ.

Hình 1.5 Minh họa sự tạo thành vật liệu bán dẫn từ.11
Trong số các loại bán dẫn từ thì bán dẫn từ nhóm II-VI pha tạp Mn như
(Cd,Mn)Te và (Zn,Mn)Te đã được nghiên cứu từ đầu những năm 1980.12 Trong các vật
liệu loại II-VI đó, nguyên tử Mn có hóa trị II, do đó có thể pha tạp Mn với nồng độ cao
vào bán dẫn gốc. Tuy nhiên rất khó để kiểm sốt các tính chất truyền dẫn của các bán
dẫn từ loại II-VI do đó việc ứng dụng bán dẫn từ loại II-VI vào các thiết bị spintronic
vẫn là một thách thức.
13


Năm 1989, loại bán dẫn từ nhóm III-V pha tạp Mn đầu tiên được phát triển thành
công trên bán dẫn GaAs bằng phương pháp epitaxy chùm phân tử (MBE – Molecularbeam epitaxy) bởi Munekata và các cộng sự.1 Do độ hòa tan thấp của Mn trong bán dẫn
loại III-V nên cần hạ thấp nhiệt độ đế (  3000 C ) để ngăn sự hình thành cụm nano kim
loại (nanocluster) hoặc các pha hợp chất khác (second phases) trong bán dẫn. Kỹ thuật
này được gọi là epitaxy chùm phân tử nhiệt độ thấp. Sau đó, nhóm nghiên cứu của Ohno2
và Hayashi13 đã hoạt động độc lập cùng phát triển một bán dẫn từ loại III-V pha tạp Mn
khác là (Ga,Mn)As. Trong suốt hai thập kỉ qua, vật liệu (Ga,Mn)As là vật liệu bán dẫn
từ được quan tâm nhất vì nó có tính chất đặc biệt là từ tính gây ra bởi hạt mang điện lỗ
trống (hole-induced ferromagnetism), nghĩa là độ từ hóa có của vật liệu này có thể được
điều khiển được bằng cách thay đổi nồng độ lỗ trống thông qua việc dùng điện trường
(electrical control ferromagnetism) hay chiếu xạ ánh sáng (light irradiation). Ngoài ra,
bán dẫn III-V như GaAs, InAs, GaSb… đã được sử dụng rộng rãi trong nền cơng nghiệp
điện tử, vì vậy việc tạo sử dụng vật liệu bán dẫn từ nhóm III-V có nhiều lợi thế về mặt
kĩ thuật khi các dây chuyền, công nghệ sản xuất đã có sẵn.

1.2.2. Vật liệu bán dẫn từ pha tạp Mn và hạn chế của nó
Trong hai thập kỷ qua, hầu hết các nghiên cứu về bán dẫn từ được tập trung vào
bán dẫn loại III-V pha tạp Mn, chẳng hạn (In,Mn)As và (Ga,Mn)As, đây là những bán

dẫn loại P. Nổi bật nhất là vật liệu bán dẫn từ (Ga,Mn)As được chế tạo đầu tiên bởi
Hideo Ohno và cộng sự vào năm 1996. Hình 1.6 cho thấy đường biểu diễn độ từ hóa
phụ thuộc cường độ từ trường H (đường cong từ hóa) và nhiệt độ Curie của màng mỏng
(Ga,Mn)As đầu tiên được chế tạo với nồng độ pha tạp 3.5%Mn.2 Đường cong từ hóa
này cho thấy (Ga,Mn)As có từ tính rất mạnh và độ từ dư lớn thuận tiện trong việc chế
tạo các linh kiện thực tế do đó vật liệu này nhanh chóng thu hút sự quan tâm nghiên cứu
của các nhà khoa học trên thế giới. Hình nhỏ bên trong cho thể hiện độ từ dư theo nhiệt
độ của mẫu này. Khi nhiệt độ tăng dần đến 60K thì độ từ dư hồn tồn biến mất cho
thấy nhiệt độ Curie của mẫu (Ga,Mn)As đầu tiên này khoảng 60K. Hình 1.7 là quang
phổ lưỡng sắc trịn (magnetic circular dishroism – MCD) của một số màng mỏng
(Ga,Mn)As với các nồng độ pha tạp 0.5% và 7.4%Mn được nghiên cứu ở cơng trình sau
đó.14 Phổ MCD của các mẫu này vẫn thể hiện các đỉnh phổ tương ứng giống với phổ
14


MCD của mẫu đối chiếu GaAs không pha tạp. Điều này cho thấy (Ga,Mn)As vẫn giữ
được cấu trúc tinh thể và cấu trúc vùng năng lượng của bán dẫn gốc GaAs.

Hình 1.6 Sự phụ thuộc của độ từ hóa M theo từ trường của màng mỏng (Ga,Mn)As có
nồng độ 3.5%Mn ở 5K. Hình bên trong biễu diễn độ từ dư theo nhiệt độ của mẫu này.

Hình 1.7 Quang phổ MCD của các màng mỏng (Ga,Mn)As với nồng độ pha
tạp 0.5% và 7.4%Mn.
15


Bên cạnh việc thể hiện có từ tính mạnh thì điều đặc biệt nhất thu hút rất nhiều
các nhà nghiên cứu ở các chất bán dẫn từ pha tạp Mn như (In,Mn)As và (Ga,Mn)As là
nhiệt độ Curie TC của chúng khơng chỉ phụ thuộc vào việc chế tạo mà cịn phụ thuộc
vào nồng độ pha tạp Mn x và nồng độ lỗ trống p. Vì vậy nhiều tính chất của vật liệu sắt

từ như nhiệt độ chuyển pha TC hay độ từ hóa có thể được kiểm sốt bằng cách thay đổi
nồng độ pha tạp của Mn hay nồng độ lỗ trống bằng cách dùng cổng điện tử hay chiếu
xạ ánh sáng. Hình 1.8(a) mơ tả kết quả thí nghiệm được thực hiện bởi Hideo Ohno và
cộng sự,15 trong thí nghiệm đó từ tính của (In,Mn)As có thể thay đổi bằng dịng điện.
Trong hình 1.8(b) độ từ hóa M của (In,Mn)As tỉ lệ thuận với điện trở Hall RHall, có thể
điều chỉnh bằng cách sử dụng một cổng điện áp. Với cổng điện áp âm, độ từ hóa được
tăng lên nhờ sự gia tăng mật độ lỗ trống. Ngược lại, độ từ hóa giảm đi với cổng điện áp
dương. Đó là một khả năng độc đáo của bán dẫn từ mà các loại vật liệu sắt từ kim loại
thông thường được sử dụng phổ biến hiện nay như FeSi, NiFe, FePt… khơng có được.

Hình 1.8 Điều khiển tính chất từ bằng dịng điện trên (In,Mn)As.18 Trong đó RHall là
điện trở Hall phụ thuộc vào độ từ hóa M.
Mặc dù có rất nhiều ưu điểm, tuy nhiên bán dẫn từ nhóm III-V pha tạp Mn vẫn còn
một số hạn chế chưa khắc phục được có thể tóm tắt như sau:
(1) Để chế tạo các thiết bị điện tử bán dẫn như diode, transistor… thì việc hội tụ đủ
cả hai loại bán dẫn N và P là điều kiện hết sức cần thiết. Tuy nhiên thì tất cả các chất
bán dẫn từ pha tạp Mn hiện nay đều là bán dẫn từ loại P với hạt dẫn điện chính là lỗ
trống. Nguyên nhân chính là do khi pha tạp vào các chất bán dẫn hệ III-V thì nguyên tử
Mn cung cấp đồng thời cả moment spin và lỗ trống, vì vậy vật liệu bán dẫn từ được chế
16


tạo dựa vào việc pha tạp Mn ln chỉ có thể trở thành bán dẫn loại P. Điều này là một
thách thức khó khăn trong việc đưa các vật liệu bán dẫn từ này vào ứng dụng thực tế.
(2) Ngoài ra, nhiệt độ Curie TC (nhiệt độ mà tại đó vật liệu khơng cịn giữ được đặc
tính sắt từ) của các bán dẫn từ pha tạp Mn phổ biến hiện nay đều thấp hơn nhiệt độ
phịng như trên hình 1.9. Cụ thể là nhiệt độ Curie cao nhất của các vật liệu từ nhóm IIIV pha Mn như (Ga,Mn)As, (In,Mn)As,16 (Ga,Mn)Sb17 và (In,Mn)Sb18 lần lượt là 200K
(tức -73 độ C).3 , 110K, 30K, và 10K, tất cả nhiệt độ Curie của các vật liệu này đều thấp
hơn rất nhiều so với nhiệt độ phịng 300K. Điều đó đồng nghĩa với việc các linh kiện
làm từ các vật liệu này không thể hoạt động trong điều kiện bình thường ở nhiệt độ

phịng.III Chính vì vậy, việc nghiên cứu và tìm ra cả hai loại bán dẫn từ loại P và loại N
có nhiệt độ Curie ở nhiệt độ phịng để ứng dụng vào thực tế là hết sức cần thiết và cấp
bách.

Hình 1.9 Nhiệt độ Curie cao nhất được báo cáo cho tới nay của một số vật liệu
bán dẫn từ nhóm III-V pha tạp Mn gồm (Ga,Mn)As,3 (In,Mn)As,16 (Ga,Mn)Sb,17
(In,Mn)Sb18.

1.2.3. Vật liệu bán dẫn từ pha tạp sắt
Để vượt qua những trở ngại của vật liệu bán dẫn từ, gần đây nhóm nghiên cứu của
trường Đại học Tokyo (Nhật Bản) kết hợp cùng nhóm nghiên cứu của trường Đại học
17


Sư phạm thành phố Hồ Chí Minh đã và đang nghiên cứu một lớp các chất bán dẫn từ
mới đó là bán dẫn từ pha tạp sắt (Fe). Nhằm tránh những hạn chế của các bán dẫn từ pha
tạp Mn, nhóm đã đưa ra một ý tưởng hồn tồn mới. Đó là thay vì dùng các chất bán
dẫn có bề rộng vùng cấm lớn như GaN hay GaAs thì nhóm đã sử dụng các bán dẫn có
bề rộng vùng cấm hẹp như InAs, GaSb và InSb làm bán dẫn gốc. Đồng thời nhóm thay
kim loại pha tạp Mn bằng một kim loại mới đó là sắt (Fe).
Khác với Mn khi pha tạp vào bán dẫn nhóm III-V thường có hóa trị II (Mn2+) do
đó khi thay thế vào vị trí nguyên tố nhóm III sẽ tạo nên lỗ trống dẫn đến luôn tạo nên
bán dẫn loại P. Ưu điểm của bán dẫn từ pha tạp sắt là khi pha tạp Fe vào các chất bán
dẫn nhóm III-V như InAs, GaSb hay InSb thì các ngun tử Fe có xu hướng biểu hiện
hóa trị III (Fe3+) nên các nguyên tử Fe chỉ đóng vai trị tạo ra moment từ chứ khơng cung
cấp các hạt tải điện. Nồng độ hạt tải điện trong các chất này được tạo ra bằng cách đồng
pha tạp (co-doping) các nguyên tố khác như Beryllium (Be) trong trường hợp của
(In,Fe)As hoặc do các sai hỏng mạng nội tại (native defects) xảy ra do sự pha tạp Fe như
trong trường hợp của (Ga,Fe)Sb hoặc (In,Fe)Sb. Chính vì vậy có thể tạo ra bán dẫn từ
loại N hoặc loại P một cách linh hoạt tùy vào cách pha tạp. Thực tế là cả hai loại bán

dẫn từ loại P và N đều đã được nhóm phát triển thành cơng bằng phương pháp epitaxy
chùm phân tử. Bán dẫn từ (Ga,Fe)Sb thể hiện loại P,19, 20 còn các chất bán dẫn từ
(In,Fe)As21 và (In,Fe)Sb4 thì thể hiện loại N. Hình 1.10 cho thấy ảnh chụp cấu trúc tinh
thể của các mẫu bán dẫn từ pha tạp sắt như (In,Fe)As, (Ga,Fe)Sb và (In,Fe)Sb bằng kính
hiển vi điện tử truyền qua (Scanning Tranmission Electron Microscopy - STEM). Các
ảnh STEM cho thấy các mẫu bán dẫn từ được chế tạo thành công bằng phương pháp
epitaxy chùm phân tử, trong đó cấu trúc tinh thể rất rõ và đồng đều cho thấy các nguyên
tử Fe thay thế rất tốt vào trong tinh thể bán dẫn mà khơng tạo ra bất kì các cụm kim loại
sắt nào.

18


Hình 1.10 Ảnh chụp cấu trúc tinh thể bằng kính hiển vi điện tử truyền qua (STEM) của
các mẫu bán dẫn từ pha tạp sắt như (In,Fe)As, (Ga,Fe)Sb và (In,Fe)Sb chế tạo bằng
phương pháp epitaxy chùm phân tử.4,20,21
Ngoài ra, một ưu điểm khác khi sử dụng nguyên tố Fe đó là khi pha tạp Fe vào
bán dẫn nhóm III-V thì do các nguyên tử Fe có hóa trị III (Fe3+) nên dễ thay thế vào vị
trí các ngun tử nhóm III (Ga hoặc In) trong mạng tinh thể, vì vậy một lượng lớn Fe
(nồng độ lớn hơn 10%) có thể pha tạp vào trong chất bán dẫn nền. Hình 1.11 (a) và (b)
cho thấy phổ MCD của các mẫu bán dẫn từ (Ga,Fe)Sb loại P với nồng độ pha tạp 3.9 25%Fe 20 và (In,Fe)Sb loại N với nồng độ pha tạp 5 - 16%Fe 4 trong đó phổ MCD của
các mẫu (Ga,Fe)Sb và (In,Fe)Sb vẫn có dạng phổ tương tự như phổ MCD của các chất
bán dẫn nền GaSb và InSb. Điều này cho thấy (Ga,Fe)Sb và (In,Fe)Sb vẫn giữ được cấu
trúc vùng năng lượng của các chất bán dẫn nền và một lượng lớn Fe có thể pha tạp thành
công vào các chất bán dẫn GaSb và InSb.

19


b)


(mdeg)

a)

Hình 1.11 Quang phổ MCD của (a) các màng mỏng (Ga,Fe)Sb với nồng độ
pha tạp Fe từ 3.9 - 25% và (b) (In,Fe)Sb với nồng độ pha tạp Fe từ 5 - 16%.
Việc có thể pha tạp nồng độ Fe với nồng độ lớn mang lại lợi thế rất lớn cho vật
liệu bán dẫn từ pha tạp Fe, đó là có thể tạo nên các chất bán dẫn từ có nhiệt độ TC cao
do nhiệt độ TC tỉ lệ thuận với nồng độ pha tạp Fe. Thực tế cho thấy nhiệt độ Curie của
(Ga1-x,Fex)Sb với nồng độ pha tạp Fe 25% ( x  25% ) có nhiệt độ TC lên đến 340 K, còn
(In1-x,Fex)Sb với với nồng độ pha tạp Fe 16% có TC lên đến 335K, đây là những giá trị
TC lớn nhất của bán dẫn từ nhóm III-V được báo cáo cho đến nay.
Hình 1.12 cho thấy nhiệt độ Curie cao nhất được cho tới nay của một số vật liệu
bán dẫn từ nhóm III-V pha tạp Fe gồm (Ga,Fe)As,22 (In,Fe)As,21 (Ga,Fe)Sb,20 và
(In,Fe)Sb4. Trong đó hai loại vật liệu bán dẫn từ (Ga,Fe)Sb loại P và (In,Fe)Sb loại N
cho thấy nhiều tiềm năng có thể ứng dụng trong các linh kiện spintronics thực tế do có
nhiệt độ Curie cao trên nhiệt độ phòng. Đặc biệt là vật liệu bán dẫn từ (In,Fe)Sb có nhiệt
độ Curie cao (335K) chỉ với nồng độ pha tạp 16%Fe, do đó nhiệt độ Curie này có thể
tiếp tục tăng cao hơn nữa khi tiếp tục tăng thêm nồng độ pha tạp Fe lên 20 hay 25%.
Ngồi ra độ từ hóa của của vật liệu này cịn có thể điều khiển bằng từ trường giống như
các loại bán dẫn từ tiêu biểu (Ga,Mn)As hay (In,Mn)As. Trên hình 1.13 cho thấy độ từ
hóa M của (In,Fe)Sb tỉ lệ thuận với điện trở Hall RHall cũng có thể điều chỉnh bằng cách
sử dụng một cổng điện áp.23 Với điện áp dương, độ từ hóa được tăng lên nhờ sự gia tăng
mật độ electron. Ngược lại, độ từ hóa giảm đi với cổng điện áp âm. Điều này cho thấy
20


(In,Fe)Sb cũng có khả năng độc đáo của các chất bán dẫn từ tiêu biểu như (Ga,Mn)As
hay (In,Mn)As. Vì vậy vật liệu (In,Fe)Sb cho thấy rất nhiều triển vọng và hứa hẹn có

thể ứng dụng vào thực tế nếu được tiếp tục được nghiên cứu và phát triển.
Chính vì vậy việc tiếp tục nghiên cứu và nâng cao nhiệt độ Curie của (In,Fe)Sb
là hết sức cần thiết và cấp bách. Tuy nhiên vấn đề được đặt ra hiện nay là để có thể tăng
nhiệt độ Curie của (In,Fe)Sb bằng cách tăng thêm nồng độ pha tạp Fe đòi hỏi các điều
kiện chế tạo màng mỏng như nhiệt độ chế tạo, độ dày màng phải được tối ưu hóa đến
mức tốt nhất có thể, nhằm đảm bảo các mẫu (In,Fe)Sb tạo ra có thể giữ được cấu trúc
tinh thể, cấu trúc vùng năng lượng cũng như tính chất bán dẫn của bán dẫn nền ban đầu.
Tuy nhiên thì việc tối ưu hóa các điều kiện chế tạo vật liệu (In,Fe)Sb này cho đến nay
vẫn chưa được nghiên cứu và thực hiện. Chính vì vậy với mong muốn được tìm hiểu
nghiên cứu sâu hơn về vật liệu (In,Fe)Sb và tìm điều kiện để cải thiện tính chất từ của
màng mỏng (In,Fe)Sb, tác giả mong muốn thực hiện đề tài “Khảo sát sự phụ thuộc vào
nhiệt độ chế tạo của tính chất từ của vật liệu bán dẫn từ Indium Iron Antimonide
(In,Fe)Sb”.

Hình 1.12 Nhiệt độ Curie cao nhất được báo cáo cho tới nay của một số vật liệu bán
dẫn từ nhóm III-V pha tạp Fe gồm (Ga,Fe)As,22 (In,Fe)As,21 (Ga,Fe)Sb,20 và (In,Fe)Sb4.
21


Hình 1.13 Điều khiển tính chất từ của màng mỏng (In,Fe)Sb bằng điện trường. Trong
đó RHall là điện trở Hall phụ thuộc vào độ từ hóa M. Khi đặt vào cổng điện áp dương
(+5V) RHall tăng lên cho thấy độ từ hóa M hay từ tính của màng (In,Fe)Sb tăng lên.

22


×