Tải bản đầy đủ (.pdf) (7 trang)

Optimization Background for Network Design

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (279.63 KB, 7 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>Optimization Background for </b>


<b>Optimization Background for </b>



<b>Network Design</b>


<b>Network Design</b>



<b>David Tipper</b>



<b>Associate Professor</b>



<b>Associate Professor</b>


Department of Information Science


and


Telecommunications
University of Pittsburgh


<b></b>


<b></b>


<b>Slides 5</b>


<b>Slides 5</b>


<b> />


<b> />


Network Design Tools



Network Design Tools




• Optimization formulation to try and minimize cost



– Metro and WANS Designed using computer aid tools


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Telcom 2120 3


• Variety of tools available



– WANDL, VPISystems, OPNET, RSOFT, etc. – trend is to
develop tools for internal use only make money on consulting


Network Design Tools



Telcom 2110 Spring 2006 3


Optimization Review



• Optimization Techniques



– Seek to find maximum or minimum of a objective function


– Set of unknown decision variables


– Constraintslimit the possible values for the variables


• Definition



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Telcom 2120 5



Types of Optimization Problems



Telcom 2110 Spring 2006 5


Simple Continuous Optimization



• If Unconstrained


– objective function F(X)is continuous function of xand
x is continuous


– Find MAX/MIN of F(x)by differentiation (set derivative = 0)
– Determine if MAX or MIN by second derivative


– If multi-dimensional – calculate gradient – use numerical gradient
search methods


– Newton's method gives rise to a wide and important class of
algorithms that require computation of the gradient vector


ˆ ˆ ˆ
( , , )<i>x y z</i> <i>x</i> <i>y</i> <i>z</i>


<i>x</i> <i>y</i> <i>z</i>


φ φ φ


φ ∂ ∂ ∂


∇ = + +



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Telcom 2120 7


Constrained Optimization



Maximize (or minimize):
Subject to:


Constraints
Objective


• General Symbolic Model





(

<i>x</i> <i>x</i> <i>xn</i>

)



<i>f</i> 1, 2K


( ) { }


( ) { }


1 1 2 1


2 1 2 2


, , ,
, , ,



<i>n</i>
<i>n</i>


<i>g</i> <i>x x</i> <i>x</i> <i>b</i>


<i>g</i> <i>x x</i> <i>x</i> <i>b</i>


≤ ≥ =
≤ ≥ =
K


K


( 1, 2 ) { , , }


<i>m</i> <i>n</i> <i>m</i>


<i>g</i> <i>x x</i><sub>K</sub><i>x</i> ≤ ≥ = <i>b</i>


… where <i>x</i>1,<i>x</i>2K<i>xn</i> are the <b>decision variables</b>


Telcom 2110 Spring 2006 7


Mathematical Programming



• Types of Mathematical Programs:



<b>– Linear Programs (LP):</b>the objective and constraint functions
are linear and the decision variables are continuous.



<b>– Integer (Linear) Programs (IP):</b>one or more of the
decision variables are restricted to integer values only and the
functions are linear.


• Pure IP: all decision variables are integer.


• Mixed IP (MIP): some decision variables are integer, others
are continuous.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

Telcom 2120 9

Linear Programming


Maximize:
Subject to:
Constraints
Objective
Bounds


… where <i>a<sub>ij</sub></i>,<i>b<sub>j</sub></i>,<i>c<sub>j</sub></i> are the model parameters.


• General Symbolic Form





{ }


{ }


11 1 12 2 1 1
21 1 22 2 2 2



, ,
, ,


<i>n</i> <i>n</i>


<i>n</i> <i>n</i>


<i>a x</i> <i>a x</i> <i>a x</i> <i>b</i>


<i>a x</i> <i>a x</i> <i>a x</i> <i>b</i>


+ + + ≤ ≥ =


+ + + ≤ ≥ =


K
K


{ }


1 1 2 2 , ,


0 , 1, ,


<i>m</i> <i>m</i> <i>mn</i> <i>n</i> <i>m</i>


<i>j</i>


<i>a x</i> <i>a</i> <i>x</i> <i>a</i> <i>x</i> <i>b</i>



<i>x</i> <i>j</i> <i>n</i>


+ + + ≤ ≥ =
≤ =
K
K
<i>n</i>
<i>nx</i>
<i>c</i>
<i>x</i>
<i>c</i>
<i>x</i>


<i>c</i>1 1+ 2 2+<sub>K</sub>


<i>x</i>
<i>c</i>


<i>Maximize</i> <sub>:</sub> <i>T</i>


Telcom 2110 Spring 2006 9


Linear Programming



Maximize:


Subject to: Constraints
Objective


Bounds



• Can be written in matrix formulation



<i>x</i>


<i>c</i>

<i>T</i>


<i>b</i>


<i>Ax</i>

=



<i>j</i>
<i>x<sub>j</sub></i> ∀



0


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

Telcom 2120 49


What are the remaining constraints ? :
- for link 3-5 ... ?:


- for link 4-5 ... ?


1
5
2
4
3
1
5
2 <sub>4</sub>


3
f2
f3
f4
10
20
20
5
8
20 10
20
5
8
2 2


c5: f3 + f2 <= 20; /*link 35 capacity */
c6: f4 + f1 <= 5; /*link 45 capacity */


f1


(note this makes prior
constraint f4 + f1<=10
redundant )


Network Flow LP Formulations (8)



“flow assignment to routes” or “arc-path” approach - example (2)


Source: W. D. Grover, ECE 681, UofA, Fall 2004



• Note that the “indicator” parameters do not appear explicitly in the
executable model.


• Really they just represent our knowledge of the topology and the routes
being considered.


• Implicitly above, we only wrote the flow variables that had non-zero
coefficients.
Examples:
<i>k</i>
<i>i</i>
δ
12


1 (flow1 crosses span 12)
1


δ =


35 <sub>1 (flow3 crosses span 35)</sub>
3


δ =


Hence f1 is in the first constraint
Hence f3 is in the fifth constraint, etc.


Network Flow LP Formulations (9)



</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

Telcom 2120 51



Sonet/STM Design Problem



Complexity - Solving Design Problems



• Real world Network Design problems are quite large (have many variables and
constraints)


– Graph Theory and Optimization Based algorithms for network design are complex
– when can one use a technique?


• Complexity of an algorithm usually denotes O(.) which denotes the order of
time growth in the algorithm as a function of problem variables


– Dijkstra’s Algorithm for SPT O(N2<sub>) where N is number of nodes in graph</sub>


– Prim’s Algorithm for MST O(E log(N)) where N is # nodes, E # edges


• Problems that can be solved by a deterministic algorithm in a polynomial time
complexity denoted P that is O(Nk<sub>) </sub>


• Problems that can not be solved with P complexity denoted NP and don’t scale
well


– Linear Programming Problems have P complexity
– Integer Programming Problems have NP complexity


• Still Branch and Bound can be used for small problems !


• In general for NP problems use Sub-optimal algorithms (meta-heuristics)



</div>

<!--links-->

×