Tải bản đầy đủ (.pdf) (19 trang)

Bài 5: Mô hình Multinomial Logit

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (487 KB, 19 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

MULTINOMIAL LOGIT MODEL



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Multinomial responses



logit/probit model: dependent variable = 0/1


What if more than 2 categories?



Example: long term effect of the exposure to



radiation may be



1 – dead of cancer



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Multinomial responses



Example: choice of health care providers



1 – public hospital



2 – private hospital/clinic


3 – “lang y”



4 – self-treatment



Other examples:



choice of car (Y = Toyota, Honda, Suzuki, Mazda, KIA…)


choice of specialization at university



choice of occupation




</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Multinomial logistic regression model



Multinomial logit model (MNL) is used to analyze



the relationship between categorical variables and


other explanatory variables



Notice:



nominal response (MNL)



ordinal response (ordered probit model – not covered



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

The dependent variable



The occurrence of an alternative j for individual i


Probability of occurrence of each alternative



1, 2, 3,...,



<i>i</i>



<i>Y</i>

<i>J</i>



i1


i2


i3



iJ




1

probability =


2

probability =


3

probability =


...

...



probability =



<i>i</i>



<i>p</i>


<i>p</i>



<i>Y</i>

<i>p</i>



<i>J</i>

<i>p</i>



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

The logit (log-odds ratio)


Logit


i1


i1


i2


i1


i3


i1


1

log


2

log


3

log


...

...


0


<i>i</i>



<i>iJ</i>


<i>i</i>


<i>iJ</i>


<i>i</i>


<i>iJ</i>


<i>i</i>

<i>iJ</i>


<i>p</i>


<i>Y</i>

<i>h</i>


<i>p</i>


<i>p</i>


<i>Y</i>

<i>h</i>


<i>p</i>


<i>p</i>


<i>Y</i>

<i>h</i>


<i>p</i>



<i>Y</i>

<i>J</i>

<i>h</i>









</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

Modelling the logits



i1


i1

1


i2


i1

2



i3


i1

3


1

log


2

log


3

log


...

...


0


<i>i</i>

<i>i</i>


<i>iJ</i>


<i>i</i>

<i>i</i>


<i>iJ</i>


<i>i</i>

<i>i</i>


<i>iJ</i>


<i>i</i>

<i>iJ</i>


<i>p</i>



<i>Y</i>

<i>h</i>

<i>X</i>



<i>p</i>


<i>p</i>



<i>Y</i>

<i>h</i>

<i>X</i>



<i>p</i>


<i>p</i>



<i>Y</i>

<i>h</i>

<i>X</i>



<i>p</i>




<i>Y</i>

<i>J</i>

<i>h</i>



</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

Modeling the probabilities



1
2
3

i1


1


i2


1


i3


1


iJ


1



1

probability =



2

probability =



3

probability =



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

Maximum likelihood estimation



MNL model is estimated by maximizing the



log-likelihood function



1

1




log

ln



<i>N</i>

<i>J</i>



<i>ij</i>

<i>ij</i>


<i>i</i>

<i>j</i>



<i>L</i>

<i>y</i>

<i>p</i>









0

if j is NOT chosen



1

if j is chosen



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

Data



<b>id</b>

<b>case</b>

<b>choice</b>

<b>thunhap</b>

<b>gioitinh</b>

<b>…</b>



1

1

2

12

1



1

2

4

12

1



2

1

3

21

1



3

1

17

0



3

2

17

0




3

3

17

0





Choice: 1 = Commune health center; 2 = Public hospital; 3 = Private hospital; 4 = Lang y;


5 = Individual health care provider



</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

Estimate MNL in Stata


mlogit choice thunhap gioitinh



(choice==2 is the base outcome)



_cons -2.872579 .1263704 -22.73 0.000 -3.12026 -2.624898
gioitinh .0954035 .1621446 0.59 0.556 -.222394 .413201
thunhap 1.97e-06 4.44e-07 4.43 0.000 1.10e-06 2.84e-06
5



_cons -3.795684 .3483009 -10.90 0.000 -4.478342 -3.113027
gioitinh .1885005 .3481328 0.54 0.588 -.4938273 .8708283
thunhap -8.18e-06 4.17e-06 -1.96 0.050 -.0000164 -1.22e-08
4



_cons -1.763979 .0821101 -21.48 0.000 -1.924912 -1.603046
gioitinh .2087203 .0979244 2.13 0.033 .016792 .4006485
thunhap 1.81e-06 4.19e-07 4.32 0.000 9.90e-07 2.63e-06
3




_cons -1.180521 .1060245 -11.13 0.000 -1.388325 -.9727166
gioitinh .1822304 .1061043 1.72 0.086 -.0257303 .3901911
thunhap -9.39e-06 1.29e-06 -7.29 0.000 -.0000119 -6.86e-06
1


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

Explain the estimation results



Suppose there are 2 persons of same sex, A’s



income is 1 mil VND higher than that of B, so



A:



B:



i1



1

1

1

1



log

<i><sub>i</sub></i>

<i><sub>i</sub></i>

<i><sub>i</sub></i>



<i>iJ</i>


<i>p</i>



<i>X</i>

<i>thunhap</i>

<i>gioitinh</i>



<i>p</i>

  




1



1

1

1



log

<i>A</i>

<i><sub>A</sub></i>

<i><sub>A</sub></i>



<i>AJ</i>



<i>p</i>



<i>thunhap</i>

<i>gioitinh</i>


<i>p</i>

 





1



1

1

1



log

<i>B</i>

<i><sub>A</sub></i>

1

<i><sub>B</sub></i>



<i>BJ</i>



<i>p</i>



</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

Explain the estimation results



the estimated coefficient indicates the responses



of log-odds ratio for a unit change in explanatory



variable



1



1

1



1



1


log

log

log



<i>B</i>


<i>B</i>

<i>A</i>

<i><sub>BJ</sub></i>



<i>A</i>


<i>BJ</i>

<i>AJ</i>



<i>AJ</i>



<i>p</i>



<i>p</i>

<i>p</i>

<i><sub>p</sub></i>



<i>p</i>



<i>p</i>

<i>p</i>



<i>p</i>



</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

Hypothesis testing



Test the null hypothesis



1

2

1



H0:

<i><sub>j</sub></i>

 

...

<i><sub>J</sub></i>

<sub></sub>

0



Prob > chi2 = 0.0000


chi2( 4) = 82.49


( 4) [5]thunhap = 0



</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

Hypothesis testing


Kiểm định giả thuyết



1



H0:

0



Prob > chi2 = 0.0000


chi2( 1) = 53.17


( 1) [1]thunhap = 0



</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

Kiểm định



Test the null hypothesis: all coefs in [1] = 0



Prob > chi2 = 0.0000


chi2( 2) = 56.38


( 2) [1]gioitinh = 0



( 1) [1]thunhap = 0



. test [1]



Prob > chi2 = 0.0000


chi2( 2) = 56.38


( 2) [1]gioitinh = 0



( 1) [1]thunhap = 0



</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

Marginal effect



What happens to the probability of choosing [1] if



income increase by 1 mil VND?



(*) dy/dx is for discrete change of dummy variable from 0 to 1




gioitinh* .0132477 .00985 1.34 0.179 -.006067 .032563 .527194


thunhap -.0009239 .0001 -8.99 0.000 -.001125 -.000723 82.9054



variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X



= .10632185



y = Pr(choice==1) (predict, p outcome(1))


Marginal effects after mlogit



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

Marginal effect



For a female with income 500 mil VND/year, the




probability of choosing [1] if income increase by 1


mil VND?



(*) dy/dx is for discrete change of dummy variable from 0 to 1




gioitinh* .0002118 .00023 0.91 0.364 -.000246 .000669 1


thunhap -.0000202 .00001 -2.23 0.026 -.000038 -2.4e-06 500



variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X



= .00199241



y = Pr(choice==1) (predict, p outcome(1))


Marginal effects after mlogit



</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

Prediction



Predict the probability of choosing private



hospitals/clinic



bvtu 3475 .1502158 .0348196 .1121532 .6523073



Variable Obs Mean Std. Dev. Min Max


. sum bvtu



</div>

<!--links-->

×