Tải bản đầy đủ (.docx) (36 trang)

Bài tập hoạch định yếu tố 2 mức độ (taguchi) (có giải chi tiết) (QUY HOẠCH THỰC NGHIỆM SLIDE)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (770.04 KB, 36 trang )

Bài tập hoạch định yếu tố 2 mức độ
Thí dụ 1:
Ba yếu tố được khảo sát trong phản ứng tổng hợp hữu cơ là nhiệt độ (100 – 200C);
áp suất (0.2 – 0.6 MPa) và thời gian phản ứng (10 – 20 phút). Kết quả cho thấy hiệu ứng
phản ứng như bảng sau. Xây dựng phương trình hồi qui. Đánh giá tương thích của phương
trình hồi qui với thực nghiệm.
Để xác định sai số 3 thí nghiệm lập lại được tiến hành ở tâm cho kết quả như sau:
Y01 = 8.0 Y02 = 9.0
Y03 = 8.5

Giải

STT

Nhiệt độ

Áp suất

Thời gian

Hiệu suất

1

100

20

10

2



2

200

20

10

6

3

100

60

10

4

4

200

60

10

8


5

100

20

20

10

6

200

20

20

18

7

100

60

20

8


8

200

60

20

12


Thiết lập bảng quy hoạch 3 yếu tố 2 mức độ
N= 8
STT
1
2
3
4
5
6
7
8
∑+
∑bi
tstat
ttab

X0


X1

1
-1
1
1
1
-1
1
1
1
-1
1
1
1
-1
1
1
68
44
0
24
8.5
2.5
48.08 14.14

X2
-1
-1
1

1
-1
-1
1
1
32
36
-0.5
2.83

X3

X1X2

X1X3

-1
1
1
-1
-1
-1
-1
-1
1
-1
1
-1
1
1

-1
1
-1
1
1
-1
-1
1
1
1
48
32
36
20
36
32
3.5
-0.5
0.5
19.80 2.83
2.83
(0.025,2) = 4.3026

X2X3
1
1
-1
-1
-1
-1

1
1
28
40
-1.5
8.48

X1X2X
3
-1
1
1
-1
1
-1
-1
1
32
36
-0.5
2.83

Y

Y^

2
6
4
8

10
18
8
12

1
6
4
9
11
16
8
13

t stat  b j / sbj

3 thí nghiệm ở tâm
Giá trị
Bình phương sai số (Se)2
Sb

Y1
Y2
Y3
8.0
9.0
8.5
2
2
2

[(8.0-8.5) + (9.0-8.5) + (8.5-8.5) ]/3-1=0.25
Se/ = = 0.17677

Phương trình hồi quy có dạng:
Y = 8.5 + 2.5 X1 + 3.5 X3 – 1.5 X2X3
Cách 2
Kiểm tra sự ảnh hưởng các yếu tố bi (bằng chuẩn F)
Tính SS = (∑+ - ∑-)2 / N
SS

bo
578

b1
50

b2
2

b3
98

b12
2

b13
2

b23
18


b123
2


MS (df = 1)
578
50
2
98
2
(Se) (Var: 3 thí nghiệm ở tâm) = 0.25 (df = 2)
Fstat = MS/(Se)2
2312 200
8
392
Ftab (0.05,1,2) = 18.51

2

2

18

2

8

8


72

8

Chấp nhận giá trị: b0, b1, b3, b23
Kiểm tra sự tương thích phương trình hồi quy với thực nghiệm
S

2
res

y


i

2
 yˆ i 

Nl

l: số hệ số có nghĩa
Tính y^
S2res = 8/8-4 = 2
Fstat = S2res / (Se)2 = 2/0.25 = 8
Ftab (0.05,4,2) = 19.25
Fstat < Ftab : phương trình hồi quy tương thích với thực nghiệm
Nếu khơng có thí nghiệm ở tâm, sai số bằng cách ước tính lượng % đóng góp là thấp nhất
SS


SSA
50

SSB
2

SSC
98

SSAB
2

SSAC
2

SSBC
18

SSABC
2

% đóng góp SSA = 50/174 = 0,287
% đóng góp SSB = 2/174 = 0.011
% đóng góp SSC = 98/174 = 0.563
% đóng góp SSAB = 2/174 = 0.011
% đóng góp SSAC = 2/174 = 0.011
% đóng góp SSBC = 18/174 = 0.103
% đóng góp SSABC = 2/174 = 0.011
SSE (đóng góp thấp nhất) = SSB + SSAB + SSAC + SSABC = 2+2+2+2 =8
Fstat (SSA) = 50/8 = 6.25


SST
174


Fstat (SSC) = 98/8 = 12.25
Fstat (SSBC) = 18/8 = 2.25
Ftab (0.05,1,4) = 7.70 (df SSE = 4 do gom 4 độ tự do lại)
Chỉ có yếu tố SSC (X3) là có ý nghĩa.
Thí dụ 2:
Độ bền của mối hàn màng nhựa (g/in2) được khảo sát với 4 yếu tố là: nhiệt độ, áp suất, bế dày
màng và thời gian hàn.
Yếu tố

Đơn vị tính

Mức độ (+)

Mức độ (-)

F

300

250

Áp suất hàn

psi


100

80

Bề dày màng

in

0.03

0.02

Thời gian hàn

giây

0.20

0.10

0

Nhiệt độ hàn

Kết quả 6 thí nghiệm tại tâm cho biến lượng là 13.05. Xây dựng phương trình hồi qui. Đánh giá
ảnh hướng của các yếu tố và tương tác bậc 1.
Giải
Thiết lập bảng quy hoạch 4 yếu tố 2 mức độ
N = 16


ST
T
1

X0

X1

X2

X3

X4

X12

X13

X14

X23

X24

X34

1

-1


-1

-1

-1

1

1

1

1

1

1

Y

Y^

150 147.


2

1

-1


-1

-1

1

1

1

-1

1

-1

-1

158

3

1

-1

-1

1


-1

1

-1

1

-1

1

-1

141

4

1

-1

-1

1

1

1


-1

-1

-1

-1

1

163

5

1

-1

1

-1

-1

-1

1

1


-1

-1

1

160

6

1

-1

1

-1

1

-1

1

-1

-1

1


-1

164

7

1

-1

1

1

-1

-1

-1

1

1

-1

-1

147


8

1

-1

1

1

1

-1

-1

-1

1

1

1

168

9

1


1

-1

-1

-1

-1

-1

-1

1

1

1

153

10

1

1

-1


-1

1

-1

-1

1

1

-1

-1

159

11

1

1

-1

1

-1


-1

1

-1

-1

1

-1

149

12

1

1

-1

1

1

-1

1


1

-1

-1

1

160

13

1

1

1

-1

-1

1

-1

-1

-1


-1

1

170

14

1

1

1

-1

1

1

-1

1

-1

1

-1


163

15

1

1

1

1

-1

1

1

-1

1

-1

-1

171

16


1

1

1

1

1

1

1

1

1

1

1

178

∑+
∑-

2554
0

159.6
2
176.7

1303
1251
3.25

1321
1233
5.5

1277
1277
0

1313
1241
4.5

3.60

6.09

0

bi
tstat
ttab


1294 1290 1258 1284 1266
1260 1264 1296 1270 1288
2.125 1.625 -2.375 0.875 -1.375

4.98 2.35
1.4
(0.025,5) = 2.57

2.63

0.97

1.52

1302
1252
3.125
3.46

12
154.
62
140.
87
160.
87
158.
12
165.
62

151.
87
171.
87
158.
37
156.
37
152.
12
162.
62
169.
37
167.
37
163.
12
173.
62


t stat  b j / sbj

Sb = / = 0.9031
Phương trình hồi quy có dạng:
Y = 159.62 + 3.25 x1 + 5.5 x2 + 4.5 x4 – 2.375 x1x4 + 3.125 x3x4
Cách 2
Kiểm tra sự ảnh hưởng các yếu tố bi (bằng chuẩn F), theo Anova
Tính SS = (∑+ - ∑-)2 / N

bo
SS
MS (df = 1)

b1

b2

b3

b4

b12

b13

b14

407682 169

484

0

324

72.25

42.25


90.25

407682 169

484

0

324

72.25

42.25

90.25

5.34

= 13.05 (df = 5)
3.24
6.92

(Se)2 (Var: 6 thí nghiệm ở tâm)
Fstat = MS/(Se)2
31240 12.9 37.1 0

24.8

b23
12.25


b24
30.25

12.25

30.25

0.94

2.32

b34
156.2
5
156.2
5
11.97

Ftab = (0.05, 1,5) = 6.61
Khi không có thí nghiệm ở tâm (tính như phân tích biến lượng)
SST = ∑y2 – (∑y)2 / N = 1445.75
SSE=SST – (SSA+SSB+ …) = 1445.75 – (169+484+324+72.25+42.25+90.25+12.25+30.25+156.25)
= 65.25
SSA, SSB … có df = 1
SSE có df = 15-10 = 5
SS
MS
SSE


b1
169
169
65.25

b2
484
484

b3
0
0

b4
324
324

b12
72.25
72.25

b13
42.25
42.25

b14
90.25
90.25

b23

12.25
12.25

b24
30.25
30.25

b34
156.25
156.25


MSE (df = 15 – 10 = 5) 65.25/5 = 13.05
Fstat
12.95 37.09
0
24.83
Ftab
(0.05, 1, 5) = 6.61

5.54

3.24

6.92

0.94

2.32


11.97

Vậy: b1, b2, b4, b14, b34 có ý nghĩa.
Phương trình hồi quy có dạng:
Y = 159.62 + 3.25 x1 + 5.5 x2 + 4.5 x4 – 2.375 x1x4 + 3.125 x3x4
Kiểm tra sự tương thích phương trình hồi quy với thực nghiệm
S

2
res

y


i

2
 yˆ i 

Nl

l: số hệ số có nghĩa
Tính y^
S2res = 22.225
Fstat = S2res / (Se)2 = 22.225/13.05 = 1.70
Ftab = (0.05,10,5) = 4.735
Fstat < Ftab : phương trình hồi quy tương thích với thực nghiệm.

Bài tập 1:
Nghiên cứu độ dẫn nhiệt của phần thăng hoa sinh ra khí clo hóa xỉ titan nóng chảy. Để tính tốn các

máy của hệ thống ngưng tụ khi thiết kế máy clo hóa, ta cần phải biết hệ số dẫn nhiệt riêng của phần
thăng hoa. Độ dẫn nhiệt được xác định theo nhiệt độ, mật độ của chất và thành phần hóa học của chúng.


Các biến độc lập
Z1: nhiệt độ, C
Z2: Hàm lượng clo trong phần thăng hoa, %trọng lượng
Z3: tỉ số nồng độ SiO2/TiO2 trong phần thăng hoa
Phương án thiết kế thí nghiệm như sau:
STT
Z0
Z1
Z2
1
1
1
1
2
1
-1
-1
3
1
1
-1
4
1
-1
1
5

1
1
1
6
1
-1
-1
7
1
1
-1
8
1
-1
1

Thí nghiệm ở tâm Y1 = 295

Y2 = 312

Z3
1
1
1
1
-1
-1
-1
-1


Z12
1
1
-1
-1
1
1
-1
-1

Z13
1
-1
1
-1
-1
1
-1
1

Z23
1
-1
-1
1
-1
1
1
-1


Y
296
122
239
586
232
292
339
383

Y3 = 293

1. Xây dựng phương trình hồi qui.
2. Vẽ giản đồ tương tác. Đánh giá ảnh hưởng của các yếu tố và tương tác bậc 1.

Thí dụ 3:
Một polymer blend được chế tạo bằng phương pháp trộn hợp. Hai thông số gia công được khảo
sát là nhiệt độ (A) và vận tốc trộn (B). Đáp ứng là độ bền kéo của vật liệu trộn hợp.
 Xây dựng phương trình hồi quy


 Vẽ giản đồ tương tác . Phân tích ảnh hưởng của các yếu tố
 Giải thích và đưa ra khuyến cáo về nhiệt độ vận tốc trộn nên sử dụng

STT

Yếu tố A

Đáp ứng


Yếu tố B
I

II

III

IV

1

+

+

41.0

43.9

36.3

39.9

2

+

-

22.7


24.0

22.4

22.5

3

-

+

15.9

15.9

15.1

14.2

4

-

-

18.2

18.9


12.9

14.4

Giải:
STT
1

X0
1

X1
1

X2
1

X1X2
1

Y
41

43.9

36.3

39.9


2

1

1

-1

-1

22.7

24

22.4

22.5

3

1

-1

1

-1

15.9


15.9

15.1

14.2

Ytb
40.27
5
22.9
15.27
5

S2
9.869
2
0.553
3
0.655
8


4
∑+tb
∑-tb
bi
tstat
ttab

1

94.55
0
23.637
5
42.81

-1
-1
63.175 55.55
31.375
39
7.95 4.1375

1
56.375
38.175
4.55

18.2

18.9

12.9

14.4

16.1

8.46


13.74
7.49
8.24
(0.025,12) = 2.1788

bi = (∑+tb - ∑-tb)/N
Biến lượng sai số: S2e = ∑S2/N = 4.88
Sb2 = S2e / N.m = 4.88 / 4*4 = 0.305 ,

với dfe = N(m-1) = 4*(4-1) = 12
suy ra : Sb = = 0.5522

tstat = b/Sb
Phương trình hồi quy có dạng: Y = 23.6375 + 7.95 X1 + 4.1375 X2 + 4.55 X1X2
Hoặc kiểm định b theo F
STT
1
2
3
4
∑+
∑b

X0
1
1
1
1
378.2
0

23.637
5

SS
MS (df=1)
S2e (df=12)
Fstat
Ftab

X1
1
1
-1
-1
252.7
125.5
7.95

X2
1
-1
1
-1
222.2
156
4.1375

X1
1011.24
1011.24


X1X2
1
-1
-1
1
225.5
152.7
4.55

Y
41
22.7
15.9
18.2

43.9
24
15.9
18.9

36.3
22.4
15.1
12.9

39.9
22.5
14.2
14.4


b= (∑+ - ∑+)/4.4

X2
273.9
273.9

X12
331.24
331.24
4.88

207.22

56.12
67.87
(0.05,1,12) = 4,74


Tính SS = (∑+ - ∑-)2 /4.4
Nếu khơng có thí nghiệm ở tâm
SST = ∑y2 – (∑y)2 / 4.4 = 1675
SSE = 1675 – (1011.24 + 273.9 + 331.24) = 58.62
MSE = 58.62 / 12 = 4.88

Thí dụ 4:
Một nghiên cứu sơ bộ cần đánh giá 6 yếu tố được cho là có thể ảnh hưởng đến thơng số chất lượng của
một sản phẩm. Để tiết kiệm kinh phí, người ta muốn tiến hành số thí nghiệm ít nhất có thể có.
Hai mức độ, 6 biến, tổng thí thí nghiệm là 64.



Thực hiện ít thí nghiệm nhất, ta thiết kế hoạch định dạng riêng phần, độ phân giải là III, 26-3III
Số thí nghiệm là 8. Để giảm sai số, ta thí nghiệm lặp lại hai lần.
STT

X0
1

X1

X2

X3

X4

X5

X6

-1

-1

-1

1

1


1

2

1

1

-1

-1

-1

-1

1

3

1

-1

1

-1

-1


1

-1

4

1

1

1

-1

1

-1

-1

5

1

-1

-1

1


1

-1

-1

6

1

1

-1

1

-1

1

-1

7

1

-1

1


1

-1

-1

1

8

1

1

1

1

1

1

1

1

Giải:

Y (26-3III)
174.0 174.2

7
3
175.3 176.5
4
2
173.7 171.4
2
2
176.7 176.0
1
2
177.4 177.1
2
8
178.0 177.4
9
3
174.6 176.3
5
0
178.9 180.0
8
7


STT

X0
1


X1

X2

X3

X4

X5

X6

-1

-1

-1

1

1

1

2

1

1


-1

-1

-1

-1

1

3

1

-1

1

-1

-1

1

-1

4

1


1

1

-1

1

-1

-1

5

1

-1

-1

1

1

-1

-1

6


1

1

-1

1

-1

1

-1

7

1

-1

1

1

-1

-1

1


8

1

1

1

1

1

1

1

∑+

2818.1
5

∑-

0

1419.1
6
1398.9
9


1420.1
2
1398.0
3

1414.6
8
1403.4
7

1408.0
1
1410.1
4

1410.1
6
1407.9
9

b

176.13
4

1.381

0.701

-0.133


0.136

1

1.261

1407.87
1410.28
-0.151

Y (26-3III)
174.0 174.2
7
3
175.3 176.5
4
2
173.7 171.4
2
2
176.7 176.0
1
2
177.4 177.1
2
8
178.0 177.4
9
3

174.6 176.3
5
0
178.9 180.0
8
7

S2
0.012
8
0.6962
2.645
0.238
0.0288
0.2178
1.3612
0.594

Biến lượng sai số: S2e = ∑S2/N = 5.79395/8 = 0.7242 [df = N(m-1) = 8]

SS
MS
S2 e
Fstat
Ftab

X1
X2
25.42681
0.363006

25.42681
0.363006
0.7242 (df = 8)
35.11
0.50
(0.05, 1, 8) = 5.32

Tính SS = (∑+ - ∑-)2 /8.2
X1, X3, X4 là có ý nghĩa.

X3
30.49801
30.49801

X4
7.854006
7.854006

X5
0.283556
0.283556

X6
0.294306
0.294306

42.11

10.84


0.39

0.41


Phương trình hồi quy có dạng: Y = 176.134 + 1.261X1 + 1.381X3 + 0.701X4

Kiểm tra sự tương thích phương trình hồi quy với thực nghiệm

STT

X0
1

X1

X3

X4

-1

-1

1

2

1


1

-1

-1

3

1

-1

-1

-1

4

1

1

-1

1

5

1


-1

1

1

6

1

1

1

-1

7

1

-1

1

-1

8

1


1

1

1

1

Y = 176.134 + 1.261X1 + 1.381X3 + 0.701X4
S2res = m. ∑(ytb – y^)2/N-l
= 2(0.7828)/(8-4) = 0.3914 (df =4)
S2e = 0.7242 (df = 8)
Fstat = S2res / S2e = 0.3914 / 0.7242 = 0.5404

Y (26-3III)
174.0
174.23
7
175.3 176.52
4
173.7 171.42
2
176.7 176.02
1
177.4 177.18
2
178.0 177.43
9
174.6 176.30
5

178.9 180.07
8

Ytb
174.15

Y^
174.193

175.93

175.313

172.57

172.791

176.36

176.715

177.30

176.955

177.76

178.075

175.48


175.553

179.52

179.477


Ftab (0.05, 4,8) = 3.8378
Fstat < Ftab : phương trình hồi quy tương thích với thực nghiệm

Thí dụ 5:
Một sản phẩm được đánh giá thông qua thông số chất lượng Y. Thí nghiệm sàng lọc đã kết luận rằng có
hai biến độc lập, điều khiển được các ảnh hưởng mạnh đến Y. Các giá trị được khảo sát ở các biến lần
lượt là X1 (30-60), X2 (100,150). Hãy tiến hành thí nghiệm khởi đầu cho q trình tối ưu hóa nhằm đạt
được mục tiêu Y lớn nhất? Leo dốc tìm vùng cực trị?
Với X1 và X2 được khảo sát ở các mức:
Giá trị mã hóa X1, X2
-1
0
+1

Giá trị thực X1
30
45
60

Giá trị thực X2
100
125

150


STT
1
2
3
4

X0
1
1
1
1

X1
-1
1
-1
1

STT
1
2
3
4

X0
1
1

1
1
1801.2
9
0
450.32
2

X1
-1
1
-1
1

X2
-1
-1
1
1

Y
446.80
451.10
449.53
453.86

Giải:

∑+
∑b

Fstat
Ftab
SST = 26.15448
SSA = 18.61923
SSB = 7.535025
SSE = 0.000225 (df= 1)

X2
Y
-1
446.80
-1
451.10
1
449.53
1
453.86
903.3
904.96
9
896.33 897.9
1.372
2.1575
5
82752 33491
(0.05,1,1) = 161.4476


Phương trình hồi quy: Y = 450.322 + 2.1575X1 + 1.3725X2
Leo dốc tìm vùng cực trị


Với X1 và X2 được khảo sát ở các mức

Giá trị mã hóa X1, X2
-1
0
+1

Giá trị thực X1
30
45
60

Giá trị thực X2
100
125
150

Tiến hành chọn gia số cho các biến thí nghiệm:

Chọn bước tiến của X1 là 1
Bước tiến cho X2 = b2.(bước tiến X1)/b1 = 1.3725*1/2.1575 = 0.64
∆X1 = (60-30)/2 = 15
∆X2= (150-100)/2= 25
Gia số của các biến thí nghiệm ở giá trị thực là:
Gia số X1 = 1*15 = 15
Gia số X2 = 0.64*25 = 15.9=16
STT
-


Ký hiệu
1
2
3
4
5
6


Gốc (khởi đầu)
Gốc + ∆
Gốc + 2∆
Gốc + 3∆
Gốc + 4∆
Gốc + 5∆

Biến thứ nhất
Mã hóa
G.trị thực
1
15
0
60
1
75
2
90
3
105
4

120
5
135

Biến thứ hai
Mã hóa
G.trị thực
0.64
16
0.00
150
0.64
166
1.28
182
1.92
198
2.56
214
3.20
230

Y
453.86
454.27
457.31
460.34
463.38
468.42



7
8
9
10
11

Gốc + 6∆
Gốc + 7∆
Gốc + 8∆
Gốc + 9∆
Gốc + 10∆

6
7
8
9
10

150
165
180
195
210

3.84
4.48
5.12
5.76
6.40


246
262
278
294
310

470.46
472.50
474.55
474.22
472.55

Time Series Plot of C2
475

C2

470

465

460

455
1

2

3


4

5

6
7
Index

8

9

10

11

12

Bài tập 5.1:
Để kiểm tra mức độ phù hợp của mơ hình, ta thiết kế một thí nghiệm đầy đủ với trung tâm là điểm thí
nghiệm thứ 9. Và làm thí một số thí nghiệm bổ sung cùng 5 thí nghiệm ở tâm, ta thu được kết quả như
sau:

STT

X0

X1


X2

Y


1
2
3
4

1
1
1
1

-1
1
-1
1

-1
-1
1
1

472.50
474.85
469.88
474.55


5 thí nghiệm ở tâm: 476.25; 476.55; 475.80; 476.72; 476.3
STT
1
2
3
4
∑+
∑B
t stat

X0
1
1
1
1
1891.7
8
0
472.94
5
2708.7
3

ttab

X1
-1
1
-1
1

949.4
942.38

X2
-1
-1
1
1
944.4
3
947.3
5

1.755

-0.73

10.05

4.18

Y
472.50
474.85
469.88
474.55

(0.025, 4) = 2.776

Sb = = 0.1747

Phương trình hồi quy: Y = 472.945 + 1.755X1 – 0.73X2

S

2
res

y


i

2
 yˆ i 

Nl

Sres2 = 1.3456 (df = 1)
Se2 = 0.12203 (df = 4)
F (stat) = 1.3456/0.12203 = 11.03

Y^
471.92
475.43
470.46
473.97


F (tab) (0.05,1,4) = 7.71
F (stat) > F (tab) : phương trình hồi quy khơng tương thích thực nghiệm và phải tăng bậc của đa

thức.
Bài tập 5.2: Lập thí nghiệm bề mặt chỉ tiêu (Bài tập cho sinh viên).
Bổ sung thêm các thí nghiệm nhằm có thể xây dựng mơ hình bậc hai mơ tả hàm mục tiêu. Sử
dụng thiết kế hỗn hợp tâm quay, bổ sung 4 thí nghiệm dọc trục với α = 1.414.
STT
1
2
3
4
5
6
7
8
9
10
11
12
13

X0
1
1
1
1
1
1
1
1
1
1

1
1
1

X1
-1
1
-1
1
-1.414
1.414
0
0
0
0
0
0
0

Giá trị thực của biến X1, X2
1
2
3
4
5
6
7
8
9


165.000
195.000
165.000
195.000
158.787
201.213
180.000
180.000
180.000

262.000
262.000
294.000
294.000
278.000
278.000
255.373
300.627
278.000

472.50
474.85
469.88
474.55
470.95
476.05
473.63
471.37
476.25


X2
-1
-1
1
1
0
0
-1.414
1.414
0
0
0
0
0

Y
472.50
474.85
469.88
474.55
470.95
476.05
473.63
471.37
476.25
476.55
475.80
476.72
476.35



10
11
12
13

180.000
180.000
180.000
180.000

STT
1
2
3
4
5
6
7
8
9
10
11
12
13

X0
1
1
1

1
1
1
1
1
1
1
1
1
1

278.000
278.000
278.000
278.000

X1
-1
1
-1
1
-1.414
1.414
0
0
0
0
0
0
0


476.55
475.80
476.72
476.35

X2
-1
-1
1
1
0
0
-1.414
1.414
0
0
0
0
0

X1X2
1
-1
-1
1
0
0
0
0

0
0
0
0
0

X12
1
1
1
1
2
2
0
0
0
0
0
0
0

X22
1
1
1
1
0
0
2
2

0
0
0
0
0

Y
472.50
474.85
469.88
474.55
470.95
476.05
473.63
471.37
476.25
476.55
475.80
476.72
476.35

Bài tập 6
Cắt gọt là một trong các phương pháp gia công các chi tiết máy bằng chất dẻo. Việc chọn trạng thái gia
cơng thích hợp sẽ làm cho bề mặt chi tiết đạt được độ nhẵn cần thiết. Thông số tối ưu hóa được chọn là
làm cực tiểu độ cao khơng đồng đều. Các yếu tố được xem có ảnh hưởng đến thơng số tối ưu hóa là tốc
độ cắt v (m/phút), độ dịch chuyển s (mm/vòng) và độ sâu nhát cắt t (mm). Thiết lập phương trình hồi
quy?
Yếu tố
X1: tốc độ cắt
X2: độ dịch chuyển

X3: độ sâu cắt

Mức trên +1
314
0.7
0.75

Các mức
Mức cơ sở 0
205
0.5
0.5

Mức dưới -1
96
0.3
0.25

Khoảng biến thiên
109
0.2
0.25


Phương án thực nghiệm là phương án quay bậc hai có tâm. Nhân là 2 3 thí nghiệm, 6 thí nghiệm ở 6
điểm sao, cách tay đòn 1.682 và 6 thí nghiệm ở tâm. Ma trận thí nghiệm như sau:

STT
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

X0
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

X1
X2
X3
-1
-1
-1
1
-1
-1
-1
1
-1
1
1
-1
-1
-1
1
1

-1
1
-1
1
1
1
1
1
-1.682
0
0
1.682
0
0
0
-1.682
0
0
1.682
0
0
0
-1.682
0
0
1.682
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

X12
1
-1
-1
1
1
-1
-1
1
0
0
0
0
0
0

0
0
0
0
0
0

X13
1
-1
1
-1
-1
1
-1
1
0
0
0
0
0
0
0
0
0
0
0
0

X23

1
1
-1
-1
-1
-1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

X12
1
1
1
1
1
1
1
1

2.828
2.828
0
0
0
0
0
0
0
0
0
0

X22
1
1
1
1
1
1
1
1
0
0
2.828
2.828
0
0
0
0

0
0
0
0

X32
1
1
1
1
1
1
1
1
0
0
0
0
2.828
2.828
0
0
0
0
0
0

Với a1 = 0.1663; a2 = 0.0568; a3 = 0.0732; a4 = 0.125; a5 = 0.0625; a6 = 0.0069; a7 = 0.0568

Y

2.16
2.65
3.80
4.70
2.22
2.48
4.20
4.89
3.55
4.50
1.80
5.15
2.32
2.56
2.31
2.08
2.12
2.32
2.36
2.12


b0 = 0.1663 (60.29) – 0.0568 (49.865 + 46.755 + 40.900) = 2.2152
b1 = 0.0732 (3.9379) = 0.2882
b2 = 0.0732 (13.7147) = 1.0039
b3 = 0.0732 (0.8837) = 0.06469
b12 = 0.125 (0.84) = 0.105
b13 = 0.125 (-0.44) = - 0.055
b23 = 0.125 (0.7) = 0.0875
b11 = 0.0625 (49.865) + 0.0069 (49.685 + 46.755 + 40.900) – 0.0568 (60.29) = 0.6409

b22 = 0.0625 (46.755) + 0.0069 (49.685 + 46.755 + 40.900) – 0.0568 (60.29) = 0.4466
b33 = 0.0625 (40.900) + 0.0069 (49.685 + 46.755 + 40.900) – 0.0568 (60.29) = 0.0807
Phương trình hồi quy:
Y = 2.2152 + 0.2882X1 + 1.0039X2 + 0.06469X3 + 0.105X1X2 – 0.055X1X3 + 0.0875X2X3 + 0.6409X12
+ 0.4466X22 + 0.0807X32
sth2 = 0.015457 (từ 6 thí nghiệm ở tâm)
1.
2.
3.
4.

s2(b0) = a1 x sth2 = 0.1663 (0.015457) = 0.00258
s2(bj) = a3 x sth2 = 0.0732 (0.015457) = 0.001131
s2(blj) = a4 x sth2 = 0.125 (0.015457) = 0.00193
s2(bjj) = (a5 + a6 ) x sth2 = (0.0625 + 0.0069) (0.015457) = 0.00107

t0 = 43.61

t12 = 2.39

t11 = 19.59


t1 = 8.56
t2 = 29.85
t3 = 1.92

t13 = 1.25
t23 = 1.98


t22 = 13.65
t33 = 2.48

t (0.025,5) = 2.57
Chấp nhận các hệ số: bo, b1, b2, b11, b22
Phương trình hồi quy: Y = 2.2152 + 0.2882X1 + 1.0039X2 + 0.6409X12 + 0.4466X22
Kiểm tra sự tương thích với thực nghiệm (Sinh viên tự làm)
Bài tập 7 [Thí dụ 3 (file thí dụ)]

Thí dụ 3: Quá trình phân hủy quặng
FeTiO3 xảy ra theo phản ứng
FeTiO3 + 2H2SO4 + nH2O = TiOSO4.n1H2O
+ FeSO4.n2H2O

Ảnh hưởng của nồng độ acid
sulfuric và nhiệt độ phân hủy đến
hiệu suất phản ứng được khảo sát
bằng hoạch định bậc hai trực giao
Box-Wilson.
STT
X
X
X
X
X
1
+1
+1
+1
+1

+1
Mức
cao-1 Mức-1 thấp +1
2
+1
+1
3
+1
-1
+1
-1
+1
Nồng
độ+1acid (%)
91
4
-1
-1
+1
+1
5
+1
+1.21
0
0
1.464
83
6
+1
-1.21

0
0
-1.464
7
+10
0
+1.21
0
0
Nhiệt độ ( C)
200
160
Xác định phương trình hồi qui và
0

1

2

12

2
11

X222
+1
+1
+1
+1
0

0
1.464

Y
77.50
76.40
78.29
77.80
81.75
82.56
85.10


8
9
10
11
12

+1
+1
+1
+1
+1

0
0
0
0
0


-1.21
0
0
0
0

0
0
0
0
0

0
0
0
0
0

-1.464
0
0
0
0

84.90
87.22
86.60
88.15
85.80


Chuyển về dạng trực giao:
N

Z j  X 2j 

X
i 1

N

2
ji

 X 2j  X 2j

x1’ = X112 – (4 + 2α2)/12 = X112 – 0.577
x2’ = X222 – (4 + 2α2)/12 = X222 – 0.577
STT
1
2
3
4
5
6
7
8
9
10
11

12

X0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1

X1
+1
+1
-1
-1
+1.21
-1.21
0
0
0
0
0
0


X2
+1
-1
+1
-1
0
0
+1.21
-1.21
0
0
0
0

với α = 1.21

X12
+1
-1
-1
+1
0
0
0
0
0
0
0
0


X112 – 0.577
+0.423
+0.423
+0.423
+0.423
+0.887
+0.887
-0.577
-0.577
-0.577
-0.577
-0.577
-0.577

 X Yi

X
ji

i 1

X

 X

Y^
79.19
79.19
79.19
79.19

79.95
79.95
82.84
82.84
87.42
87.42
87.42
87.42

ji X uiYi

i 1

ji X ui

2

j , u 1, k j  u

N

N

b0'  i 1
N

b ju

j 1, k


2
ji

 Yi

Y
77.50
76.40
78.29
77.80
81.75
82.56
85.10
84.90
87.22
86.60
88.15
85.80

N

N

bj

X222 – 0.577
+0.423
+0.423
+0.423
+0.423

-0.577
-0.577
+0.887
+0.887
-0.577
-0.577
-0.577
-0.577

 Z Yi

Z
ji

b jj

i 1

2
ji

j 1, k

b0 b0'  b11 X 12  ...  bkk X k2


×