Tải bản đầy đủ (.doc) (19 trang)

ON TAP HKI PHAN MU LOGA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (324.34 KB, 19 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<i>5</i>

<i>Exponential and Logarithmic Functions</i>



<i><b>5</b></i>

<b> Exponential and Logarithmic Functions</b>



• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Activity </b>


<b>Activity 5.1 (p.216)</b>


<b>1.</b> 1


<b>2.</b> No


<b>3.</b> <i>y</i> increases as <i>x</i>


increases; the graph
lies above the <i>x</i>-axis; it
cuts the <i>y</i>-axis at (0, 1).
4.


<i>x</i> –1 0 1


<i>y</i>

3


1



1 3


<b>5.</b> Yes


<b>Activity 5.2 (p. 222)</b>


1.


<i>M</i> <i>N</i> log<i>M</i> log<i>N</i> log


10


1



100 –1 2
100 100 2 2
1000


10


1



3 –1
10


100


1



1 –2


100


1



1000 –2 3


<b>2.</b> log <i>MN</i> = log <i>M</i> + log


<i>N</i>



<b>3.</b> log








<i>N</i>


<i>M</i>



= log <i>M</i> –
log <i>N</i>


<b>4.</b> log <i>M</i>2<sub> = 2 log </sub><i><sub>M</sub></i>


<b>Activity 5.3 (p.238)</b>


<b>1.</b> 1


<b>2.</b> No


<b>3.</b> <i>y</i> increases as <i>x</i>


increases; the graph
lies on the right-hand
side of the <i>y</i>-axis; it
cuts the <i>x</i>-axis at (1,0).
<b>4.</b>


<i>x</i> 0.3 0.6 1



<i>y</i> –0.5 –0.2 0


<b>5.</b> They are both defined
for <i>x</i> > 0 and cut the <i>x</i>
-axis at (1,0); <i>y</i>


increases as <i>x</i>


increases in both
graphs; they both lie
on the right-hand side
of the <i>y</i>-axis.


<b> Follow-up </b>


<b>Exercise </b>


<b>p. 205</b>



<b>1.</b>


8


81



8


81



8


81



)


(



2



)


(


3


)


2


(



)


3


(



6
6
12
6
12


3
2
3


4
3
4
3
2


4


3


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>










<b>2.</b>






4
4


4
4



1
4
4


1
1
3
)
2
(
2
1
2


3
2


<i>a</i>


<i>b</i>



<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>


<i>b</i>




<i>a</i>


<i>b</i>


<i>a</i>
































<b>p. 207</b>



<b>1.</b> ∵ 10  10  10 =
1000


103<sub> = </sub>
1000


∴ 3 1000 <sub></sub>10


<b>2.</b> ∵ (–6)  (–6)  (–


6) = –216


(–6)3
= –216


∴ 3 <sub></sub> 216<sub></sub><sub></sub> 6


<b>3.</b> ∵ 11  11 = 121


112<sub> = 121</sub>




11
121




<b>4.</b> ∵ 4  4  4  4 =


256


44<sub> = </sub>
256




4
256
4






<b>5.</b> ∵


81


1


3


1


3


1


3


1


3



1








81
1
3
1 4












3
1
81


1


4 <sub></sub>



<b>6.</b> ∵


32


1


2


1


2


1


2


1


2


1


2


1









32
1
2
1 5













2
1
32


1


5 <sub></sub>


<b>p. 210</b>



<b>1.</b>

 



3
4


4
3
1
4


3 <sub>(</sub> <sub>)</sub>


<i>x</i>
<i>x</i>


<i>x</i>





<b>2.</b>


3
5
3
5


3
1
5


3 5


1


)


(



1


1










<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<b>3.</b>


256


1



)


4


(



1


)


4


(



)


4


(



]


)


4


[(


)


64



(



4
4


3
4
3


3
4
3
3


4






























<b>4.</b>


216
125
6
5
6
5
36


25


3
2
3
2
2



3




















</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>5.</b>


 



4
1
4
1
1


4
3
4
3


3
4
1
3
4


1


)


(



<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>













<b>6.</b>


20
11
20
11
5
4
4
1
5
4
4
1


5
1
4


4
1


5 4


4


1


1


)


(


1



<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>



<i>a</i>


<i>a</i>


<i>a</i>













<b>p. 213</b>




<b>1.</b> 3<i>x</i> + 2<sub> – 3</sub><i>x</i><sub> = 216</sub>


(32<sub>)(3</sub><i>x</i><sub>) – 3</sub><i>x</i><sub> = 216</sub>


3<i>x</i><sub>(3</sub>2<sub> – 1) = 216</sub>
8(3<i>x</i><sub>) = 216</sub>


3<i>x</i><sub> = 27</sub>


3<i>x</i><sub> = 3</sub>3


∴ <i>x</i> =3


<b>2.</b> 52<i>x</i><sub> – 24(5</sub><i>x</i><sub>) = 25</sub>


(5<i>x</i><sub>)</sub>2<sub> – 24(5</sub><i>x</i><sub>) – 25 = 0</sub>


Let <i>y</i> = 5<i>x</i><sub>, the equation</sub>


becomes


<i>y</i>2<sub> – 24</sub><i><sub>y</sub></i><sub> – 25 = 0</sub>
(<i>y</i> – 25)(<i>y</i> + 1) = 0


<i>y</i> = 25
or <i>y</i> =
–1


∴ 5<i>x</i><sub> = 25 or 5</sub><i>x</i><sub> = </sub>



–1 (rejected)
5<i>x</i><sub> = 5</sub>2


∴ <i>x</i> =2


<b>3.</b>











16


2



0


3


3

1


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)


2
(


)
1
(








From (1),
3<i>x</i> + 1<sub> = 3</sub><i>y</i>


∴ <i>x</i> + 1 = <i>y</i>


From (2),
2<i>x</i> + <i>y</i><sub> = 2</sub>4


∴ <i>x</i> + <i>y</i> = 4
Consider the
simultaneous
equations:













4
1


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
4
(


)
3
(








By substituting (3) into


(4), we have


<i>x</i> + (<i>x</i> +1) = 4
2<i>x</i> = 3


<i>x</i> =


2


3



By substituting <i>x</i> =


2


3



into (3), we have
<i>y</i> =


2


3

<sub>+ 1 =</sub>


2


5



∴ The solution is <i>x</i> =


2


3

<sub>, </sub><i><sub>y</sub></i><sub> =</sub>


2



5

<sub>.</sub>


<b>p. 220</b>



<b>1.</b> <b>(a)</b> ∵ 0.01 =
10–2


∴ log 0.01 =


2




<b>(b)</b> ∵ 100 000 =
105


∴ log 100 000 =


5


<b>2.</b> <b>(a)</b> ∵ 10<i>x</i><sub> = 20</sub>


∴ <i>x</i> = log 20
=


30
.


1 <sub> (cor. to 3 sig. </sub>



fig.)


<b>(b)</b> ∵ 10<i>x</i><sub> = 0.8</sub>


∴ <i>x</i> = log
0.8


=


0969
.
0


 <sub> (cor. to </sub>


3 sig. fig.)
<b>(c)</b> ∵ 10<i>x</i><sub> = 5</sub>


∴ <i>x</i> = log 5
=


699
.


0 <sub> (cor. to 3 </sub>


sig. fig.)


<b>p. 221</b>




<b>1.</b> ∵ 92<sub> = 81</sub>


∴ log9 81 =2
<b>2.</b> ∵ 43<sub> = 64</sub>


∴ log4 64 =3
<b>3.</b> ∵ 112<sub> = 121</sub>


∴ log11 121 =2
<b>4.</b> ∵ 25<sub> = 32</sub>


∴ log2 32 =5


<b>p. 225</b>



<b>1.</b> 2 log 2 + log 5 = 2


log

<sub>2</sub>

<sub>2</sub>1 + log 5
= log
(

<sub>2</sub>

<sub>2</sub>1 )2<sub> + log 5</sub>


= log
2 + log 5


= log
(2  5)


= log
10



=1


<b>2.</b> log2 8 – log2 16 = log2
23<sub> – log</sub>


2 24
= 3
log2 2 – 4 log2 2


= 3 – 4
=


1




<b>3.</b>


5


4



2


log


5



2


log


4



2



log



2


log


32


log



16


log



5
4






<b>4.</b>


4


1



5


log


2



5


log


2


1




5


log



5


log


25


log



5


log



2
2
1






<b>5.</b>


4


2


1


2



log


2


1



1



log


2



log


2


1


log



log


2



log


log



log


2


log



log


log


2



2
1























<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>




<i>x</i>


<i>x</i>



<b>6.</b>


5


3


2


5


2


3



log


2


1


2



log


2


1


2



log


2


1


log


2



log


2



1


log


2



log


log



log


log



log


log



log


log



2
1
2


2
1
2


2
2



































<i>x</i>



<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<b>7.</b> log 9 = log


6


54



= log 54 – log 6
=<i>y</i> <i>x</i>


<b>p. 229</b>




<b>1.</b> 3<i>x</i> – 1<sub> = 7</sub>
log 3<i>x</i> – 1<sub> = log 7</sub>
(<i>x</i> – 1)log 3 = log 7


<i>x</i> – 1 =


3
log


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<i>x</i> =


3
log


7
log


+ 1


=2.77


(cor. to 3 sig. fig.)
<b>2.</b> 52<i>x</i><sub> = 8</sub>


log 52<i>x</i><sub> = log 8</sub>


2<i>x </i>log 5 = log 8
2<i>x</i> =


5


log


8
log


<i>x</i> =


5
log


8
log




2


=0.646


(cor. to 3 sig. fig.)


<b>3.</b> 6<i>x</i><sub> = 3</sub><i>x</i> +
2


log 6<i>x</i><sub> = log</sub>


3<i>x</i> + 2


<i>x</i> log 6 = (<i>x</i>



+ 2) log 3


<i>x</i> log 6 = <i>x</i>


log 3 + 2 log 3


<i>x</i> log 6 – <i>x</i> log 3 = 2
log 3


(log 6 – log 3) <i>x</i> = 2
log 3


<i>x</i> =


3
log
6
log


3
log
2




=


17
.



3 <sub> (cor. to 3 sig. fig.)</sub>


<b>4.</b> log (3<i>x</i> – 2) = 2
log (3<i>x</i> – 2) = log 100


3<i>x</i> – 2 = 100
3<i>x</i> = 102


<i>x</i> =34


<b>5.</b> log (3<i>x</i> + 1) – log (<i>x</i> –
2) = 1













2


1


3


log



<i>x</i>



<i>x</i>



= log 10


2


1


3





<i>x</i>



<i>x</i>



= 10


3<i>x</i> +
1 = 10(<i>x</i> – 2)


3<i>x</i> +
1 = 10<i>x</i> – 20


7<i>x</i> = 21


<i>x</i> =3


<b>6.</b> Let <i>y</i> = log (<i>x</i> – 1),
then the equation


[log (<i>x</i> – 1)]2<sub> + 2 log (</sub><i><sub>x</sub></i>


– 1) + 1 = 0 becomes


<i>y</i>2<sub> + 2</sub><i><sub>y</sub></i><sub> + 1 = 0</sub>


(<i>y</i> + 1)2<sub> = 0</sub>
<i>y</i> = –1


∴ log (<i>x</i> – 1) = –1


<i>x</i> – 1 =


10


1



<i>x</i> =
10


11


<b>p. 233</b>



<b>1.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities of the
concert and


that of the football
match respectively.
By the definition of
sound intensity level, we
have



95 = 10 log











0
1


<i>I</i>


<i>I</i>



and 80 = 10 log











0


2


<i>I</i>


<i>I</i>



∴ 95 – 80 = 10 log











0
1


<i>I</i>


<i>I</i>



– 10 log

<sub></sub>










0
2


<i>I</i>


<i>I</i>


15 = 10































0
2
0


1

<sub>log</sub>



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



2


3

<sub> = log</sub>












2
1


<i>I</i>


<i>I</i>



2
1


<i>I</i>


<i>I</i>



= 2
3


10


= 31.6
(cor. to 3 sig. fig.)


∴ The sound
intensity of the
concert is 31.6
times to that of the
football match.
<b>2.</b> Let <i>I</i> be the original


sound intensity
produced by the radio,
then the sound


intensity produced
after adjusting the
volume is 1.25<i>I</i>.


∵ The original sound


intensity level
produced by the
radio is 30 dB.


∴ 30 = 10 log











0


<i>I</i>


<i>I</i>



Let dB be the sound
intensity level
produced by the radio
after adjusting the


volume.


∴  = 10 log











0


25


.


1



<i>I</i>


<i>I</i>



– 30 = 10 log













0


25


.


1



<i>I</i>


<i>I</i>



– 10 log











0


<i>I</i>


<i>I</i>



– 30 = 10

































0
0


log


25



.


1


log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



– 30 = 10 log 1.25


= 30 + 10 log
1.25


= 31.0 (cor. to 3
sig. fig.)


∴ The sound
intensity level
produced by the
radio after
adjusting the
volume is 31.0 dB.



<b>p.235</b>



<b>1.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes measured
6 and 3 respectively.
By the definition of the
Richter scale, we have


6 = log <i>E</i>1 and
3 = log <i>E</i>2
i.e. <i>E</i>1 = 106 and


<i>E</i>2 = 103


∴ 3


6


2
1


10


10





<i>E</i>



<i>E</i>



= 103
= 1000


∴ The strength of an
earthquake
measured 6 is
1000 times to that
measured 3.


<b>2.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes in Nantou
and Turkey


respectively.


By the definition of the
Richter scale, we have


7.3 = log <i>E</i>1 and
6.3 = log <i>E</i>2
i.e. <i>E</i>1 = 107.3 and


<i>E</i>2 = 106.3


∴ <sub>6</sub><sub>.</sub><sub>3</sub>



3
.
7


2
1


10


10





<i>E</i>


<i>E</i>



= 10


∴ The strength of
the earthquake in
Nantou is 10 times


to that in Turkey.


<b> Exercise </b>


<b>Exercise 5A (p.210)</b>


<b>Level 1</b>



<b>1.</b>


7


3


7
1
3


7 3

<sub>(</sub>

<sub>)</sub>



<i>x</i>


<i>x</i>


<i>x</i>






<b>2.</b>

 



3
8


8
3
1
8


3 <sub>(</sub> <sub>)</sub>


<i>x</i>
<i>x</i>
<i>x</i>






<b>3.</b>


 



2
5
2
5


5
2
1
5


1


)


(



1


1









</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>4.</b>
5
2
5
2
5
1
2
5 2

1


)


(


1


1






<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<b>5.</b>
125
343
5
7
5
7
25

49
3
2
3
2
2
3






























<b>6.</b>
27
8
3
2
3
2
81
16
3
4
3
4
4
3






























<b>7.</b>
64
27
4
3
4
3
16
9
3

2
3
2
2
3






























<b>8.</b>
3
4
4
3
4
3
64
27
64
27
1
1
3
1
3
1
3
1
3
1

































































<b>9.</b>
1

2
3
1 











<i>a</i>


<i>a</i>



<i>a</i>

<sub>= (</sub><i><sub>a</sub></i>–1+3
– 2<sub>)</sub>–1


= (<i>a</i>0<sub>)</sub>–1
= <i>a</i>0
=1
<b>10.</b>
1
4
3
3
4  












<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>

<sub>= </sub>


[(<i>m</i>–4 – 3<sub>)(</sub><i><sub>n</sub></i> –3 – 4<sub>)]</sub>–1
= (<i>m</i>–7<i><sub>n</sub></i> –7<sub>)</sub>–
1


=<i><sub>m</sub></i>7<i><sub>n</sub></i>7
<b>11.</b>
3
1
2
1
2
2
1
4
3
1
2
1
2
4

<sub>)</sub>


(

  

























<i>m</i>

<i>n</i>

<i>m</i>

<i>n</i>

<i>m</i>

<i>n</i>



<i>n</i>


<i>m</i>



=


<i>m</i>2<i><sub>n</sub></i><sub></sub><i><sub>m</sub></i>–1<i><sub>n</sub></i>–3



=


<i>m</i>2 – (–1)<i><sub>n</sub></i>1 – (–3)


=
4
3<i><sub>n</sub></i>
<i>m</i>
<b>12.</b>



























2
1
2
2
1
4
)
3
(
3
)
3
(
1
2
1
2
4
3
3


1

<sub>)</sub>

<sub>(</sub>

<sub>)</sub>



(

<i>a</i>

<i>b</i>

<i>a</i>

<i>b</i>

<i>a</i>

<i>b</i>

<i>a</i>

<i>b</i>




=


<i>a</i>3<i><sub>b</sub></i>–9<sub></sub><i><sub>a</sub></i>–2<i><sub>b</sub></i>–1


=


<i>a</i>3 – (–2)<i><sub>b</sub></i>–9 – (–1)


=


<i>a</i>5<i><sub>b</sub></i>–8


=
8
5

<i>b</i>


<i>a</i>


<b>13.</b>
6
13
6
11
3
2
2
3
2
1
3

4
3
2
2
1
2
3
3
4
3
2
2
1
2
4
3
2
3
2
3
2
2
1
2
4
3
3
2
<i>b</i>
<i>a</i>

<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>






















<b>14.</b>
3
2
4
1
4
1
3
2
)
1
(
4
3
1
3
1
1
4
3
3
1
)
2
(

2
1
)
2
(
2
1
4
3
3
1
2
2
1
2
1
4
3
3
1
<i>a</i>
<i>b</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>ab</i>
<i>b</i>
<i>a</i>
<i>b</i>

<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>

































<b>15.</b>
2
2
2
2
2
1
2
2

)


(


<i>q</i>
<i>p</i>
<i>q</i>
<i>p</i>
<i>q</i>
<i>p</i>
<i>q</i>
<i>p</i>

<i>a</i>


<i>a</i>



<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>



<i>a</i>

   





0


2


2




1



0
2
2
2











<i>q</i>


<i>p</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>q</i>
<i>p</i>
<i>q</i>
<i>p</i>



<i>q</i> = 2(2 + <i>p</i>)
when <i>p</i> = 2, <i>q</i> = 2(2 +
2) = 8.


when <i>p</i> = 3, <i>q</i> = 2(2 +
3) = 10.


∴ A possible
solution is <i>p</i> = 2, <i>q</i> = 8 or <i>p</i>


= 3, <i>q</i> = 10.


(or any other
reasonable answers)
<b>16.</b>
<i>y</i>


<i>x</i>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>

<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>





















1

1
1

)


(


)


(


1




1
1


















<i>y</i>
<i>x</i>
<i>a</i>
<i>a</i>
<i>a</i>
<i>a</i>
<i>a</i>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>


<i>y</i> = 1 – <i>x </i>


When <i>x</i> = 2, <i>y</i> = 1
– 2 = –1.


When <i>x</i> = 3, <i>y</i> = 1
– 3 = –2.


∴ A possible
solution is <i>x</i> = 2, <i>y</i>


= –1or <i>x</i> = 3, <i>y</i> = –
2. (or any other
reasonable
answers)

<b>Level 2</b>


<b>17.</b>

12
5
2
1
4
3
3
2
2
1
4
3
3
2
4
1
2
4
3
2
3
1
4 2
4
3
2
3

)


(


)



(


)


(


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>











<b>18.</b>
60
61
60
61
5
3

4
1
3
2
5
3
4
1
3
2
5
1
3
4
1
3
2
5 3
4
1
3
2

1


)


(


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>

















<b>19.</b>
60
19
60
19
3
2
5

2
4
3
3
2
5
2
4
3
3
1
2
2
5
1
4
3
3 2
2
5
4
3

1


)


(


)


(


)


(


<i>p</i>



<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>













<b>20.</b>
5
13
5
3
2
1
2

5
5
3
2
1
2
5
5
3
1
2
1
2
1
5
5
3


5

1

<sub>(</sub>

<sub>)</sub>

<sub>(</sub>

<sub>)</sub>



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

12
23
12
23
)
3
2
(
4
3


2
1
3
2
4
3
2
1
3
2
4
1
3
2
1
3
2
4 3
2
1

1


)


(


<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>



<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>


<i>t</i>
























<b>22.</b>
12
11

3
1
2
1
4
3
3
1
2
1
4
3
9
1
3
2
1
4
3
9 3
4
1
2
4
3

)


(


)


(


<i>q</i>



<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>


<i>q</i>











<b>23.</b>

<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>ab</i>


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>ab</i>



<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


2
2
1
2
1
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1



















<b>24.</b>
6
1
6
1
6
1
6
1
1
3
1
2
1

1
2
1
3
1
3
1
2
1
2
1
3
1

1


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>mn</i>


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>





























<b>25.</b>
4
5
4
1
4
1
4
5

1
4
1
2
1
)
2
3
(
4
1
2
1
1
2
3
4
1
4
1
2
1
2
1
2
3
4
1
4
2

1
2
4
3
4

2


2


2


2


)


2


(


)


(


16


<i>a</i>


<i>b</i>


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>a</i>


<i>ab</i>


<i>ab</i>


<i>a</i>



<i>ab</i>


<i>ab</i>
































<b>26.</b>
6
13
6
1
2
1
3
2
2
6
1
3
2
3
1
2
1
6
1
3
2
3
2
2
2
3
1
2

1
3
1
3
2
3
3
1
2
3
1
3
2
3
2

9


9


3


)


(


)


3


(


)


27


(


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>ab</i>


<i>a</i>


<i>b</i>


<i>b</i>


<i>a</i>


<i>ab</i>


<i>a</i>


<i>b</i>



















<b>27.</b>
3
8
12
17
3
8
6
1
12
19
6
1
)
2
(
3
2
)
3
4
(
4
1
2
3
1
2

1
2
3
4
2
3
2
4
1
3
1
2
1
2
3
4
2
3
2
4
1
3
1
2
3
2
3
2
4
1

4


4


2


)


(


2


1


2


1


2


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>n</i>


<i>m</i>


<i>m</i>


<i>n</i>


<i>m</i>



<i>n</i>


<i>m</i>



























































<b>28.</b>
60
29
3
2
60

29
3
2
5
2
3
1
4
1
)
3
1
(
3
2
1
1
5
2
3
1
3
1
3
2
4
1
5
2
3

1
3
1
2
3
4
1
5
2
3
1
3 2
4
1

4


4


1


4


4


)


4


(


64


<i>y</i>


<i>x</i>


<i>y</i>


<i>x</i>


<i>y</i>


<i>x</i>


<i>y</i>



<i>x</i>


<i>y</i>


<i>x</i>


<i>xy</i>


<i>y</i>


<i>x</i>


<i>y</i>


<i>x</i>


<i>xy</i>


<i>y</i>


<i>x</i>


<i>y</i>


<i>x</i>


<i>xy</i>

























<b>Exercise 5B (p.214)</b>


<b>Level 1</b>


<b>1.</b>
2
2
3
2
3
2
3
2
2

5


5


)


5


(


5


125


5





<i>x</i>

<i>x</i>
<i>x</i>

2


<i>x</i>


= 2


<i>x</i> =4


<b>2.</b>
4
4
3
3
3

2


2


2


)


2


(


16


8





<i>x</i>
<i>x</i>
<i>x</i>



∴ <i>x</i> =4


<b>3.</b>
2
1
2
1
2

6


6


36


6






<i>x</i>
<i>x</i>

2


<i>x</i>

<sub>+1= 2</sub>


<i>x</i> =2


<b>4.</b>
2
3
2
5
2


5
3
2
5
2
3

2


2


)


2


(


)


2


(


32


4





<i>x</i>
<i>x</i>
<i>x</i>

3


2x


= 2


<i>x</i> =3


<b>5.</b> 3<i>x</i> + 2<sub> – 3</sub><i>x</i><sub> = 8</sub>



(32<sub>)(3</sub><i>x</i><sub>) – 3</sub><i>x</i><sub> = 8</sub>


3<i>x</i><sub>(3</sub>2<sub> – 1) = 8</sub>
8(3<i>x</i><sub>) = 8</sub>


3<i>x</i><sub> = 1</sub>


3<i>x</i><sub> = 3</sub>0


∴ <i>x</i> =0


<b>6.</b> 3(3<i>x</i><sub>) – 3</sub><i>x</i> – 1<sub> = 216</sub>
3(3<i>x</i><sub>) – 3</sub><i>x</i><sub>(3</sub>–1<sub>) = 216</sub>
3<i>x</i><sub>(3 –3</sub>–1<sub>) = 216</sub>
3<i>x</i><sub>(3 –</sub>


3


1



) = 216


3<i>x</i>

<sub></sub>








3



8


= 216
3<i>x</i><sub> = 81</sub>


3<i>x</i><sub> = 3</sub>4


∴ <i>x</i> =4


<b>7.</b> 2<i>x</i> + 2<sub> + 2</sub><i>x</i><sub> = 10</sub>


(22<sub>)(2</sub><i>x</i><sub>) + 2</sub><i>x</i><sub> = 10</sub>


2<i>x</i><sub>(2</sub>2<sub> + 1) = 10</sub>
5(2<i>x</i><sub>) = 10</sub>


2<i>x</i><sub> = 2</sub>


2<i>x</i><sub> = 2</sub>1


∴ <i>x</i> =1


<b>8.</b> 42<i>x</i><sub> = 16(2</sub><i>x</i><sub>)</sub>


(22<sub>)</sub>2<i>x</i><sub> = 2</sub>4<sub>(2</sub><i>x</i><sub>)</sub>


24<i>x</i><sub> = 2</sub>4 + <i>x</i>


∴ 4<i>x</i> = 4 + <i>x</i>


<i>x</i><sub> = 3</sub>4



<b>9.</b> 23<i>x</i><sub> = 8(4</sub><i>x</i><sub>)</sub>


23<i>x</i><sub> = 2</sub>3<sub>(2</sub>2<sub>)</sub><i>x</i>


23<i>x</i><sub> = 2</sub>3<sub>(2</sub>2<i>x</i><sub>)</sub>


23<i>x</i><sub> = 2</sub>3 + 2<i>x</i>


∴ 3<i>x</i> = 3 + 2<i>x</i>


<i>x</i> =3


<b>10.</b> 9(3<i>x</i> + 1<sub>) = 27</sub>2<i>x</i>


32<sub>(3</sub><i>x</i> + 1<sub>) = (3</sub>3<sub>)</sub>2<i>x</i>


3<i>x</i> + 3<sub> = 3</sub>6<i>x</i>


∴ <i>x</i> + 3 = 6<i>x</i>


<i>x</i><sub> = 5</sub>3


<b>Level 2</b>



<b>11.</b> 4<i>x </i>+ 1<sub> + 4</sub><i>x</i><sub> – 4</sub><i>x</i> – 1<sub> = 19</sub>
(4)4<i>x</i><sub> + 4</sub><i>x</i><sub> – (4</sub>– 1<sub>)4</sub><i>x</i><sub> = </sub>


19



4<i>x</i><sub>(4 + 1 – 4</sub>– 1<sub>) = </sub>
19


4<i>x</i><sub>(5 –</sub>

4


1

<sub>) = </sub>


19


4<i>x</i><sub>(</sub>

4


19



</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

4<i>x</i><sub> = 4</sub>


∴ <i> x</i> =1


<b>12.</b> 6<i>x </i>+ 2<sub> – 2(6</sub><i>x </i>+ 1<sub>) – 12(6</sub><i>x</i><sub>) </sub>


= 2


(62<sub>)6</sub><i>x</i><sub> – 2(6)6</sub><i>x</i><sub> – 12(6</sub><i>x</i><sub>) </sub>


= 2


6<i>x</i><sub>(36 – 12 – 12) </sub>


= 2


6<i>x</i><sub>(12) </sub>



= 2


6<i>x</i>


=


6


1



6<i>x</i>


= 6–1


∴ <i>x</i>


=1


<b>13.</b> 22<i>x</i><sub> – 3(2</sub><i>x</i><sub>) + 2 = 0</sub>


(2<i>x</i><sub>)</sub>2<sub> – 3(2</sub><i>x</i><sub>) + 2 = 0</sub>


Let <i>y</i> = 2<i>x</i><sub>, the equation</sub>


becomes


<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0


<i>y</i> = 1 or



<i>y</i> = 2


∴ 2<i>x</i><sub> = 1</sub> <sub>or 2</sub><i>x</i><sub> = </sub>


2


2<i>x</i><sub> = 2</sub>0 <sub>or 2</sub><i>x</i><sub> = </sub>


21


∴ <i>x</i> =0 or <i>x</i> =


1


<b>14.</b> 32<i>x</i><sub> – 12(3</sub><i>x</i><sub>) + 27 = 0</sub>


(3<i>x</i><sub>)</sub>2<sub> – 12(3</sub><i>x</i><sub>) + 27 = 0</sub>


Let <i>y</i> = 3<i>x</i><sub>, the equation</sub>


becomes


<i>y</i>2<sub> – 12</sub><i><sub>y</sub></i><sub> + 27 = 0</sub>
(<i>y</i> – 3)(<i>y</i> – 9) = 0


<i>y</i> = 3 or


<i>y</i> = 9



∴ 3<i>x</i><sub> = 3</sub> <sub>or 3</sub><i>x</i><sub> = </sub>


9


3<i>x</i><sub> = 3</sub>1 <sub>or 3</sub><i>x</i><sub> = </sub>


32


∴ <i>x</i> =1 or <i>x</i> =


2


<b>15.</b> 5(52<i>x</i><sub>) – 26(5</sub><i>x</i><sub>) + 5 = 0</sub>


5(5<i>x</i><sub>)</sub>2<sub> – 26(5</sub><i>x</i><sub>) + 5 = 0</sub>


Let <i>y</i> = 5<i>x</i><sub>, the equation</sub>


becomes
5<i>y</i>2<sub> – 26</sub><i><sub>y</sub></i><sub> + 5 = 0</sub>
(5<i>y</i> – 1)(<i>y</i> – 5) = 0


<i>y</i> =


5


1



or<i>y</i> = 5


∴ 5<i>x</i><sub> = </sub>


5


1



or 5<i>x</i><sub> = </sub>


5


5<i>x</i><sub> = 5</sub>–1 <sub>or 5</sub><i>x</i><sub> = </sub>


51


∴ <i>x</i> =1 <sub>or</sub>


<i>x</i> =1


<b>16.</b> 24<i>x</i><sub> – 20(2</sub>2<i>x</i><sub>) + 64 = 0</sub>


(22<i>x</i><sub>)</sub>2<sub> – 20(2</sub>2<i>x</i><sub>) + 64 = 0</sub>


Let <i>y</i> = 22<i>x</i><sub>, the </sub>


equation becomes


<i>y</i>2<sub> – 20</sub><i><sub>y</sub></i><sub> + 64 = 0</sub>
(<i>y</i> – 4)(<i>y</i> – 16) = 0


<i>y</i> = 4
or <i>y</i> =
16



∴ 22<i>x</i><sub> = 4</sub> <sub>or 2</sub>2<i>x</i><sub> =</sub>


16


22<i>x</i><sub> = 2</sub>2 <sub>or 2</sub>2<i>x</i><sub> =</sub>


24


∴ 2<i>x</i> = 2 or 2<i>x</i>


= 4


<i>x</i> =1 <sub>or</sub> <i><sub>x</sub></i>


=2


<b>17.</b>










1


25



125



5



2
2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
2
(


)
1
(








From (1),
5<i>x</i> + 2<i>y</i><sub> = 5</sub>3


∴ <i>x</i> + 2<i>y</i> = 3
From (2),



252<i>x</i> + <i>y</i><sub> = 25</sub>0


∴ 2<i>x</i> + <i>y</i> = 0


<i>y</i> = –2<i>x</i>


Consider the
simultaneous
equations:












<i>x</i>
<i>y</i>


<i>y</i>
<i>x</i>


2
3
2



)
4
(


)
3
(








By substituting (4) into
(3), we have


<i>x</i> + 2(–2<i>x</i>) = 3
–3<i>x</i> = 3


<i>x</i> = –1
By substituting <i>x</i> = –1
into (4), we have


<i>y</i> = –2(–1)
= 2


∴ The solution is <i>x</i> =
–1, <i>y</i> = 2.



<b>18.</b>










4


4



27


3



3<i>x</i> <i>y</i>
<i>y</i>
<i>x</i>


)
2
(


)
1
(









From (1),
3<i>x</i> + <i>y</i><sub> = 3</sub>3


∴ <i>x</i> + <i>y</i> = 3
From (2),


43<i>x</i> – <i>y</i><sub> = 4</sub>1


∴ 3<i>x</i> – <i>y</i> = 1
Consider the
simultaneous
equations:












1
3



3
<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
4
(


)
3
(








(3) + (4),


(<i>x</i> + <i>y</i>) + (3<i>x</i> – <i>y</i>) = 3 +
1


4<i>x</i> = 4
<i>x</i> = 1
By substituting <i>x</i> = 1


into (3), we have


1 + <i>y</i> = 3


<i>y</i> = 2


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

1, <i>y</i> = 2.
<b>19.</b>












3


9



729


3



2
2


<i>y</i>
<i>x</i>



<i>y</i>
<i>x</i>


)
2
(


)
1
(








From (1),
32<i>x</i> + <i>y</i><sub> = 3</sub>6


∴ 2<i>x</i> + <i>y</i> = 6
From (2),


(32<sub>)</sub><i>x</i> – 2<i>y</i><sub> = 3</sub>


32<i>x</i> – 4<i>y</i><sub> = 3</sub>1


∴ 2<i>x</i> – 4<i>y</i> = 1
Consider the


simultaneous
equations:












1
4
2


6
2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
4
(



)
3
(








(3) – (4),


(2<i>x</i> + <i>y</i>) – (2<i>x</i> – 4<i>y</i>) = 6
– 1


5<i>y</i> = 5


<i>y</i> = 1
By substituting <i>y</i> = 1
into (3), we have


2<i>x</i> + 1 = 6


<i>x</i> =


2


5



∴ The solution is <i>x</i> =



2


5

<sub>, </sub><i><sub>y</sub></i><sub> = 1.</sub>


<b>20.</b>











625


5



4


2

3 2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
2
(



)
1
(








From (1),
23<i>x</i> – 2<i>y</i><sub> = 2</sub>2


∴ 3<i>x</i> – 2<i>y</i> = 2
From (2),


5<i>x</i> + <i>y</i><sub> = 5</sub>4


∴ <i>x</i> + <i>y</i> = 4


<i>y</i> = 4 – <i>x</i>


Consider the
simultaneous
equations:













<i>x</i>
<i>y</i>


<i>y</i>
<i>x</i>


4
2
2
3


)
4
(


)
3
(









By substituting (4) into
(3), we have


3<i>x</i> – 2(4 – <i>x</i>) = 2
5<i>x</i> = 10


<i>x</i> = 2
By substituting <i>x</i> = 2
into (4), we have


<i>y</i> = 4 – 2 = 2


∴ The solution is <i>x</i> =
2, <i>y</i> = 2.


<b>Exercise 5C (p.226)</b>


<b>Level 1</b>



<b>1.</b> ∵ 1 000 000 =
106


∴ log 1 000 000 =


6


<b>2.</b> ∵ 625 = 54


∴ log5 625 =4



<b>3.</b> ∵


16


1



= 4–2


∴ log4









16


1



=


2




<b>4.</b> ∵


100


1



= 10–2



∴ log









100


1



=


2




<b>5.</b> ∵ 10<i>x</i><sub> = 120</sub>


∴ <i>x</i> = log 120
=2.08


(cor. to 3 sig. fig.)
<b>6.</b> ∵ 10<i>x</i><sub> = 88</sub>


∴ <i>x</i> = log 88
=1.94


(cor. to 3 sig. fig.)


<b>7.</b> log 200 – log 2 = log


2


200



= log
100


= log
102


= 2 log
10


=2


<b>8.</b> log 4 + log 25 = log(4


 25)


= log
100


= log
102


= 2 log
10


=2



<b>9.</b> log3








12


1



+ log3 108


= log3 (

12



1



 108)
=
log3 9


=
log3 32


=
2 log3 3


=



2


<b>10.</b>


3


2



3


log


3



3


log


2



3


log



3


log


27


log



9


log



3
2







<b>11.</b>


2


3



4


log


2



4


log


3



4


log



4


log


16


log



64


log



2
3







<b>12.</b>


4


5


log


2


1



5


log


2



5


log



5


log



5


log



5


1


log


5


log




25


1


log



2
2
2
1
2


2
2


2
1
2


2
2


2
2



























<b>13.</b> log 6 = log (2  3)


= log 2 + log 3
=<i>x</i><i>y</i>


<b>14.</b> log 18 = log


2
1
2

<sub>)</sub>



3



2


(



= log (

<sub>2</sub>

<sub>2</sub>1 


3)


= log <sub>2</sub>1


2

+


log 3


=


2


1

<sub>log 2+ </sub>


log 3


= <i>x</i><i>y</i>


2
1


<b>15.</b> Let log<i>a</i> 8 = <i>x</i>, log<i>b</i> 8 =
<i>y</i>.


Then <i>ax</i><sub> = 8 and </sub><i><sub>b</sub>y</i><sub> = 8.</sub>



∵ log<i>a</i> 8 log<i>b</i> 8 = 1


∴ <i>xy</i> = 1


<i>x</i> =


<i>y</i>
1


Let <i>a</i> = 2, then
2<i>x</i><sub> = 8</sub>


2<i>x</i><sub> = 2</sub>3
<i>x</i> = 3


∴ <i>y </i>=


3


1



∴ 3

<sub>8</sub>



1




<i>b</i>



<i>b</i> = 83
= 512



Let <i>a</i> =


2


1



, then




3
2
1
2


1
8
2
1


3






























<i>x</i>


<i>x</i>
<i>x</i>




3


1





<i>y</i>





512
1
8
8


3
3
1









<i>b</i>
<i>b</i>


∴ A possible
solution is <i>a</i> = 2, <i>b</i>


= 512
or<i> a</i> =


2



1



, <i>b</i> =


512


1



. (or any
other reasonable
answers)
<b>16.</b>


<i>b</i>
<i>a</i>
log
log


= 3
log <i>a</i> = 3 log <i>b</i>


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

∴ <i>a</i> = <i>b</i>3


∴ A possible
solution is <i>a</i> = 8, <i>b</i>


= 2 or <i>a</i> = 27, <i>b</i> =
3. (or any other
reasonable
answers)



<b>Level 2</b>



<b>17.</b> 3 log 5 + log








25


2



=


log 53<sub> + log</sub>

<sub></sub>








25


2



=


log












25



2


5

3


=
log 10


=


1


<b>18.</b> log(100 10)– log


)
10
10


( = log













10
10


10
100


= log 10
=1


<b>19.</b> log4 2 – log4 18 + 2 log4









2


3



= log4









18


2



+ log4
2


2
3









= log4





















2


2
3
9
1


= log4










4


9


9


1




= log4








4


1



= log4 4–1
= –log4 4
=1


<b>20.</b>


4


11



2


log


2



2


log


2


11



2



log


2



2


log


2


5


2


log


3



2


log


2



2


log


2


log


3



2


log



)


2


log(


2



log



4



log


32


log


8


log



2
5
2


2
1
5
3

















<b>21.</b>


5


1



2


log


5



2


log



2


log



2


log



32


log



2


log



5


.


0



4



log



10


2


5


log



5


.


0


log


4


log



10


log


2


log


5


log


5


.


0


log


4


log


2



1


2



log


2


5


log



5
2


2
2


2

































<b>22.</b>


2


1



10


log


2



1


10


log



1


100


log



10


log



25



.


0



25


log



100


125


8


log



25


.


0


log


25


log



100


log


125


log


8


log



25


.


0


log


5



log



10


log


2


5


log


8


log


25


.


0


log


5


log


2



2


5


log


3


8


log



2
2


3




































<b>23.</b>


5


2


10



4



log


)


4


6


(



log


4



log


4


log


6



log


4



log


4


)


log



2


(


3



log


4


log



4


log


3



log



2
4

















<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<b>24.</b>


1


5


5



log


)


3


8


(




log


5



log


3


log


8



log


)


3


2


(



log


3


)


log


2


(


4



log


3


log


2


log



3


log




4



log


log



2



3
3


3
3


3
3
3


3
3


3
2


3


3
3
3




















<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>




<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<b>25.</b>


6


log


3


1



log


2



log


3


1


log



log


log


log



log


log



2
3


1
4


4
3


3


4
4


3



















<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>




<i>x</i>


<i>xy</i>



<i>y</i>


<i>x</i>


<i>x</i>



<i>xy</i>


<i>y</i>



<i>x</i>



<b>26.</b>


6


log



log


)


12


6


(



log


log


12


log


6




log



)


log


4


(


3


)


log


3


(


2


log



log



log


3


log


2



2
2


4
3




























<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>xy</i>


<i>y</i>


<i>x</i>



<i>x</i>



<i>x</i>



<i>xy</i>


<i>y</i>



<i>x</i>



<i>x</i>


<i>x</i>



<b>27.</b> log 200 = log (4  5 


10)


= log 4 + log 5
+ log 10


=<i>x</i><i>y</i>1


<b>28.</b> log 320= log


2
1


320



=


2


1




log 320
=


2


1

<sub>log (4</sub>3


 5)


=


2


1



(log 43
+ log 5)


=


2


1

<sub>(3 log </sub>


4 + log 5)
=
)
3
(
2


1 <i><sub>x</sub></i> <i><sub>y</sub></i>





<b>Exercise 5D (p.229)</b>


<b>Level 1</b>



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

log 2<i>x</i><sub> = log 10</sub>
<i>x </i>log 2 = 1


<i>x</i> =


2
log


1


=3.32 (cor.
to 3 sig. fig.)


<b>2.</b> 32<i>x</i> – 1<sub> = 6</sub>
log 32<i>x</i> – 1<sub> = log 6</sub>
(2<i>x</i> – 1) log 3 = log 6


2<i>x</i> – 1 =


3
log


6
log



2<i>x</i> =


3
log


6
log


+ 1


<i>x </i>=


2
1
3
log


6
log















=1.32


(cor. to 3 sig. fig.)
<b>3.</b> 41 – 3<i>x</i><sub> = 5</sub>


log 41 – 3<i>x</i><sub> = log 5</sub>


(1 – 3<i>x</i>) log 4 = log 5
1 – 3<i>x</i> =


4
log


5
log


3<i>x</i> = 1 –


4
log


5
log


<i>x </i>=


3
4


log


5
log


1 <sub></sub>












=


0537
.
0


 <sub> (cor. to 3 </sub>


sig. fig.)


<b>4.</b> 2(3<i>x</i> + 2<sub>) = 5</sub>
log [2(3<i>x</i> + 2<sub>)] = log</sub>
5



log 2 + log 3<i>x</i> + 2<sub> = log</sub>
5


(<i>x</i> + 2) log 3 = log
5 – log 2


<i>x</i> + 2 =


3
log


2
log
5
log 


<i>x </i>=


3
log


2
log
5
log 


– 2
=


17


.
1


 <sub> (cor. to 3 sig. </sub>


fig.)


<b>5.</b> 9<i>x</i> + 1<sub> = 8</sub><i>x</i>


log 9<i>x</i> + 1<sub> = log </sub>
8<i>x</i>


(<i>x</i> + 1) log 9 = <i>x</i> log
8


<i>x</i> log 9 + log 9 = <i>x</i>


log 8


(log 8 – log 9)<i> x</i> = log
9


<i>x </i>=


9
log
8
log


9


log




=


7
.
18


 <sub> (cor. to 3 sig. </sub>


fig.)


<b>6.</b> 42<i>x</i><sub> = </sub>


63<i>x</i> – 1


log 42<i>x</i><sub> = </sub>


log 63<i>x</i> – 1


2<i>x</i> log 4 =
(3<i>x</i> – 1) log 6


2<i>x</i> log 4 =
3<i>x</i> log 6 – log 6


(3 log 6 – 2 log 4) <i>x</i> =
log 6



<i>x </i>=


4
log
2
6
log
3


6
log




=


688
.


0 <sub> (cor. to 3 sig. </sub>


fig.)


<b>7.</b> log (6<i>x</i> – 4) = 2
log (6<i>x</i> – 4) = log 100


6<i>x</i> – 4 = 100
6<i>x</i> = 104



<i>x</i> = 3
1
17


<b>8.</b> log3 (4<i>x</i> – 1) = 3
log3 (4<i>x</i> – 1) = 3 log3 3
log3 (4<i>x</i> – 1) = log3 33


4<i>x</i> – 1 = 27
4<i>x</i> = 28


<i>x</i> =7


<b>9.</b> log (3<i>x</i> – 2) = 0
log (3<i>x</i> – 2) = log 1


3<i>x</i> – 2 = 1
3<i>x</i> = 3


<i>x</i> =1


<b>10.</b> log2 (3<i>x</i> + 1) = 4
log2 (3<i>x</i> + 1) = 4 log2 2
log2 (3<i>x</i> + 1) = log2 24


3<i>x</i> + 1 = 16
3<i>x</i> = 15


<i>x</i> =5



<b>Level 2</b>



<b>11.</b> log (8<i>x</i> – 2) – log 3 = 1
log (8<i>x</i> – 2) =
log 10 + log 3


log (8<i>x</i> – 2) =
log (10  3)


8<i>x</i> – 2 =
30


8<i>x</i> =
32


<i>x</i> =


4


<b>12.</b> log (2<i>x</i> – 3) + log 2 = –
1


log [(2<i>x</i> – 3)  2] =
–log 10


log (4<i>x</i> – 6) =
log 10–1


4<i>x</i> – 6 =
10–1



4<i>x</i> =


10


1



+ 6


4<i>x</i> =


10


61



<i>x</i> =
40


61


<b>13.</b> log4 (<i>x</i> + 3) + log4 (<i>x</i> –
3) = 2


log4 [(<i>x</i> + 3)(<i>x</i> –
3)] = 2log4 4


log4 (<i>x</i>2 –
9) = log4 42


<i>x</i>2<sub> –</sub>
9 = 16



<i>x</i>2<sub> = 25</sub>
<i>x</i> = 5
or


<i>x</i> = –5 (rejected)


∴ <i>x</i> =5


<b>14.</b> log3 (4<i>x</i> + 9) – log3 (3<i>x</i>
– 2) = 1


log3












2


3



9


4



<i>x</i>



<i>x</i>



= log3 3


2


3



9


4





<i>x</i>


<i>x</i>



= 3
4<i>x</i> + 9 = 9<i>x</i> – 6
5<i>x</i> = 15


<i>x</i> =3


<b>15.</b> log (<i>x</i> – 1) + log (2<i>x</i> –
1) = 1


log [(<i>x</i> – 1)(2<i>x</i> –
1)] = log 10


log (2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> + </sub>
1) = log 10



2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> +</sub>
1 = 10


2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> –</sub>
9 = 0


(<i>x</i> – 3)(2<i>x</i> +
3) = 0


<i>x</i> = 3
or


<i>x</i> =


2


3



</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

∴ <i>x</i> =3


<b>16.</b> Let <i>y</i> = log2 (2<i>x</i> – 1),
then the equation


[log2 (2<i>x</i> – 1)]2 – 3 log2
(2<i>x</i> – 1) + 2 = 0 becomes


<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0


<i>y</i> = 1 or



<i>y</i> = 2
For <i>y</i> = 1, log2 (2<i>x</i> – 1)
= 1


2<i>x</i> – 1
= 2


<i>x</i>


=


2


3



For <i>y</i> = 2, log2 (2<i>x</i> – 1)
= 2


2<i>x</i> – 1
= 4


<i>x</i>


=


2


5



∴ <i>x</i><sub> = 2</sub>3 <sub> or 2</sub>5


<b>17.</b> Let <i>y</i> = log (<i>x</i> + 1),


then the equation


[log (<i>x</i> + 1)]2<sub> – log (</sub><i><sub>x</sub></i><sub> +</sub>
1) – 12 = 0 becomes


<i>y</i>2<sub> – </sub><i><sub>y</sub></i><sub> – 12 = 0</sub>
(<i>y</i> + 3)(<i>y</i> – 4) = 0


<i>y</i> = –3 or


<i>y</i> = 4
For <i>y</i> = –3, log (<i>x</i> + 1)
= –3


<i>x</i> + 1
=


1000


1



<i>x</i>


=


1000


999




For <i>y</i> = 4, log (<i>x</i> + 1) =
4



<i>x</i> + 1 =
10 000


<i>x</i> =
9999


∴ <i>x</i> = <sub>1000</sub>999 or


9999


<b>18.</b> Let <i>y</i> = log (<i>x</i> – 1),
then the equation


[log (<i>x</i> – 1)]2<sub> – 3 log (</sub><i><sub>x</sub></i>
– 1) + 2 = 0 becomes


<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0


<i>y</i> = 1 or


<i>y</i> = 2
For <i>y</i> = 1, log (<i>x</i> – 1) =
1


<i>x</i> – 1 =


10



<i>x</i> =
11


For <i>y</i> = 2, log (<i>x</i> – 1) =
2


<i>x</i> – 1 =
100


<i>x</i> =
101


∴ <i>x</i> =11 or 101


<b>19.</b>












1
log
log



32
2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
2
(


)
1
(








From (2),


log <i>x</i> = log <i>y</i> + log 10
log <i>x</i> = log 10<i>y</i>


<i>x</i> = 10<i>y</i>



……(3)


By substituting (3) into
(1), we have


10<i>y</i> – 2<i>y</i> = 32
8<i>y</i> = 32


<i>y</i> = 4
By substituting <i>y</i> = 4
into (3), we have


<i>x</i> = 10(4) = 40


∴ The solution is <i>x</i> =
40, <i>y</i> = 4.


<b>20.</b>











1
log


log


1
<i>x</i>
<i>y</i>


<i>y</i>
<i>x</i>


)
2
(


)
1
(








From (2),


log <i>y</i> = log <i>x</i> – log 10
log <i>x</i> = log <i>y</i> + log 10
log <i>x</i> = log 10<i>y</i>


<i>x</i> = 10<i>y</i>



……(3)


By substituting (3) into
(1), we have


10<i>y</i> – <i>y</i> = 1
9<i>y</i> = 1


<i>y</i> =


9


1



By substituting <i>y</i> =


9


1



into (3), we have


<i>x</i> = 10(


9


1



) =


9


10




∴ The solution is <i>x</i> =


9


10



, <i>y</i> =


9


1



.


<b>Exercise 5E (p.236)</b>


<b>Level 1</b>



<b>1.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities in
restaurants <i>A</i> and <i>B</i>


respectively.
By the definition of
sound intensity level, we
have


60 = 10 log












0
1


<i>I</i>


<i>I</i>



and 75 = 10 log











0
2


<i>I</i>


<i>I</i>



∴ 75 – 60 = 10 log












0
2


<i>I</i>


<i>I</i>



– 10 log

<sub></sub>









0
1


<i>I</i>


<i>I</i>


15 = 10






























0


1
0


2

<sub>log</sub>



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



2


3



= log











1
2



<i>I</i>


<i>I</i>



1
2


<i>I</i>


<i>I</i>



= 2
3


10


= 31.6
(cor. to 3 sig. fig.)


∴ The sound
intensity in
restaurant <i>B</i> is
31.6 times to that
in restaurant <i>A</i>.
<b>2.</b> Let <i>I</i>1 and <i>I</i>2 be the


sound intensities after
the party and during
the party respectively.
By the definition of
sound intensity level, we
have



35 = 10 log











0
1


<i>I</i>


<i>I</i>



and 67 = 10 log











0
2



<i>I</i>


<i>I</i>



∴ 35 – 67 = 10 log











0
1


<i>I</i>


<i>I</i>



– 10 log

<sub></sub>









0


2


<i>I</i>


<i>I</i>


–32 = 10































0
2
0


1

<sub>log</sub>



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



5


16



=


log

<sub></sub>










2
1


<i>I</i>


<i>I</i>



2
1


<i>I</i>


<i>I</i>



=


5
16


10



= 0.000
631 (cor. to 3 sig. fig.)


∴ The sound
intensity after the
party is 0.000 631
times to that
during the party.
<b>3.</b> Let <i>I</i>1 and <i>I</i>2 be the



sound intensities
before adjustment and
after adjustment
respectively.
Then the sound
intensity levels before
and after adjustment
are 10 log

<sub></sub>










0
1


<i>I</i>


<i>I</i>



dB


and 10 log

<sub></sub>










0
2


<i>I</i>


<i>I</i>



dB
respectively.


∵ The sound
intensity level
increases by 5 dB
after the


adjustment.


∴ 5 = 10 log











0


2


<i>I</i>


<i>I</i>



– 10 log











0
1


<i>I</i>


<i>I</i>



5 = 10































0
1
0


2

<sub>log</sub>



log




<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



2


1

<sub> = log</sub>











1
2


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

1
2


<i>I</i>


<i>I</i>



= 2
1



10


= 3.16 (cor. to
3 sig. fig.)


∴ The sound
intensity after
adjustment is 3.16
times to that
before adjustment.
<b>4.</b> Let <i>E</i>1 and <i>E</i>2 be the


relative energies
released by the
earthquakes measured
8 and 2 respectively.
By the definition of the
Richter scale, we have


8 = log <i>E</i>1 and
2 = log <i>E</i>2
i.e. <i>E</i>1 = 108 and


<i>E</i>2 = 102


∴ <sub>2</sub>


8


2
1



10


10





<i>E</i>


<i>E</i>



= 106


∴ The strength of an
earthquake
measured 8 is 106
times to that
measured 2.
<b>5.</b> Let <i>E</i>1 and <i>E</i>2 be the


relative energies
released by the
earthquakes in the
Philippines and
Indonesia
respectively.
By the definition of the
Richter scale, we have:


For Philippines,
For
Indonesia,



7.3 = log <i>E</i>1
6.0 = log <i>E</i>2


<i>E</i>1 = 107.3
<i>E</i>2 = 106.0


∴ <sub>6</sub><sub>.</sub><sub>0</sub>


3
.
7


2
1


10


10





<i>E</i>


<i>E</i>



= 101.3
= 20.0 (cor. to
3 sig. fig.)


∴ The strength of the
earthquake in the


Philippines is 20.0
times to that in
Indonesia.


<b>Level 2</b>



<b>6.</b> Let <i>I</i> be the sound
intensity of the


gathering when the
master of ceremony
does not speak, then
the sound intensity is
2<i>I</i> when the master of
ceremony speaks.


∵ The sound
intensity level in
the gathering is 30
dB.


∴ 30 = 10 log












0


<i>I</i>


<i>I</i>



Let  dB be the sound
intensity level when
the master of ceremony
speaks.


∴  = 10 log











0


2


<i>I</i>


<i>I</i>



– 30 = 10 log












0


2


<i>I</i>


<i>I</i>



– 10 log











0


<i>I</i>



<i>I</i>



– 30 = 10































0
0


log


2



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



– 30 = 10 log 2
= 30 + 10 log 2


= 33.0 (cor. to 3
sig. fig.)


∴ The sound
intensity level is
33.0 dB when the
master of
ceremony speaks.
<b>7.</b> Let <i>I</i> be the original


sound intensity of the


Hi-Fi, then the sound
intensity is 0.6<i>I</i> after
adjustment.


∵ The original sound
intensity level is
90 dB.


∴ 90 = 10 log











0


<i>I</i>


<i>I</i>



Let  dB be the sound
intensity level of the
Hi-Fi after adjustment.


∴  = 10 log











0


6


.


0



<i>I</i>


<i>I</i>



– 90 = 10 log











0



6


.


0



<i>I</i>


<i>I</i>



– 10 log











0


<i>I</i>


<i>I</i>



– 90 = 10































0
0


log


6



.



0


log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



– 90 = 10 log 0.6


= 90 + 10 log
0.6


= 87.8 (cor. to 3
sig. fig.)


∴ The sound
intensity level of
the Hi-Fi is 87.8
dB after
adjustment.
<b>8.</b> Let <i>I</i> be the original


sound intensity of the
noise, then the sound
intensity is 1.1<i>I</i> after
adjustment.


The sound intensity


levels before and after
adjustment are 10 log











0


<i>I</i>


<i>I</i>



dB and 10 log











0



1


.


1



<i>I</i>


<i>I</i>



dB
respectively.


∴ 10 log

<sub></sub>









0


1


.


1



<i>I</i>


<i>I</i>



– 10 log

<sub></sub>










0


<i>I</i>


<i>I</i>



= 10































0
0


log


1



.


1


log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



= 10 log 1.1
= 0.414 (cor. to 3
sig. fig.)



∴ The increase in the
sound intensity
level is 0.414 dB.
<b>9.</b> Let <i>E</i> be the relative


energy released by an
earthquake measured
5.8.


By the definition of the
Richter scale, we have


5.8 = log <i>E</i>
<i>E</i> = 105.8


∴ The relative
energy released by


an earthquake that
is 20 times to that
measured 5.8
= 20  105.8


∴ The magnitude of
the earthquake on
the Richter scale
= log (20  105.8)


=7.10 (cor. to
3 sig. fig.)


<b>10.</b> Let <i>E</i> be the relative


energy released by an
earthquake measured
7.2.


By the definition of the
Richter scale, we have


7.2 = log <i>E</i>
<i>E</i> = 107.2


∴ The relative
energy released by
an earthquake that
is


8


1



times to
that measured 7.2
=


8


1



 107.2


∴ The magnitude of


the earthquake on
the Richter scale
= log (


8


1





107.2<sub>)</sub>


=6.30 (cor. to
3 sig. fig.)


<b>Revision Exercise 5 </b>


<b>(p.244)</b>



<b>Level 1</b>


<b>1.</b> <b>(a)</b>


5
7


7
5
1
7


5

<sub>)</sub>

<sub>(</sub>

<sub>)</sub>




(



<i>x</i>


<i>x</i>


<i>x</i>



</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b> (b)</b>


3
4
3
4


3
1
4


3 4


1


)


(



1


1










<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<b>2.</b> <b>(a)</b>


36
25
25
36
5
6
5
6
125
216
125


216


1
1
2


1
3
2


3


1
3
2
3


2



























































































<b>(b)</b>


3
7
7
3


7
3
343


27
343


27


1
1
3
1
3


1
3
1


3


1














































































<b>3.</b> <b>(a)</b>


<i>b</i>


<i>c</i>


<i>a</i>



<i>c</i>


<i>b</i>


<i>a</i>



<i>c</i>


<i>b</i>



<i>a</i>


<i>c</i>



<i>b</i>


<i>a</i>



4
3
2


4
1
3
2


3
1
12
3
2


3 2 3 12

<sub>(</sub>

<sub>)</sub>












<b>(b)</b>


6
7
6
7
2
3
3
1
2
3
3
1


2
1
3


6
1
2
3


6 2


1


)


(




)


(



<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>












<b>(c)</b>


3
50
3
50
3


4
18


3
4
18


3
1
4
3
15


3 4


3
3
5


1



)


(


)



(



<i>x</i>


<i>x</i>


<i>x</i>




<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>






















<b> (d)</b>


<i>a</i>
<i>a</i>


<i>b</i>
<i>a</i>


<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>


<i>ab</i>
<i>b</i>


<i>a</i>


<i>ab</i>
<i>b</i>


<i>a</i>
<i>b</i>
<i>a</i>
<i>ab</i>
<i>ab</i>


<i>b</i>
<i>a</i>



1


)
(


]
)
[(
)


(
)
(


1


2
1
2
1
2
1
2
1


2
1
2
1
2


1
2
1


2
1
2


1
1
1
2
1


2
4
1
1


2
1
1
2
1
2
4
1
2
1
2



1




































<b>4.</b> <b>(a)</b>


3
4


3
1
4
3


2


)


2


(



16


2







<i>x</i>



∴ <i>x</i><sub> = 3</sub>4


<b>(b)</b>


6
6
2
1
2


6
2
1
2


2


2



2


)


2


(



2


]


)


2


[(



64



4








<i>x</i>
<i>x</i>
<i>x</i>


<i>x</i>


∴ <i>x</i> =6


<b>(c)</b> 5<i>x</i> + 1<sub> – 2(5</sub><i>x</i><sub>) =</sub>

5


3



5(5<i>x</i><sub>) – 2(5</sub><i>x</i><sub>) =</sub>

5


3



3(5<i>x</i><sub>) =</sub>

5


3



5<i>x</i><sub> =</sub>

5


1




5<i>x</i><sub> = 5</sub>–1
<i>x</i> =


1




<b>(d)</b> 2<i>x</i> + 2<sub> – 2</sub><i>x</i><sub> = 24</sub>


22<sub>(2</sub><i>x</i><sub>) – 2</sub><i>x</i><sub> = 24</sub>


(22<sub> – 1)2</sub><i>x</i><sub> = 24</sub>


3  2<i>x</i> = 24


2<i>x</i><sub> = 8</sub>


2<i>x</i><sub> = 2</sub>3
<i>x</i> =3


<b>5.</b> <b>(a)</b> ∵


000
10


1


= 10–4



∴ log












000
10


1


=4


<b>(b)</b> ∵ 0.000 000
1 = 10–7


∴ log 0.000 000
1 =7


<b>(c)</b> ∵ 64 = 82


∴ log8 64 =2
<b>(d)</b> ∵



2
1

5


5



1







2
1
5


1
log5 <sub></sub>









<b>6.</b> <b>(a)</b> ∵ 10<i>x</i><sub> = 45</sub>


∴ <i>x</i> = log 45
=



65
.


1 (cor. to 3 sig.
fig.)


<b>(b)</b> ∵ 102<i>x</i><sub> = 20</sub>


∴ 2<i>x</i> = log
20


<i>x</i> =


651
.


0 (cor. to 3 sig.
fig.)


<b>7.</b> <b>(a)</b> log 400 – log 8 +
log 2 = log


8


400



+
log 2


= log 50 + log 2
= log (50  2)



= log 100


=2


<b>(b)</b> log 125 + log 80 =
log (125  80)


=
log 10 000


=
log 104


=


4


<b>(c)</b> log6 108 + log6 2 =
log6 (108  2)


=
log6 216


=
log6 63


=


3



<b>(d)</b> log9 9 + log9









81


1



= log9











81



1


9



= log9









9


1



= log9 9–1
=1


<b>(e)</b>


2
4
log
2


4
log
4


4
log


4
log
16



log
256
log


2
4


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>(f)</b>


8


2


1


4



5


log


2


1



5


log


4



5


log



5


log


5


log




625


log



2
1
4







<b>8.</b> <b>(a)</b> 5<i>x</i><sub> = 10</sub>


log 5<i>x</i><sub> = log 10</sub>
<i>x </i>log 5 = 1


<i>x</i> =


5
log


1


=1.43


(cor. to 3 sig. fig.)
<b>(b)</b> 2<i>x</i> – 1<sub> = 6</sub>



log 2<i>x</i> – 1<sub> = log </sub>
6


(<i>x </i>– 1) log 2 = log
6


<i>x</i> – 1 =


2
log


6
log


<i>x</i> =


2
log


6
log


+ 1


=


58
.


3 <sub> (cor. to 3 sig. fig.)</sub>



<b>(c)</b> 32<i>x</i> + 3<sub> = 33</sub>
log 32<i>x</i> + 3<sub> = </sub>
log 33


(2<i>x </i>+ 3) log 3 =
log 33


2<i>x</i> + 3 =


3
log


33
log


2<i>x</i> =


3
log


33
log


– 3


<i>x</i> =


0913
.



0 <sub> (cor. to 3 sig. </sub>


fig.)


<b>(d)</b> log (3<i>x</i> + 1) = 2
log (3<i>x</i> + 1) = log
100


3<i>x</i> + 1 = 100
3<i>x</i> = 99


<i>x</i> =


33


<b>(e)</b> log








1


2


<i>x</i>



= –
1



log









1


2


<i>x</i>



=


log








10


1



2


<i>x</i>

<sub>– 1 =</sub>


10


1




2


<i>x</i>

<sub>= </sub>


1.1


<i>x</i> =


2
.
2


<b>(f)</b> log2 (6<i>x</i> – 4) = 5
log2 (6<i>x</i> – 4) = log2
25


6<i>x</i> – 4 = 32
6<i>x</i> = 36


<i>x</i> =6


<b>9.</b> <b>(a)</b> log 144 = log (24


 32<sub>)</sub>


= log 24<sub> + </sub>
log 32


= 4 log 2 +
2 log 3



=


<i>y</i>


<i>x</i> 2


4 


<b>(b)</b> log 288 = log


2
1


288



=


2


1



log (25<sub></sub><sub> 3</sub>2<sub>)</sub>
=


2


1



(log 25<sub> + log 3</sub>2<sub>)</sub>
=


2



1

<sub>[5</sub>


log 2 + 2 log 3]
=
)
2
5
(
2


1 <i><sub>x</sub></i> <i><sub>y</sub></i>




<b>10.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities of
groups <i>A</i> and <i>B</i>


respectively.
By the definition of
sound intensity level, we
have


45 = 10 log












0
1


<i>I</i>


<i>I</i>



and 53 = 10 log











0
2


<i>I</i>


<i>I</i>



∴ 53 – 45 = 10 log












0
2


<i>I</i>


<i>I</i>



– 10 log

<sub></sub>









0
1


<i>I</i>


<i>I</i>


8 = 10































0
1
0



2

<sub>log</sub>



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



5


4



= log











1
2


<i>I</i>


<i>I</i>




1
2


<i>I</i>


<i>I</i>



= 5
4


10


= 6.31
(cor. to 3 sig. fig.)


∴ The sound
intensity of group


<i>B</i> is 6.31 times to
that of group <i>A</i>.
<b>11.</b> Let <i>I</i>1 and <i>I</i>2 be the


sound intensities of the
cassette player before
and after adjustment.


∵ The sound
intensity level
increases by 8 dB.


∴ 10 log

<sub></sub>










0
2


<i>I</i>


<i>I</i>





10 log

<sub></sub>









0
1


<i>I</i>


<i>I</i>



= 8


10































0
1
0


2

<sub>log</sub>



log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



= 8


log

<sub></sub>









1
2


<i>I</i>


<i>I</i>




=


5


4



1
2


<i>I</i>


<i>I</i>



= 5
4


10



<i>I</i>2 = 5
4


10

<i>I</i>1


∴ The percentage
increase of the
sound intensity:
=


%


100


1



1


2

<sub></sub>



<i>I</i>


<i>I</i>


<i>I</i>


=


%


100


10



1
1
1
5
4




<i>I</i>



<i>I</i>


<i>I</i>



= 531% (cor.
to 3 sig. fig.)
<b>12.</b> Let <i>E</i>1 and <i>E</i>2 be the



relative energies
released by the
earthquakes measured
7.5 and 6.5


respectively.


By the definition of the
Richter scale, we have


7.5 = log <i>E</i>1 and
6.5 = log <i>E</i>2
i.e. <i>E</i>1 = 107.5 and


<i>E</i>2 = 106.5


∴ 6.5


5
.
7


2
1


10


10






<i>E</i>


<i>E</i>



= 10


∴ The strength of an
earthquake
measured 7.5 is 10
times to that
measured 6.5.
<b>13.</b> Let <i>E</i>1 and <i>E</i>2 be the


relative energies
released by the
earthquakes in
Indonesia and Pakistan
respectively.


By the definition of the
Richter scale, we have:


For Indonesia,
For Pakistan,


7.5 = log <i>E</i>1
4.6 = log <i>E</i>2


<i>E</i>1 = 107.5
<i>E</i>2 = 104.6



∴ <sub>4</sub><sub>.</sub><sub>6</sub>


5
.
7


2
1


10


10





<i>E</i>


<i>E</i>



= 102.9
= 794 (cor. to
3 sig. fig.)


∴ The strength of the
earthquake in
Indonesia is 794
times to that in
Pakistan.
<b>14. (a)</b> log (4<i>x</i> – 2) – log


2<i>x</i> = <i>y</i>



</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>










<i>x</i>


<i>x</i>



2


2


4



= <i>y</i>


<i>x</i>



<i>x</i>

1



2



= 10<i>y</i>


2<i>x</i> –
1 = <i>x</i>10<i>y</i>


<i>x</i> (2 –


10<i>y</i><sub>) =</sub><sub>1</sub>


<i>x</i> =<sub>2</sub> <sub>10</sub><i>y</i>
1




<b>(b)</b> When <i>y</i> = 0, <i>x</i> =


0

10


2



1



=

2

1



1


= 1
When <i>y</i> = 1,<i> x</i> =


1

10


2



1



=

8



1





∴ A possible
solution is <i>x</i> =
1, <i>y</i> = 0 or <i>x</i> =


8


1


,


<i>y</i> = 1. (or any
other
reasonable
answers)

<b>Level 2</b>



<b>15. (a)</b>


6
1
6
1


3
1
6
1


3
1



3
1
2
1


3
1


3
1
2
4
1
3
1
3


2
4


1


)


(


)



(



<i>a</i>


<i>a</i>




<i>a</i>


<i>a</i>



<i>a</i>


<i>a</i>


<i>a</i>



<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>


<i>a</i>

























<b>(b)</b>


2
1
2
1


10
1
5
3


5
2
2
1
5
3


5
1
2


6


1
3
5
3


5 2


6 3


5
3


1



)


(



)


(



<i>p</i>


<i>p</i>



<i>p</i>


<i>p</i>



<i>p</i>


<i>p</i>


<i>p</i>




<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>


<i>p</i>






















<b>16. (a)</b>


4
7


3
1


)
2
1
(
4
5
3
2
1


2
1
3
2
4
5


2
1
3
2
2
1
4
3
4
3


4
1


2
1
3
2
4
3
2
1
4
3
4
1


2
1
3
2
4
3
2
1
4
1
3


2
1


3
2


4
3


4 3


)


(



<i>y</i>


<i>x</i>



<i>y</i>


<i>x</i>



<i>y</i>


<i>x</i>


<i>xy</i>



<i>y</i>


<i>x</i>


<i>y</i>


<i>x</i>



<i>y</i>


<i>x</i>


<i>x</i>


<i>y</i>



<i>y</i>


<i>x</i>



<i>y</i>


<i>x</i>


<i>x</i>


<i>y</i>


<i>xy</i>



<i>y</i>


<i>x</i>


<i>x</i>



<i>y</i>


<i>xy</i>









































<b>(b)</b>


12
19
6
7



2
1
12
13
2
1
3
5


2
1
2
1
12
13
3
5


2
1
2
1
)
3
1
(
4
3
)
3


2
(
1


2
1
2
1
3
1
3
2
4
3


2
1
2
1
1
3
1
3
2
4
3


2
1
2


1
1
3
1
2
4
3


2
1
1


3 2


4
3


)


(



]


)


[(



)


(



<i>b</i>


<i>a</i>




<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>


<i>b</i>



<i>a</i>



<i>b</i>


<i>a</i>


<i>b</i>


<i>a</i>


<i>ab</i>



<i>b</i>


<i>a</i>


<i>b</i>



<i>a</i>


<i>ab</i>



<i>b</i>


<i>a</i>


<i>b</i>




<i>a</i>


<i>ab</i>



<i>b</i>


<i>a</i>


<i>b</i>



<i>a</i>


<i>ab</i>






























































<b>17. (a)</b> 5<i>x </i>+ 1<sub> + 5</sub><i>x</i><sub> – 5</sub><i>x</i> – 1
= 29


(5)5<i>x</i><sub> + 5</sub><i>x</i><sub> – (5</sub>– 1<sub>)5</sub><i>x</i>


= 29


5<i>x</i><sub>(5 + 1 – 5</sub>– 1<sub>)</sub>
= 29


5<i>x</i><sub>(6 –</sub>

5



1



) = 29


5<i>x</i><sub>(</sub>

5



29




) = 29


5<i>x</i><sub> = 5</sub>




<i>x</i> =1


<b>(b)</b> 3<i>x </i>+ 3<sub> – 2(3</sub><i>x </i>+ 2<sub>) + </sub>
3<i>x</i><sub> = 30</sub>


(33<sub>)3</sub><i>x</i><sub> – 2(3</sub>2<sub>)3</sub><i>x</i><sub> + </sub>


3<i>x</i><sub> = 30</sub>


3<i>x</i><sub>(27 – 18 + </sub>


1) = 30
3<i>x</i><sub>(10) = 30</sub>


3<i>x</i><sub> = 3</sub>




<i>x</i> =1


<b>(c)</b> 22<i>x</i><sub> – 5(2</sub><i>x</i><sub>) + 4 = </sub>


0



(2<i>x</i><sub>)</sub>2<sub> – 5(2</sub><i>x</i><sub>) + 4 = </sub>


0


Let <i>y</i> = 2<i>x</i><sub>, the </sub>


equation becomes


<i>y</i>2<sub> – 5</sub><i><sub>y</sub></i><sub> + 4 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 4) = 0


<i>y</i> = 1


or<i>y</i> =
4


∴ 2<i>x</i><sub> = 1</sub> <sub>or</sub>


2<i>x</i><sub> = 4</sub>


2<i>x</i><sub> = 2</sub>0 <sub>or</sub>
2<i>x</i><sub> = 2</sub>2


∴ <i>x</i> =0 or


<i>x</i> =2


<b>(d)</b> 42<i>x</i><sub> – 10(4</sub><i>x</i><sub>) + 16 </sub>


= 0



(4<i>x</i><sub>)</sub>2<sub> – 10(4</sub><i>x</i><sub>) + 16 </sub>


= 0


Let <i>y</i> = 4<i>x</i><sub>, the </sub>


equation becomes


<i>y</i>2<sub> – 10</sub><i><sub>y</sub></i><sub> + 16 = 0</sub>
(<i>y</i> – 2)(<i>y</i> – 8) = 0


<i>y</i> = 2
or<i>y</i> =
8


∴ 4<i>x</i><sub> = 2</sub> <sub>or</sub>


4<i>x</i><sub> = 8</sub>


22<i>x</i><sub> = 2</sub>1 <sub>or</sub>
22<i>x</i><sub> = 2</sub>3


2<i>x</i> = 1 or
2<i>x</i> = 3


∴ <i>x</i><sub> = 2</sub>1 or


<i>x</i><sub> = 2</sub>3



<b>18. (a)</b>










1


16



64


4



2
2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
2
(


)


1
(








From (1),
4<i>x</i> + 2<i>y</i><sub> = 4</sub>3


∴ <i>x</i> + 2<i>y</i> = 3
From (2),


162<i>x</i> – <i>y</i><sub> = 16</sub>0


∴ 2<i>x</i> – <i>y</i> = 0


<i>y</i> = 2<i>x</i>


Consider the
simultaneous
equations:











<i>x</i>
<i>y</i>


<i>y</i>
<i>x</i>


2
3
2


)
4
(


)
3
(








By substituting (4)
into (3), we have



<i>x</i> + 2(2<i>x</i>) = 3
5<i>x</i> = 3


<i>x</i> =


5


3



</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

=


5


3



into (4), we have


<i>y</i> = 2(


5


3



)
=


5


6



∴ The solution
is <i>x</i> =


5



3



, <i>y</i> =


5


6



.


<b>(b)</b>













9


9



9


3



3



2


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>


)
2
(


)
1
(








From (1),
3<i>x</i> + <i>y</i><sub> = (3</sub>2<sub>)</sub>2<i>x</i> – <i>y</i>


3<i>x</i> + <i>y</i><sub> = 3</sub>4<i>x</i> – 2<i>y</i>


∴ <i>x</i> + <i>y</i> = 4<i>x</i> –


2<i>y</i>


<i>y</i> = <i>x</i>


From (2),
93<i>x</i> + <i>y</i><sub> = 9</sub>1


∴ 3<i>x</i> + <i>y</i> = 1
Consider the
simultaneous
equations:










1
3<i>x</i> <i>y</i>


<i>x</i>
<i>y</i>


)
4
(



)
3
(








By substituting (3)
into (4), we have


3<i>x</i> + <i>x</i> = 1
4<i>x</i> = 1


<i>x</i> =


4


1



By substituting <i>x</i>


=


4


1



into (3), we
have <i>y</i> =



4


1



∴ The solution
is <i>x</i> =


4


1

<sub>, </sub><i><sub>y</sub></i><sub> =</sub>


4


1

<sub>.</sub>


<b>19. (a)</b>


2


1



log 625 –
log 4 = log 2


1


625

 –
log 4


<b>= log</b>


625
1



– log 4


<b>= log</b>


4


25



1



<b>= log</b>


100


1



= log 10–2
=2


<b>(b)</b>


7


1



2


log


7



2


log




2


log



2


log



128


log



2


1


log



128


log



64


32


log


128



log



64


log


32


log



7
1















<b>(c)</b>


1


9


log



9


log



9


log



9


log



9


log




9


1


log



9


log



243


27


log



9


log



243


log


3


log


9



log



243


log


3


log


3



1


3


















<b>(d)</b>


2


2


log


2



2


log


4



2



log



2


log


4



4


log



2


log


4



9


36


log



2


log


)


2


6


(



9


log


36


log



2



log


2


)


2


log


4


(


5


.


1



3


log


36


log



2


log


2


2


log


5


.


1


3


log


2


36


log




2


log


2


16


log


5


.


1



2


2
4






















<b>20. (a)</b>


4


log



log


4



log


)


log(



log


log


log



log


log



2
2
2
4
2
2
8
4


2


8
4








<i>ab</i>


<i>ab</i>


<i>ab</i>


<i>ab</i>


<i>ab</i>


<i>b</i>


<i>a</i>


<i>ab</i>



<i>b</i>


<i>a</i>



<b>(b)</b>


3


16



log


3




log


16



log


3



log


)


8


8


(



log


3



log


8


log


8


log



log


2


log


4



3
4
2














<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>



<i>x</i>


<i>x</i>


<i>x</i>



<b>(c)</b>


4


3




log


3


2



log


2


1


log


log


log


log



log


log



log


log



log


)


log(



log


)


log(


)



log(


log




log


log



3
2
2
1


3
1
3
1
3
1


2
1
2
1
2
1


3
1
3


1
3
1



2
1
2


1
2
1


3
1
3


1


2
1
2


1


3
3
























































<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>xy</i>


<i>y</i>


<i>x</i>



<i>xy</i>


<i>y</i>


<i>x</i>



<i>xy</i>



<i>y</i>



<i>x</i>



<i>xy</i>


<i>y</i>



<i>x</i>



<i>xy</i>


<i>xy</i>



<i>xy</i>


<i>xy</i>



<i>y</i>


<i>x</i>


<i>xy</i>



<i>y</i>


<i>x</i>


<i>xy</i>



<b>(d)</b>


1


log


log


log




log


1


log



log


log


log


log



log



log


log



1
2
2


2
2
2


2
2


2







































<i>a</i>


<i>a</i>


<i>a</i>



<i>a</i>



<i>a</i>


<i>a</i>



<i>b</i>


<i>a</i>



<i>ab</i>


<i>ab</i>



<i>b</i>


<i>a</i>



<i>b</i>


<i>a</i>


<i>ab</i>



<i>ab</i>


<i>b</i>



<i>a</i>



<b>21. (a)</b> log (3<i>x</i> – 2) + log
2 = 1


log [(3<i>x</i> – 2) 


2] = log 10


(3<i>x</i> – 2) 



2 = 10


3<i>x</i> –
2 = 5


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<i>x</i><sub> = 3</sub>7


<b>(b)</b> log 2<i>x</i> + 6 log 2 =
log 96


log 2<i>x</i> + log 26<sub> = </sub>
log 96


log (2<i>x</i> 26) =


log 96


2<i>x </i> 26<sub> = </sub>
96


128<i>x</i> =
96


<i>x</i> =
4


3


<b>(c)</b> log3 (4<i>x</i> – 2) – log3
(<i>x</i> + 1) = 1



log3












1



2


4



<i>x</i>


<i>x</i>



= log3 3


1


2


4





<i>x</i>




<i>x</i>



= 3
4<i>x</i> – 2 = 3(<i>x</i> + 1)
4<i>x</i> – 2 = 3<i>x</i> + 3


<i>x</i> =5


<b>(d)</b> log5 (3<i>x</i> + 3) –
log5 (<i>x</i> – 1) = 2 log5


5


log5













1


3


3




<i>x</i>


<i>x</i>



= log5 2 2
1


)


5


(



1


3


3





<i>x</i>



<i>x</i>



= 5


3<i>x</i> + 3 = 5(<i>x</i> – 1)
3<i>x</i> + 3 = 5<i>x</i> – 5
2<i>x</i> = 8


<i>x</i> =4


<b>(e)</b> Let <i>y</i> = log3 (2<i>x</i> +


3), then the equation


[log3 (2<i>x</i> + 3)]2 – 4
log3 (2<i>x</i> + 3) + 3 = 0
becomes


<i>y</i>2<sub> – 4</sub><i><sub>y</sub></i><sub> + 3 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 3) = 0


<i>y</i> = 1
or<i>y</i> =
3


For <i>y</i> = 1, log3 (2<i>x</i>
+ 3) = 1


2<i>x</i> + 3 = 3
2<i>x</i> = 0


<i>x</i> = 0


For <i>y</i> = 3, log3 (2<i>x</i>
+ 3) = 3


2<i>x</i> + 3 = 27
2<i>x</i> = 24


<i>x</i> = 12


∴ <i>x</i> =0<sub> or</sub>



12


<b>22. (a)</b>












2
2
3


2
log
2
log


<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>



)
2
(


)
1
(








From (1),
log <i>x</i> + log <i>y</i>2
= log 100


log <i>xy</i>2
= log 100


<i>xy</i>2
= 100


……(3)


From (2),
3<i>x</i> = 2 + 2<i>y</i>


<i>x</i> =



3


2


2

<i>y</i>



……(4)
By substituting (4)
into (3), we have










3


2



2

<i>y</i>



<i>y</i>2<sub> = 100</sub>
2<i>y</i>2<sub> + </sub>
2<i>y</i>3<sub> = 300</sub>


<i> y</i>3<sub> + </sub><i><sub>y</sub></i>2<sub> – </sub>
150 = 0


(<i>y</i> – 5)(<i>y</i>2<sub> + 6</sub><i><sub>y</sub></i><sub> + </sub>


30) = 0


<i>y</i> = 5 or


<i>y</i> =


)


1


(


2



)


30


)(


1


(


4


6



6

2






=


2


84


6




<sub>(rejected</sub>
)


By substituting <i>y</i>


= 5 into (4), we have


<i>x</i> =


3


)


5


(


2


2



= 4


∴ The solution
is <i>x</i> = 4, <i>y</i> = 5.
<b>(b)</b>













1
2
log
log


1
)
5
6
log(


<i>xy</i>
<i>y</i>
<i>x</i>


)
2
(


)
1
(









From (1),
6<i>x</i> – 5<i>y</i> = 10


6<i>x</i> = 10
+ 5<i>y</i>


<i>x</i> =


6


5


10

<i>y</i>



……(3)
From (2),


log


2


<i>xy</i>

<sub>= </sub>


log 10


2


<i>xy</i>



= 10


<i>xy</i> = 20


……(4)
By substituting (3)
into (4), we have











6


5



10

<i>y</i>



<i>y</i> = 20
10<i>y</i> + 5<i>y</i>2
= 120


<i>y</i>2<sub> + 2</sub><i><sub>y</sub></i><sub> – 24 </sub>
= 0


(<i>y</i> – 4)(<i>y </i>+ 6)
= 0


<i>y</i>



= 4 or <i>y</i>


= –6


By substituting <i>y</i>


= 4 into (3), we have


<i>x</i> =


6


)


4


(


5


10



= 5
By substituting <i>y</i>


= –6 into (3), we have


<i>x</i> =


6


)


6


(


5


10




=


3


10




∴ The solution
is <i>x</i> = 5, <i>y</i> = 4 or <i>x</i> =


3


10


,<i> y</i> = –6.
<b>23.</b> Let <i>I</i> be the original


sound intensity, then


the increased sound
intensity is 1.8<i>I</i>.
The change of the


corresponding
sound intensity
level


=
































0
0


log



10


8



.


1


log


10



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>



dB
= 10































0
0


log


8



.


1


log



<i>I</i>


<i>I</i>


<i>I</i>



<i>I</i>




dB


= (10 log 1.8) dB
= 2.55 dB (cor. to 3
sig. fig.)


∴ The corresponding
sound intensity
level is increased
by 2.55 dB.
<b>24. (a)</b> Let <i>E</i> be the


relative energy
released by an
earthquake
measured 2.
By the definition
of the Richter scale, we
have


2 = log <i>E</i>
<i>E</i> = 102


∴ The relative
energy
released by
the


earthquake in


City <i>A</i> is 1.5
times to that
measured 2
= 1.5  102


∴ The


magnitude of
the


earthquake in
City <i>A</i> on the
Richter scale
= log (1.5 


102<sub>)</sub>
=2.18


(cor. to 3 sig. fig.)
<b>(b)</b> Let <i>E</i> be the


relative energy
released by an
earthquake
measured 8.
By the definition
of the Richter scale, we
have


8 = log <i>E</i>


<i>E</i> = 108


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

the


earthquake in
City <i>B</i> is half
of that
measured 8
= 0.5  108


∴ The


magnitude of
the


earthquake in
City <i>B</i> on the
Richter scale
= log (0.5 


108<sub>)</sub>
=7.70


(cor. to 3 sig. fig.)


<b>Multiple Choice </b>


<b>Questions (p.246)</b>


<b>1.</b> <b>Answer: B </b>


4


3


4
3
2
3
4
3
2
3


4
1
3


3
2
1


4 3


3


)


(



)


(


)


(




<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>


<i>x</i>



<i>x</i>










<b>2.</b> <b>Answer: C</b>
log 0.18 = log









100


18




= log 18 – log
100


= log (2  32<sub>) </sub>
– log 100


= log 2 + log
32<sub> – log 100</sub>


= log 2 + 2 log
3 – log 100


=


2


2 


 <i>b</i>
<i>a</i>


<b>3.</b> <b>Answer: C</b>


9(32<i>x</i><sub>) – 10(3</sub><i>x</i><sub>) + 1 = 0</sub>


9(3<i>x</i><sub>)</sub>2<sub> – 10(3</sub><i>x</i><sub>) + 1 = 0</sub>


Let <i>y</i> = 3<i>x</i><sub>, the equation</sub>



becomes


9<i>y</i>2<sub> – 10</sub><i><sub>y</sub></i><sub> + 1 = 0</sub>
(9<i>y</i> – 1)(<i>y</i> – 1) = 0


<i>y</i> =


9


1



or


<i>y</i> = 1


∴ 3<i>x</i><sub> =</sub>

9


1



or 3<i>x</i><sub> = </sub>


1


3<i>x</i><sub> = 3</sub>–2 <sub>or 3</sub><i>x</i><sub> = </sub>


30


∴ <i>x</i> =2 <sub>or</sub>


<i>x</i> =0



<b>4.</b> <b>Answer: A</b>











1


2



27


3



2<i>x</i> <i>y</i>
<i>y</i>
<i>x</i>


)
2
(


)
1
(









From (1),
3<i>x</i> + <i>y</i><sub> = 3</sub>3


∴ <i>x</i> + <i>y</i> = 3
From (2),


22<i>x</i> – <i>y</i><sub> = 2</sub>0


∴ 2<i>x</i> – <i>y</i> = 0
Consider the
simultaneous
equations:












0
2



3
<i>y</i>
<i>x</i>


<i>y</i>
<i>x</i>


)
4
(


)
3
(








(3) + (4),


(<i>x</i> + <i>y</i>) + (2<i>x</i> – <i>y</i>) =
3 + 0


3<i>x</i>


= 3



<i>x</i> =
1


By substituting <i>x</i> =1
into (3), we have


1 + <i>y</i> = 3


<i>y</i> = 2


∴ The solution is <i>x</i> =
1, <i>y</i> = 2.


<b>5. Answer: C</b>
32<i>x</i><sub> = 2</sub>3<i>y</i>


log 32<i>x</i><sub> = log 2</sub>3<i>y</i>


log (32<sub>)</sub><i>x</i><sub> = log (2</sub>3<sub>)</sub><i>y</i>
<i>x</i> log 32<sub> = </sub><i><sub>y</sub></i><sub> log 2</sub>3
<i>x</i> log 9 = <i>y</i> log 8


9
log


8
log





<i>y</i>
<i>x</i>


<i>x</i> : <i>y </i>= <sub>log</sub>log<sub>9</sub>8


<b>6.</b> <b>Answer: C</b>
log3 (3<i>x</i> + 12) – log3
(2<i>x</i> + 1) = 1


log3













1


2



12


3



<i>x</i>



<i>x</i>



= log3 3


1


2



12


3





<i>x</i>


<i>x</i>



= 3
3<i>x</i> + 12 = 3(2<i>x</i> + 1)
3<i>x</i> + 12 = 6<i>x</i> + 3
3<i>x</i> = 9


<i>x</i> =3


<b>7.</b> <b>Answer: D</b>


(log <i>x</i>)2<sub> – 2 log </sub><i><sub>x</sub></i>2<sub> + 3 =</sub>
0


(log <i>x</i>)2<sub> – 4 log </sub><i><sub>x</sub></i><sub> + 3 = </sub>
0



Let <i>y</i> = log <i>x</i>, then the
equation (log <i>x</i>)2<sub> – 4 </sub>
log <i>x</i> + 3 = 0 becomes


<i>y</i>2<sub> – 4</sub><i><sub>y</sub></i><sub> + 3 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 3) = 0


<i>y</i> = 1 or


<i>y</i> = 3
For <i>y</i> = 1, log <i>x</i> = 1


<i>x</i> = 10
For <i>y</i> = 3, log <i>x</i> = 3


<i>x</i> = 1000


∴ <i>x</i> =10 or


1000


<b>8.</b> <b>Answer: A</b>
Since

<i>x</i>



2
1


log

<sub> is </sub>


undefined for <i>x</i> 0,


the graph of


<i>x</i>


<i>y</i>



2
1

log



<sub> does </sub>


not cut the <i>y</i>-axis.


∴ C and D cannot be
the answer.


When <i>x</i> =


2


1

<sub>,</sub>


2


1


log



2
1





<i>y</i>

= 1.


∴ The graph passes
through the point (


2


1

<sub>,</sub>


1).


∴ The answer is A.
<b>9.</b> <b>Answer: B</b>


When <i>x</i> = 0, <i>y</i> = <i>a</i>0<sub> = 1.</sub>


∴ The graph of <i>y</i> =


<i>ax</i><sub> passes through </sub>


the point (0, 1).


∴ III cannot be the
answer.


<b>10. Answer: D</b>
Since the graph cuts
the <i>y</i>-axis, it cannot be
a logarithmic function.


∴ A and C cannot be



the answer.


Read from the graph,
the function passes
through the point (1,
3).


The point (1, 3)
satisfies the function <i>y</i>


= 3<i>x</i><sub> but does not </sub>


satisfy the function <i>y</i> =
10<i>x</i><sub>.</sub>


∴ The answer is D.
<b>11. Answer: B</b>


<i>f</i>(5 +2<i>x</i>)<i> f</i>(5 – 2<i>x</i>) =
52(5 +2<i>x</i>) + 1<sub></sub><sub>5</sub>2(5 – 2<i>x</i>) + 1


=
510 +4<i>x</i> + 1+ 10 – 4<i>x</i> + 1


=
22


5



<b>12.</b> Answer: B


<i>x</i>4 log <i>x</i><sub> = 10</sub>


log <i>x</i>4 log <i>x</i><sub> = 1</sub>


4 log <i>x</i> log <i>x</i> = 1
(log <i>x</i>)2<sub> =</sub>


4


1



log <i>x</i> =


2


1



or
log <i>x</i> =


2


1



(rejected)


<i>x</i> = 2
1


10


= 10


<b>HKMO (p. 248)</b>


<b>1.</b> 4<i>a</i><sub> = 10</sub> <sub>and</sub>


25<i>b</i><sub> = 10</sub>


log 4<i>a</i><sub> = 1</sub> <sub>and</sub>


log 25<i>b</i><sub> = 1</sub>


<i>a </i>log 4 = 1 and


<i>b </i>


log 25 = 1


<i>a</i>


1



= log 4 and


<i>b</i>


1



= log 25




<i>a</i>


1




+


<i>b</i>


1



= log 4
+ log 25


= log (4 


25)


= log 100
=2


<b>2.</b> ∵ log<i>xt</i> = 6


∴ <i>x</i>6<sub> = </sub><i><sub>t</sub></i>


∵ log<i>yt</i> = 10


∴ <i>y</i>10<sub> = </sub><i><sub>t</sub></i>


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

∴ <i>z</i>15<sub> = </sub><i><sub>t</sub></i>
(<i>xyz</i>)60<sub> = </sub><i><sub>x</sub></i>60<i><sub>y</sub></i>60<i><sub>z</sub></i>60


= (<i>x</i>6<sub>)</sub>10<sub>(</sub><i><sub>y</sub></i>10<sub>)</sub>
6<sub>(</sub><i><sub>z</sub></i>15<sub>)</sub>4



= <i>t</i>10<i><sub>t</sub></i> 6<i><sub>t</sub></i>4
= <i>t</i>20


∴ log<i>xyzt</i>20 = 60


20 log<i>xyzt</i> = 60


log<i>xyzt</i> = 3


∴ <i>d</i> =3


<b>3.</b> <i>S</i> = log1443 2 + log144
6 <sub>3</sub>


= log144 <sub>3</sub>


1


2

+ log144


6
1


3



= log144 <sub>6</sub>


1
2



2

 +


log144 6
1


3


=


6


1



log144 4 +

6


1



log144 3
=


6


1



(log144 4 +
log144 3)


=


6


1



log144 12


=


6


1



log144 <sub>2</sub>


1


144



=


6


1





2


1



</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×