Tải bản đầy đủ (.pdf) (5 trang)

Giáo án môn Tiếng Việt lớp 1 sách Cánh Diều - Bài tập đọc: Nắng - Trường Đại học Công nghiệp Thực phẩm Tp. Hồ Chí Minh

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (281.09 KB, 5 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>DAU Tl/TAI CHINH l l l l </b>


<b>TAIVI LY DAM DONG TREN THj TRl/GfNG CHIJfNG KHOAN </b>


<b>THANH PHO HO c m IVIINH </b>



<b>ThS. P h a m Thi Phufdng Loan </b>
<b>DH T o n Dufc T h a n g </b>
<i><b>^ • F " ^ ^ di bdo sii dung mo hinh do Chang, Cheng vd Khorana (2000) de kiem tra sU </b></i>


<i><b>K_^^^ hien dien cda tdm ly ddm dong tren thi trUdng chUng khodn (TTCK) Tp. Ho Chi </b></i>
<i><b>^ ^^k Minh, dUa tren sd lieu hdng ngdy, hdng tuan, hdng thdng tU thdng 1/2001 den </b></i>
<i><b>JKLa^^^ thdng 12/2008. Ket qud cho thdy tdm ly ddm dong hien hdu theo thdi gian ngdy </b></i>
<i><b>vd tuan, tdm ly ddm dong theo ngdy mgnh hcfn theo tuan vd trong thdi gian ngdy thi thi </b></i>
<i><b>trUdng xudng co tdm ly ddm dong mgnh han thi trUdng len. </b></i>


<b>Gidfi t h i e u </b>


T i m ly d i m dong h i n h t h a n h
khi c i n h a n co h i n h vi t u i n
theo h a n h dpng cua t a p t h e
sau khi quan s a t nhufng dpng
t h i i v i nhufng dupc-mi't p h a t
sinh t u c i c dpng t h i i n i y
(Hirshleifer va Teoh, 2003).
H a n h vi theo d a m dong
CO the do t h o n g t i n r i e n g
khong dupe chia se cong k h a i
(Bikhchandani, Hirshleifer
va Welch, 1992) h a y do thieu
t h o n g tin vi mo d i n g tin cay
t r e n thi t r u d n g (Chang va


c i c ddng t i c gia, 2000).


T i m ly d a m dong t h u h u t
n h a dau tU chuyen n g h i e p v i
n h a n g h i e n cdu hpc t h u a t .
Nhii'ng n h a dau tU chuyen
n g h i e p quan t a m de'n t a m
ly d a m dong vi k h i do g i i
CO t h e lech h u d n g k h o i gia
t r i n e n t a n g va m a n g d e n
cho hp ccf h p i giao dich s i n h
ldi (Tan, C h i a n g , Mason va
Nelling; 2008). T i m ly d a m
dong cung t h u biit c i c n h a
n g h i e n cdu vi t i c dpng ciia


h i n h vi cua n h a dau tU l e n
sU dao d p n g ciia gia chUng
k h o i n CO t h e a n h h u d n g de'n
d i e d i e m riii ro, s i n h lpi cua
chUng k h o i n va mo h i n h
d i n h g i i t i i s a n (Tan v i c i c
d d n g t i c gia, 2008).


S i n giao dich chUng k h o a n
dau t i e n ciia Viet N a m r a ddi
t h i n g 7/2000 t a i Tp. Hd Chi
M i n h vdi t e n gpi Trung t a m
Giao dich ChUng k h o a n , sau
ddi t e n t h i n h Sd Giao dich


ChUng k h o i n Tp. Hd Chi
Minh (HOSE). De'n t h i n g
3/2005, s i n giao dich thU hai
r a ddi t a i H i Npi co t e n gpi
Trung t a m Giao dich ChUng
k h o a n H i Npi (HASTC), sau


do ddi t e n t h i n h Sd Giao
dich Cbijfng k h o a n H a Npi
(HNX). Thi t r u d n g giao dich
chUng k h o a n dang p h a t t r i e n
cua Viet N a m la do'i tUpng de
n g h i e n cUu n i y a p dung mo
h i n h do C h a n g va c i c ddng
t i c gia (2000) de xua't n h a m
k i e m t r a , lieu t a m ly d i m
dong cd h i e n bUu khong. Sd^
lieu giao dich cd phieu cua
HOSE dupc chpn vi HOSE
r a ddi sdm hofn so vdi HNX.
T i n h de'n n g a y 9/4/2010,
t r e n s i n HOSE co 284 chUng
k h o a n n i e m yet, t r o n g do co
222 cd phieu, 58 t r i i phieu
v i 4 chdng chi vdi t d n g gia
t r i n i e m y e t la 122.513, 834
ty ddng (Bang 1).


<b>B a n g 1: Quy m o n i e m y e t thi trifolng t r e n HOSE </b>



So chirng khoan
niem yet
Ti trpng (%)


Khoi lugng niem
yet (ngan chijng khoan)
Tl trQng(%)


Gia tri niem yet
(trieu dong)


Ti trpng (%)


Toan thi truang


284,00


100,00


11.230.053,66


100,00


122.513.834,74


100,00


Co phieu


222,00



78,17


10.864.517,04


96,75


108.645.170,44


88,68


Chung chi


4,00


1,41


252.055,53


2,24


2.520.555,30


2,06


Trai phieu


58,00


20,42



1 1 3 4 8 1 , 0 9


1,01


11.348.109,00


9,26


Khac


0,00


0,00


0,00


0,00


0,00


0,00


<i>Nguon: Trang thdng 4.2010. </i>


<b>Cong nghe ngan hang </b>



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

M 6 h i n h v a so' l i e u


Christie a n d Huang (1995)


sijf dung dp lech chuan cat
n g a n g ciia s u i t sinh lpi
(cross-sectional s t a n d a r d deviation
of returns-CSSD) de k i e m t r a
h i n h vi theo d i m dong t r e n
TTCK My. Cong thUe t i n h cua
CSSD n h u sau:


<i>CSSD. </i>

<b>1 </b>

<i><b>i:(.R,.-K.y </b></i>

(1)
<i>N-l </i>


trong do:


R J la s u i t sinh lpi ciia chUng
k h o a n eong ty i v i o thdi diem
t, R^ J la trung b i n h cat ngang
cua N s u i t sinh lpi trong
d a n h muc chdng k h o i n ciia
t h i trudng vao thdi diem t, N
I i sd lupng chUng k h o i n trong
d a n h muc t h i trUdng.


PhUcfng p b i p t i n h n a y dinh
lupng dp lech trung binh ciia
c i c s u i t sinh lpi so vdi s u i t
sinh lpi trung b i n h cua thi
trUcfng.


CSSD dupc hdi quy theo mo
b i n h :



<i>CSSD, =a + b^D^ + b.Df + e, (2) </i>


Trong do D^ v i D^ la hai bien
gia. D^ - 1 neu s u i t sinh lpi
t r u n g b i n h cua t h i trUcfng v i o
ngay t n a m trong 1% va 5%
phia duoi dudi ciia p h a n phd^i
s u i t sinh lpi trung binh thi
trUcfng ( v i b a n g 0 neu c i c
trUdng hpp khac). D " = l neu
s u i t sinh lpi trung b i n h cua
t h i trudng vao ngay t n a m
trong 1% v i 5% phia duoi
t r e n ciia p h i n phdi s u i t sinh
lpi t r u n g binh t h i trUdng ( v i


b a n g 0 neu c i c trudng hpp
khac).


Trong dieu k i e n b i n h thudng,
vi n h i dau tU c i n h i n giao
dich dUa t r e n t h o n g tin rieng,
da d a n g ciia m i n h n e n sU
p h i n t i n trong s u i t sinh lpi
t i n g cung vdi g i i t r i tuyet ddi
cua s u i t sinh lpi t h i trUcfng.


Tuy n h i e n t r o n g d i e u k i e n
dao d p n g t h i trUcfng m a n h ,


n h i d a u tU co xu hUdng
k h o n g dUa t r e n t h o n g t i n
r i e n g cua m i n h m a cac
q u y e t d i n h d a u tU t u a n t h e o
h i n h d p n g t a p t h e t r e n t h i
trUdng. T r o n g t r U d n g h p p
CO sU h i e n d i e n eiia h i n h
vi t h e o d a m d o n g , s u i t
s i n h lpi chUng k h o a n cd xu
h u d n g tu h p p x u n g q u a n h
s u i t s i n h lpi c h u n g c u a t h i
t r u d n g . H i n h vi n i y se d i n
de'n sU gia t i n g p h i n t i n
d toe dp g i a m d a n v a n e u
t a m ly d a m d o n g m a n h , sU
p h i n t a n g i a m di. T h e o mo
h i n h (2), g i i t r i b^ v i b^ a m
CO y n g h i a tho'ng ke ngu y
CO sU h i e n d i e n cua t a m ly
d a m d d n g .


Trong mpt n g h i e n cUu thUc
tidn k h i c d n h i e u TTCK t r e n
t h e gidi, C h a n g v i c i c ddng
t i c gia (2000) de xua't c i e h
tiep can mdi m a n h h p n de
p h a t b i e n t a m ly d i m dong
dUa t r e n quan h e giUa dp
lech tuyet do'i cat n g a n g cua
s u i t sinh lpi (cross-sectional


absolute deviation of r e t u r n s
-CSAD) va s u i t s i n h lpi chung
cua t h i trUdng. C i c h t i n h cua
CSAD n h u sau:


=1 <i>N </i>


<b>(3) </b>


trong do:


R J sui't sinh lpi ciia chUng
k h o i n cong ty i v i o t h d i diem
t, R^j la t r u n g b i n h cat ngang
cua N s u i t sinh lpi trong
d a n h muc chUng k h o i n cua
t h i trudng vao t h d i diem t, N
I i sd lupng chUng k h o i n trong
d a n h mue thi trUcfng.


C i c t i c gia suf dung h a m hdi
quy phi tuyen t i n h de kiem
t r a quan he giOfa sU p h a n t i n
s u i t sinh lpi (CSAD) va s u i t
sinh lpi chung cua thi trUdng
theo phuong t r i n h sau:


<i>CSAD, =a + y, |i?„, | + y-^Rl, +e, (4) </i>


Neu CO sU h i e n dien cua t a m


ly d i m dong thi c i c t i c gia ky
vpng sU p h i n t i n s u i t sinh lpi
giam (hoac t a n g d td^c dp giam)
cung vdi sU gia t a n g trong
s u i t sinh lpi ciia thi trUdng.
Khi do he so' Y2 m a n g da'u
i m CO h i m y co sU h i e n dien
cua h i n h vi theo d i m dong.
Neu k h o n g co t i m ly d i m
dong, quan h e t r e n la tuyen
t i n h t a n g , tUc I i sU p h a n t i n
s u i t sinh lpi t a n g theo ty le
vdi sU gia t a n g cua s u i t sinh
lpi t h i trUcfng.


De k i e m t r a k h a n a n g mUc
dp ciia t a m ly d a m dong co
t h e k h o n g ddng bp trong
dieu k i e n t h i trUcfng len va
xud^ng, C h a n g va cac ddng t i e
gia (2000) dUa r a c i c phUdng
t r i n h :


<i>CSAD';- = a+/,"ã jô,";|+rf (RZJ+S, if ô,>o(5) </i>
C5.4D,""" =<=+r,"'"|C"|+rr1C"'f+Ê, if ^.. <o(6)


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>DAU Tl/TAI CHINH </b>

<b>II </b>



vdiK:|.|<r|la gia tri tuyet ddi
cua trung binh sua't sinh lpi


cua thi trudng vao n g i y t khi
thi trudng len, xudng.


De kiem tra tam ly dam
dong tren TTCK Viet Nam,
nghien cUu nay suf dung so
lieu gii cac cd phieu h i n g
ngiy, tuan, t h i n g tU 1/1/2001
den 31/12/2008 vdi sua't sinh
lpi dupc tinh theo cong thufc
rieng i?, = ln(P,) - ln(P,_,)
suit sinh lpi thi trUofng tinh
toin dUa tren chi sd VN-Index.
<b>Ket qua thiic n g h i e m </b>
Bang 2 tom t a t ket qua
<i>tho'ng ke cua CSAD^ va s u i t </i>
sinh lpi trung binh cua thi
trudng R^J.Bang 3 tdm t a t
ket qua hdi quy toan thi
<i>trudng cua CSAD^ theo </i>
R^j theo ngay, tuan, t h i n g .
<i>Cac he so' j,^ am v i cd y </i>
nghia thd^ng ke (trU trUdng
hpp do lieu t h i n g co he
so' Yj am nhUng khong co
y nghia thd^ng ke) cho t h i y
CO sU hien dien ciia t i m
ly dam dong. T i m ly d i m
dong thdi gian ngay manh
hcfn thcfi gian tuan vi gia


tri tuyet dd^i ciia y^ theo
sd^ lieu ngay ldn horn theo
so lieu tuan. Ket qua n i y
nhat quan vdi quan s i t ciia
Christie va Huang (1995)
"hanh vi theo dam dong la
hien tUpng ngan ban" va
vdi cac trudng hpp khao s i t
cua Tan va cac ddng t i c gia
(2008), Caporale, Economou
va Philippas (2008).


<b>B a n g 2: Th6'ng k e mo </b>


Jan 2001-Dec
2008
Observations
Minimum
Maximum
Mean
Standard
deviation



DO-CSAD


1,881
0.0002
0.0820
0.0129


0.0084


<b>ta </b>


leu ngay


<i>K., </i>


1,881
-0.0766
0.0774
0.0002
0.0178


Dir lieu tuan
CSAD


400
0.0000
0.1104
0.0251
0.0184


<i>K,., </i>


400
-0.1350
0.1277
0.0012
0.0370



Du lieu thang
CSAD


96
0.0058
0.2465
0.0691
0.0445


<i>R„, </i>
96
-0.3550
0.3369
0.0032
0.1188


<i>Nguon: Ket qud truy sudt tU Eviews 4.0. </i>
<b>B a n g 3: Ket qua h o i quy t o a n thi trvfofng </b>


<i>a </i>


t-statistic
X
t-statistic


t-statistic
<i>Adjusted </i>


<i>R-CSAD, = </i>



Du lieu ngay
0.0092
(29.963)*
0.4992
(13.857)*
-7.0196
(-10.266)*
0.110


<i>a+hR,„.,+r2K </i>


Dii lieu tuan
0.0144
(10.743)*
0.6411
(8.243)*
-3.6160
(-5.185)*
0.214


<i>+ e, </i>


<i>Du lieu thang </i>


0.046
(6.603)*
0.269
(1.916)***
-0.004


(-0.007)
0.234


<i>Ohi chu: Sd lieu trong ngoac la cdc thdng ke t dUa tren cdc sai sd chudn theo </i>
<i>nghien cUu cUa Newey-West (1987). Ky hieu *,** vd *** tuang Ung vdi cdc mice y </i>
<i>nghia 1%, 5% vd 10%. </i>


<i>Nguon: Ket qud truy sudt tii Eviews 4.0. </i>


<b>ca^„.,„ ,i s ngan hang </b>



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>K e t l u a n </b>


Nghien cUu dUa t r e n mo hinh
cua Chang va c i c ddng t i c
gia (2000) de k i e m t r a sU
h i e n dien h a n h vi theo d i m
dong t r e n TTCK Tp. Hd Chi
Minh. DUa t r e n sd lieu hang
n g i y , tuan, t h i n g tU 1/1/2001
de'n 31/12/2008, k e t qua cho
tha'y CO sU h i e n dien cua h i n h
vi theo d i m dong t r e n thi
trudng. T i m ly d i m dong thdi
gian n g i y m a n h hon thdi gian
tuan, eon trong thdi gian thing,
chUa the khang dinh co t i m ly


B a n g 4 t o m t a t k e t qua
hdi quy trong dieu k i e n t h i


trUdng b i t c i n xUng (chi len
hoac xud^ng) theo ngay, tuan,
t h i n g . C i c he sd^ y^ ^^^ va co
y nghia t h d n g ke (trU trUdng
hpp dOf lieu t h i n g co cac he
sd^ Yg k h o n g co y nghia thd^ng
ke). Ddi vdi sd^ lieu n g i y v i
tuan, k e t qua cho t h i y t i m ly
d i m dong d thi trUdng xud^ng
m a n h hun d thi trUdng len
(gii tri tuyet ddi ciia Yg of thi
trUdng xudng ldn hOn cf thi
trudng len) nhUng k e t qua
kiem dinh Wald cho tha'y t i m
ly d i m dong d thi trudng len
va xud^ng chi co sU khac biet
t h d n g ke t i n h b i t c i n xdng
d thdi gian ngay, khong co
sU k h a c biet tho'ng ke d thcfi
gian tuan. Rieng ddi vdi sd
lieu t h i n g , do k e t q u i hdi quy
t o i n thi trudng cho t h i y he
sd Ya khong co y nghia t h d n g
ke n e n khong xet den t i m
ly d i m dong co t i n h b i t c i n
xUng hay khong trong dieu
kien thi trUdng len v i xud^ng.


<b>B a n g 4. K e t qua h o i quy thi trUdng l e n v a x u o n g </b>



4A: Ket qua hoi


a
t-statistic


<b>Tl </b>


t-statistic
t-statistic
<i>Adjusted R^ </i>


4B: K6tquah6i


a
t-statistic


<b>Yi </b>


t-statistic


<i><b>ll </b></i>


t-statistic
<i>Adjusted </i>


R-4 C: Wald Test


<i>11 l l </i>


F-statistic


value


quy thi truong len
<i>CSAD"," = </i>
Dii lieu ngay
(912 quan sat)
0.0097
(20.225)*
0.3963
(7.182)*
-5.8966
(-5.359)*
0.062


<i>a+rr RZ +yT[R::he. </i>



Dii lieu tuan (191 Du lieu thang (48 quan
quan sat) sat)
0.0153


(6.786)*
0.56129
(4.526)*
-2.7522
(-2.333)**
0.180


quy thi truong xuong
<i>CSAD°°'"' = </i>
Dii lieu ngay


(963 quan sat)
0.0087
(22.110)*
0.6188
(12.987)*
-8.5082
(-9.810)*
0.174


<b>^ + /°°™ </b><i>nD'OWN </i>


Dii lieu tuan
(187 quan sat)
0.018
(9.799)*
0.493
(4.478)*
-2.766
(-3.022)**
0.1399


<i>H,: /f-rr'™=0 </i>



Dii lieu ngay
(5.633762)**


Du lieu tuan
(0.000136)


0.050


(4.496)*
0.0958
(0.418)
0.9857
(1.119)
0.272


<i>+ r?°'^{R°u"'l+e, </i>
Dii lieu thang (48 quan
0.0430


(5.560)*
0.3728
(2.414)**
-0.660
(-1.266)
0.219


Dii lieu thang
sat)


<i>Nguon: Ket qud truy sudt tic Eviews 4.0. </i>


<i><b>• ongngbf ngan hang </b></i>



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

DAU Tl/TAI CHINH


d i m dong. Kiem tra hanh vi
theo d i m dong trong dieu kien
thi trudng bat ddi xiing (thi


trUcfng chi len hoac xudng) theo
thdi gian ngay va tuan thi tam
ly dam dong hien dien khong
CO sii khac biet thdng ke giOfa
hai thi trUdng nay trong thdi
gian tuan nhung co sU khac biet
thdng ke trong thcfi gian ngay.
Dua vao gia tri tuyet ddi ciia he
sd Ya trong thcfi gian ngay thi
thi trUcfng xudng c6 t i m ly d i m
dong manh hcfn thi trUdng len.


Tam ly d i m dong hien hOfu tren
nhijfng TTCK dang phat trien
nhu Viet Nam do nhieu nguyen
nhan: (i) Theo Chang va cic
ddng t i c gia (2000), h a n h vi
theo d i m dong co the la ket qua
cua sU can thiep cao cua Chinh
pbij thong qua chinh sich tai
khoa hay thong qua lenh mua
b i n true tiep vdi sd lUPng ldn;
(ii) Hanh vi theo d i m dong do
thieu thong tin vi mo d i n g tin
cay tren thi trUdng. Khi viec
cong bd thong tin khong day
du, n h i dau tU thieu thong tin
ccf ban ve cic cong ty va do do
n h i dau tU giao dich dUa tren
cac tin ddn hoac tap trung vio


cic thong tin vi mo; (iii) TTCK
dang p h i t trien nhu Viet Nam
CO nhieu nha dau tU ludt song
ngan ban. Loai n h i dau tU nay
thudng chi dUa vao mot ngudn
thong tin va dan tcfi c6 h a n h vi
tUtfng ddng (Froot, Scharfstein
va Stein; 1992), tUc gay ra tam
ly d i m dong tren thi trUdng.
Tai Viet Nam, cac ccf quan quan
ly tang cUdng cac bien p h i p
de bao ve nha dau tU va giup
TTCK boat dong minh bach. Cu


the, Bp Tai chinh da ban h a n h
Thong tu sd 09/2010/TT-BTC,
ngay 15/1/2010 hUcfng d i n ve
cong bd thong tin tren TTCK
Mot trong nhijCng npi dung chinh
sLia ddi dupc quan t a m nha't tai
Thong t u nay la cic quy dinh
ve cong bd thong tin cua cong
ty dai chiing v i td chUc niem
yet n h a m tang cUdng tinh minh
bach cua thi trUdng, bao ve tdt
hcfn quyen lpi ciia nha dau tU.
Ddi vdi cic td chUc p h i t h i n h ,
cong ty niem yet, viec cong bd
thong tin cong khai v i chinh
x i c de n h a dau tU an t i m khong


phai dUa v i o tin ddn hoac thong
tin khong chinh x i c khi r a quyet
dinh giao dich. Theo nghien cUu
ciia Chang v i cic ddng t i c gia
(2000), tam ly d i m dong hien
hOfu tai cac TTCK p h i t trien it
hom tai cic TTCK dang p h i t
trien. Co the ly giai rang, mpt
trong nhiJfng ly do I i n h i dau
tu tren TTCK phat trien c6
nhieu kinh nghiem trong giao
dich v i trang bi tdt kie'n thUc,
thong tin. Ddi vdi nha dau tU
tai Viet Nam, trong khi chef dpi
thi trUdng van h a n h mpt cich
hoan hao thi nha dau tU phai
biet chpn lifa thong tin dung va
r a quyet dinh phu hpp.


H a n che cua nghien eUu nay la
phan xuf ly sd lieu phai trai qua
nhieu bUdc trung gian nen thdi
gian keo dai. Ngoii ra, nghien
cUu chUa xem xet h i n h vi theo
d i m dong tren TTCK Ha Npi
de CO cai nhin tdng quan tren
toan TTCK dang p h i t trien cua
Viet N a m "


Tai lieu tham khao



<i>1. Bikkciiandcmi, S., Hirshleifer, D., and </i>
<i>Welch, I (1992), A Theory of Fads, </i>
<i>Fash-ion, Custom, and Cultural Change as </i>
<i>In-formational Cascades, Joumal of Politiad </i>
<i>Economy, Vol. 100, No. 5, pp. 992-1026 </i>
<i>2. Caporale, G.M., Economou, F., and </i>
<i>Philippas, N. (2008), Herding behaviour </i>
<i>in extreme market conditions: the case of </i>
<i>the Athens Stock Exchange, Economics </i>
<i>Bulletin, Vol. 7, Na 17, pp.1-13. </i>


<i>3. Chang, E.C., Cheng, J.W., and </i>
<i>Kho-rana, A. (2000), An Examination of </i>
<i>Herd Behavior in Equity Markets: An </i>
<i>International Perspective, Journal of </i>
<i>Banking and Finance, Vol. 24, pp. </i>
<i>1651-1679. </i>


<i>4. Christie, W.G., and Huang, RD. </i>
<i>(1995), Following the Pied Piper: Do </i>
<i>Individual Returns Herd around the </i>
<i>Market?, Financial Analysts Journal, </i>
<i>Vol. 51, pp. 31-37. </i>


<i>5. Newey, W. K. and West, K (1987), A </i>
<i>simple positive semi-definite, </i>


<i>heteroskedasticity and autocorrelation </i>
<i>consistent covariance matrix, </i>


<i>Econo-metrica. Vol. 55, No. 3, pp. 703-708. </i>
<i>6. Hirshleifer, D. and Teoh, S.T. (2003), </i>
<i>Herd Behaviour and Cascading in </i>
<i>Cap-ital Markets: a Review and Synthesis, </i>
<i>European Financial Management </i>
<i>Jour-nal, Vol. 9, No. 1, pp. 25-66. </i>


<i>7. Froot, K. A, Scharfstein, D. S., and </i>
<i>Stein, J. C. (1992), Herd on the Street: </i>
<i>Informational inefficiencies in amarket </i>
<i>with short-term speculation, Joumal of </i>
<i>Finance, Vol. 47, pp. 1461-1484. </i>
<i>8. Tan, L., Chiang, T. C, Mason, J. R. </i>
<i>and Nelling, E. (2008), Herding </i>
<i>behav-ior in Chinese stock markets: An </i>
<i>ex-amination of A and B shares, </i>
<i>Pacific-Basin Finance Journal, Vol. 16, No. </i>
<i>1-2, pp. 61-77 </i>


<i>9. Trang web </i>


<i>Cl\ </i>

<b>nganhang </b>



</div>

<!--links-->
Giáo án môn tiếng việt lớp 1 HK1
  • 229
  • 1
  • 3
  • ×