Tải bản đầy đủ (.doc) (11 trang)

Đáp án đề thi ĐH khối A 2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (179.55 KB, 11 trang )

GIẢI CÁC BÀI TOÁN
TRONG ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Môn thi : HOÁ, khối A - Mã đề : 596
Câu 1















!
"

#




 $
%  
− −




&

'(
)
*(



%




$




"+,(



#-.

/

0"

0


1
23
)
4*

-5


)


6

7"/ 8" %"/ "/$
Giải
91:-;<'3='>-?'@'A-?'@.B'A-?'@C
; B"
 B$
;# &B



!

 →



$$



B/
D

EB/F/B/B/
!/
F
 1 B/
Câu 2 %/G$(H.

13(

'0

%

'I
)
5

'.



/







JK

2

6
$
"L

1
)



)
&,

'

'-.

L

"M

',


)




7"N 8"/NO$ %"/ "/P
Giải
MQ>*RS0'T*RS%>
NON"B/G$
 B/
UT*RJK
$
V.*RS%>05-W-.='>*
JK
$
0
 →
JK

0

X/
JK
$
%
 →
JK

%

/Y/
ZR[L\]\>LR[S%/"NBN

Câu 3  (H.

1LI

(









'I
)
L(

*.

 K3^

/P"_

(

''.

',3I


LI


2

3(

'JK



'

6'-.

(H.

1LI

#

'I
)
L(

*.

 K3^

" 5


*C

'
)
1
)


'(
)
.

1

$


7"O` 8"$N` %"` "O`
Giải
%Q*RSa[1>/"
MQ*RS

>'TS

>/b*R

1=c>



$


 →

$
8-d /b
e=c $
1=c !/!!$
a[1 P2/b6B/P"
 B
a[1#f*R>b/bb$B/b

#
B2/b6"
+f

B
#
 2/b6"B/P"
 BO
?*g'1=c
`O/

O
=
Câu 4 +,*(




C

'%
$

P
%
$


%%
$

P


%
$

G
C

'

5

-(

1CC


'

C

'


7"%
$


% 8"%
$

P
 %"%
$

P
"%
$

G

Câu 5:+

5




'I

5

*
2h6

LI







Zi

2hh6

LI











2hhh6

(H.

1LI









.


2hU6%i





 %-^




2U6%JK



$








-^




2Uh6%





 J
(

'I

5




1
)




!L
)

)
&,

7"$ 8"N %"O "
Câu 6: %C3^



2L6

2L6


$
2L6"Z'^5

'-(

'I

'I

)
L(


)
(H.

1LI

*.




)
-"e

'35
)
-

L

5

C3^



&



7"e
)




'
)
5

'C3^



&5
)
'K5

'C

L'^5

'-(

"
8"e
)



'C

'
)
5

'C3^



&5
)
'K5



L'^5

'-(

"
%"e
)




'5


'C3^



&5
)
'K5

'C

L'^5

'-(

"
"e
)


'C

'5

'C3^



&5
)
'K5




L'^5

'-(

"
Câu 7:% 

I

'

 %
$
(

-(

F'-.

I

'

"jC

&/I


'


'



.



8%

26'-.

//PL5

''
)
"i^

'L

/I

'







%%

26,(

-

*LL5

''



1
)


'-.

L5

''
)
"M

',


)


'.



7"

P 8"

$ %"P

P "/


Giải
  %
$

 →


%
$


 2/6
N N
8%




%
$

 →
8%
$
% 26
N N
BN""BP
 %
$

 →


%
$
%



 2$6
%%



%
$


 →
%%
$
% 26
 


%
$
26B

%
$
2/6

%
$
2$6
 

%
$
2$6BbNB/
  %
$
',k'@'B %
$
2/6 %
$
2$6BN/"BP

 BPF/BPF
Câu 8:i(

'1C'
)
*,l.

7"(

'(

β!l.

(

'(

β!m,'l. 8"(

'(

β!l.

(

'(

α!m,'l.
%"(


α!l. "(

'(

α!l.

(

'(

β!m,'l.
Câu 9: 

5

'(H.

1-.

'

-K'C



-
)
P%"%'

3(


.

-K'',5'



.

.



7
$
',
$
'-.

$N7" 


7"%


O
 %


O

%

 8"%


O
 %
$


%


%"%
$
 %


O
%

 "%
$
 %


O

Giải
"B%BN

M=*nL(fK'm7B"B/
+K-o3>7B"U<&f % 
% 
 →
7

p% 
 →
7
&&
&BN
&B
BO&B/
N
/
$"O

=

=
ORCH
M
 p$/BN
 pBG2%


O
6
 U<&3-d>%
$

 >%


O
%


Câu 10: (H.

1i(

-.



'3&-.

#-5



.
)
>



*(

&5'

)
%'(
)
*(


)
C

'

O2*(


)
#.

.*(


)
6"5

-(

'

&



'

i'I

'-.

$$NI

'LI

%

2-L'6

O

"i^

'L

5

-

i.






-^

-5
)
'

5

1
)


K*'K

25

*C

'

P`6'I

*(

K*'K'-.



7"$ 8"$N %"P "/P
Giải

iBO%

B/O
 >#-of$%',1C'n"
 %('cS%
$


 S'%
$

L


MQ*RS>S#>&2Oq&qOFBO6
%
$


 Y$%




 
%
$

L



Y$%

LF


&L&F
&BO
L&FB/
Bq
k
y

=
P
/
UTOq&qO
 LB
 &B$
 B
UT*RSr.*RS'5'@'K*RS"
s*'K'-[f('c>%


$
%%
$




sB"P"//B/P
Câu 11:%

(



$%

N%
!
N
$
%



/
$


"_5
)


3
)
5

'%


',C

(

'.

t-
)




%2 6

MI

',


)



7" 8"/ %" "/P
Giải
UT%

B


$
HCO
5
%2 %
$
6

%2 6

Y%%
$



$$
B$"B
Câu 12: (H.

1LI



*-C&không'(

'

.
)
5


'-(

'.

u
7"



J

8"%





%"





"%



Câu 13: _

(H.


1LI

(

%





$

',(

'3I

LI

2

'

6'
-.

(H.

1LI


#"%#(

'

'



3I

.

3,26*LL5

''



1
)


L(

.

3I


'^




P(H.

1LI

02-L'6'

',"+I
)
L(


)
0*.





/P"M

',


)


7"$P 8"O %"OPO "N

Giải 

B
0
BqB

!
l

0
B"/P"PFBO
B"N$"bOB$P
Câu 14: 

'

^

1C

'',3I

LI

2/6JK2,626JK


$
%2L62$67


2L626%
%2
$
6

2,62O6%Z
$
2,62N67%2,6"%

',.

.

1
)
&,1
)




L




7"2/62$62N6 8"262$626 %"2/6262O6 "262O62N6
Câu 15: +(
)
*(


C

'
H
.

.
)




('

1C'
)
%







7"$ 8"/ %" "
Câu 16: %




1

'35
)
*
2/6j&

1'1-5

3(



&L'5

1

.

%,
$
26hJK
$


C

I

KK',5


'



D7,E$
O
2$68(

'('

3(



&L'5

1

.

LI


26eK



('






"7

2

6
$
"


%

1

'35
)
-



7"2/62$626 8"262$626 %"2/6262$6 "2/62626
Câu 17: e

'35
)



*-C&-

u
7"%

L

',3,3K,-5

'



.

.

.
)
5

'-(

'.


8"Z

K,-.




-5
)
5

'

'5

3

4-5


%"Z

K

L5
)


''5
)
C

11.'C5



"+K5

'^C


)
-5

'I



'C

L

L5

'(
)
2'

3K,-5

3,6

5

'-(






)
&
)
C


Câu 18: 

'

'

0



.

-.



"5

//


Z i


'I

'-.

$L5

''
)
"i^

'L

5

/

Z i

'I

'-.


L5

''
)

"M

',


)


7"$ 8"/O %"// "/N/
Giải
8>'v>&*w-[=V',x[1'A4v'g'>+/02 6

3'k'1d>y+*R
Z V.502 6

3;'o."
TN1. Z B
Z 0

Y02 6

Z



2/6
Z 02 6

YZ


0



 26
MQ>*RS02 6

1=cy1'26
 RS02 6

'\,y1'2/6>
GG
$a
x
+

 Z B
6
GG
$
2
a
x
+
B 2/6
TN2. Z BP
j[Z y'@?V.+/>PbBN"
+.'z',5'f
Z B2N6
6

GG

$2
a
x
++
BP 26
+t2/6>26BqB/BG
 0

B
GG
$a
x
+
B/
 0

B/N/"/B/N/
Câu 19: %



'.3('.1,'.Kl.K'''.'^

'.',!NN"(

'.'(
)
.


1

7"$ 8" %" "O
Câu 20: +,*(



1

'35
)
*5

1K2%
N

O
 6
2/6eK'I

'',.

'5

',

 %
26eK


'I

'

1KL(

-(
)


4&

'I


2$6eK

-5
)
*
)
C

'LK

C

'5

'C


(


26eK'1
)


'5

3,

'5

',5H.3KlK
%

1

'35
)
-



7"2/62626 8"262$626 %"2/6262$6 "2/62$626
Câu 21: %

35',1K1''2


.
)
6L





L'&
)
1C

'

-5

'-.

$'
&

1K&u
7"$ 8"G %" "N
Câu 22: (H.

1LI

(

-K'&


-,3-(

-^
)
5'5

1"_(

'

&

'

/
(H.

13^

(

'.



-
)
'-.


OO(H.

1#(

LI



..

"5

#-4


'*m,-^

26'I





OLI

2

'5
)
'I


LI



.-.
)


-5

L5

6"%('


1C'
)

)
-,3


7"%


N


%

$

P
8"%
$

N


%


P
%"%



%


N
"%





%
$


N
Giải
%




 →
%

F

/F

FF
%


&

 →
%

&F


33&3F
3B/ 2/6
3FBO 26
$O&3FB$O 2$6

+&y2/6>26>2$6-[BO&B
 %


N
>%
$

P
Câu 23:e

'35
)
-



7"Z'&
)
1C-5





1,'K-.
)
*K
H
(H.


1

α!'
8"Z



',^

',



%2 6

'C

&C

'5

1



-C


%"sll


'

1
)


'&
)
1CKl.'

'l.
"7'K

1K*'K
)
'1'1,

l.
Câu 24: _(

'

&

'

(H.

1$-.


'(




H
&-(

-^
)
'-.

$PPI

'
LI

%

2-L'6

O

"M

',


)



7" 8"O %" "O
Giải
%

B/

B$
%

{

Bq-.c
%


/
 
 →
%

2/6


/$
BqB/$
RSB

b%


B/$
B2/"/$/P6/$B
Câu 25: C

-



*-C&-

L

5

$&5'
)

N OO N
/$ N /
 # 0 u
7"#'(



(

'&5'(







8"

0



*(

L(


%"

#



*(

.',
"0

-(





)


(

'&5'(






Câu 26:%JK'

'

',



&



2'I
)
5

&BO6'-.


(

'*
)

1C
)
L
)
&C

'



I
)


(

*m'"(

KK',.

JK',5.

L3




'


7"$ 8"& %" "&
Giải
;*1=c|fR2'}'65=&,1=c*
JKN



YJK

2

6
$
$

N


&F$X&
KB$"&F$B&
Câu 27: 7K'-.

-5

5


3^





K.

*-

'&
)
1C',






H
"_5
)
'-.

/OK''I

.

KC




2
)
*
)
5

*C

'4

',I

-5

5

-

'O`6

7"$ 8"O %" "N
Giải
%
N

O
%

$



 →
%
$
%%
$
/ OP

×