Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (324.34 KB, 19 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
<b>2.</b> No
<b>3.</b> <i>y</i> increases as <i>x</i>
increases; the graph
lies above the <i>x</i>-axis; it
cuts the <i>y</i>-axis at (0, 1).
4.
<i>x</i> –1 0 1
<i>y</i>
1 3
<b>5.</b> Yes
<i>M</i> <i>N</i> log<i>M</i> log<i>N</i> log
100 –1 2
100 100 2 2
1000
3 –1
10
1 –2
1000 –2 3
<b>2.</b> log <i>MN</i> = log <i>M</i> + log
<i>N</i>
<b>3.</b> log
= log <i>M</i> –
log <i>N</i>
<b>4.</b> log <i>M</i>2<sub> = 2 log </sub><i><sub>M</sub></i>
<b>2.</b> No
<b>3.</b> <i>y</i> increases as <i>x</i>
increases; the graph
lies on the right-hand
side of the <i>y</i>-axis; it
cuts the <i>x</i>-axis at (1,0).
<b>4.</b>
<i>x</i> 0.3 0.6 1
<i>y</i> –0.5 –0.2 0
<b>5.</b> They are both defined
for <i>x</i> > 0 and cut the <i>x</i>
-axis at (1,0); <i>y</i>
increases as <i>x</i>
increases in both
graphs; they both lie
on the right-hand side
of the <i>y</i>-axis.
<b>1.</b>
6
6
12
6
12
3
2
3
4
3
4
3
2
4
<b>2.</b>
4
4
4
4
1
4
4
1
1
3
)
2
(
2
1
2
3
2
<b>1.</b> ∵ 10 10 10 =
1000
103<sub> = </sub>
1000
∴ 3 1000 <sub></sub>10
<b>2.</b> ∵ (–6) (–6) (–
6) = –216
(–6)3
= –216
∴ 3 <sub></sub> 216<sub></sub><sub></sub> 6
<b>3.</b> ∵ 11 11 = 121
112<sub> = 121</sub>
∴
11
121
<b>4.</b> ∵ 4 4 4 4 =
256
44<sub> = </sub>
256
∴
4
256
4
<b>5.</b> ∵
81
1
3
1 4
∴
3
1
81
1
4 <sub></sub>
<b>6.</b> ∵
32
1
2
1 5
∴
2
1
32
1
5 <sub></sub>
<b>1.</b>
3
4
4
3
1
4
3 <sub>(</sub> <sub>)</sub>
<i>x</i>
<i>x</i>
<b>2.</b>
3
5
3
5
3
1
5
3 5
<b>3.</b>
4
4
3
4
3
3
4
3
3
4
<b>4.</b>
216
125
6
5
6
5
36
25
3
2
3
2
2
3
<b>5.</b>
4
1
4
1
1
3
4
1
3
4
<b>6.</b>
20
11
20
11
5
4
4
1
5
4
4
1
5
1
4
4
1
5 4
4
<b>1.</b> 3<i>x</i> + 2<sub> – 3</sub><i>x</i><sub> = 216</sub>
(32<sub>)(3</sub><i>x</i><sub>) – 3</sub><i>x</i><sub> = 216</sub>
3<i>x</i><sub>(3</sub>2<sub> – 1) = 216</sub>
8(3<i>x</i><sub>) = 216</sub>
3<i>x</i><sub> = 27</sub>
3<i>x</i><sub> = 3</sub>3
∴ <i>x</i> =3
<b>2.</b> 52<i>x</i><sub> – 24(5</sub><i>x</i><sub>) = 25</sub>
(5<i>x</i><sub>)</sub>2<sub> – 24(5</sub><i>x</i><sub>) – 25 = 0</sub>
Let <i>y</i> = 5<i>x</i><sub>, the equation</sub>
becomes
<i>y</i>2<sub> – 24</sub><i><sub>y</sub></i><sub> – 25 = 0</sub>
(<i>y</i> – 25)(<i>y</i> + 1) = 0
<i>y</i> = 25
or <i>y</i> =
–1
∴ 5<i>x</i><sub> = 25 or 5</sub><i>x</i><sub> = </sub>
–1 (rejected)
5<i>x</i><sub> = 5</sub>2
∴ <i>x</i> =2
<b>3.</b>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
)
1
(
From (1),
3<i>x</i> + 1<sub> = 3</sub><i>y</i>
∴ <i>x</i> + 1 = <i>y</i>
From (2),
2<i>x</i> + <i>y</i><sub> = 2</sub>4
∴ <i>x</i> + <i>y</i> = 4
Consider the
simultaneous
equations:
4
1
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
4
(
)
3
(
By substituting (3) into
<i>x</i> + (<i>x</i> +1) = 4
2<i>x</i> = 3
<i>x</i> =
By substituting <i>x</i> =
into (3), we have
<i>y</i> =
∴ The solution is <i>x</i> =
<b>1.</b> <b>(a)</b> ∵ 0.01 =
10–2
∴ log 0.01 =
2
<b>(b)</b> ∵ 100 000 =
105
∴ log 100 000 =
5
<b>2.</b> <b>(a)</b> ∵ 10<i>x</i><sub> = 20</sub>
∴ <i>x</i> = log 20
=
30
.
1 <sub> (cor. to 3 sig. </sub>
fig.)
<b>(b)</b> ∵ 10<i>x</i><sub> = 0.8</sub>
∴ <i>x</i> = log
0.8
=
0969
.
0
<sub> (cor. to </sub>
3 sig. fig.)
<b>(c)</b> ∵ 10<i>x</i><sub> = 5</sub>
∴ <i>x</i> = log 5
=
699
.
0 <sub> (cor. to 3 </sub>
sig. fig.)
<b>1.</b> ∵ 92<sub> = 81</sub>
∴ log9 81 =2
<b>2.</b> ∵ 43<sub> = 64</sub>
∴ log4 64 =3
<b>3.</b> ∵ 112<sub> = 121</sub>
∴ log11 121 =2
<b>4.</b> ∵ 25<sub> = 32</sub>
∴ log2 32 =5
<b>1.</b> 2 log 2 + log 5 = 2
log
= log
2 + log 5
= log
(2 5)
= log
10
=1
<b>2.</b> log2 8 – log2 16 = log2
23<sub> – log</sub>
2 24
= 3
log2 2 – 4 log2 2
= 3 – 4
=
1
<b>3.</b>
5
4
<b>4.</b>
2
2
1
<b>5.</b>
2
1
<b>6.</b>
2
1
2
2
1
2
2
2
<b>7.</b> log 9 = log
= log 54 – log 6
=<i>y</i> <i>x</i>
<b>1.</b> 3<i>x</i> – 1<sub> = 7</sub>
log 3<i>x</i> – 1<sub> = log 7</sub>
(<i>x</i> – 1)log 3 = log 7
<i>x</i> – 1 =
3
log
<i>x</i> =
3
log
7
log
+ 1
=2.77
(cor. to 3 sig. fig.)
<b>2.</b> 52<i>x</i><sub> = 8</sub>
log 52<i>x</i><sub> = log 8</sub>
2<i>x </i>log 5 = log 8
2<i>x</i> =
5
8
log
<i>x</i> =
5
log
8
log
2
=0.646
(cor. to 3 sig. fig.)
<b>3.</b> 6<i>x</i><sub> = 3</sub><i>x</i> +
2
log 6<i>x</i><sub> = log</sub>
3<i>x</i> + 2
<i>x</i> log 6 = (<i>x</i>
+ 2) log 3
<i>x</i> log 6 = <i>x</i>
log 3 + 2 log 3
<i>x</i> log 6 – <i>x</i> log 3 = 2
log 3
(log 6 – log 3) <i>x</i> = 2
log 3
<i>x</i> =
3
log
6
log
3
log
2
=
17
.
3 <sub> (cor. to 3 sig. fig.)</sub>
<b>4.</b> log (3<i>x</i> – 2) = 2
log (3<i>x</i> – 2) = log 100
3<i>x</i> – 2 = 100
3<i>x</i> = 102
<i>x</i> =34
<b>5.</b> log (3<i>x</i> + 1) – log (<i>x</i> –
2) = 1
= log 10
= 10
3<i>x</i> +
1 = 10(<i>x</i> – 2)
3<i>x</i> +
1 = 10<i>x</i> – 20
7<i>x</i> = 21
<i>x</i> =3
<b>6.</b> Let <i>y</i> = log (<i>x</i> – 1),
then the equation
[log (<i>x</i> – 1)]2<sub> + 2 log (</sub><i><sub>x</sub></i>
<i>y</i>2<sub> + 2</sub><i><sub>y</sub></i><sub> + 1 = 0</sub>
(<i>y</i> + 1)2<sub> = 0</sub>
<i>y</i> = –1
∴ log (<i>x</i> – 1) = –1
<i>x</i> – 1 =
<i>x</i> =
10
11
<b>1.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities of the
concert and
that of the football
match respectively.
By the definition of
sound intensity level, we
have
95 = 10 log
0
1
and 80 = 10 log
0
∴ 95 – 80 = 10 log
0
1
– 10 log
0
2
0
2
0
1
2
1
2
1
= 2
3
∴ The sound
intensity of the
concert is 31.6
times to that of the
football match.
<b>2.</b> Let <i>I</i> be the original
sound intensity
produced by the radio,
then the sound
∵ The original sound
intensity level
produced by the
radio is 30 dB.
∴ 30 = 10 log
0
Let dB be the sound
intensity level
produced by the radio
after adjusting the
∴ = 10 log
0
– 30 = 10 log
0
– 10 log
0
– 30 = 10
0
0
– 30 = 10 log 1.25
= 30 + 10 log
1.25
= 31.0 (cor. to 3
sig. fig.)
∴ The sound
intensity level
produced by the
radio after
adjusting the
volume is 31.0 dB.
<b>1.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes measured
6 and 3 respectively.
By the definition of the
Richter scale, we have
6 = log <i>E</i>1 and
3 = log <i>E</i>2
i.e. <i>E</i>1 = 106 and
<i>E</i>2 = 103
∴ 3
6
2
1
= 103
= 1000
∴ The strength of an
earthquake
measured 6 is
1000 times to that
measured 3.
<b>2.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes in Nantou
and Turkey
respectively.
By the definition of the
Richter scale, we have
7.3 = log <i>E</i>1 and
6.3 = log <i>E</i>2
i.e. <i>E</i>1 = 107.3 and
<i>E</i>2 = 106.3
∴ <sub>6</sub><sub>.</sub><sub>3</sub>
3
.
7
2
1
= 10
∴ The strength of
the earthquake in
Nantou is 10 times
to that in Turkey.
<b>1.</b>
7
7
1
3
7 3
<b>2.</b>
3
8
8
3
1
8
3 <sub>(</sub> <sub>)</sub>
<i>x</i>
<i>x</i>
<i>x</i>
<b>3.</b>
2
5
2
5
5
2
1
5
<b>4.</b>
5
2
5
2
5
1
2
5 2
= (<i>a</i>0<sub>)</sub>–1
= <i>a</i>0
=1
<b>10.</b>
1
4
3
3
4
[(<i>m</i>–4 – 3<sub>)(</sub><i><sub>n</sub></i> –3 – 4<sub>)]</sub>–1
= (<i>m</i>–7<i><sub>n</sub></i> –7<sub>)</sub>–
1
=<i><sub>m</sub></i>7<i><sub>n</sub></i>7
<b>11.</b>
3
1
2
1
2
2
1
4
3
1
2
1
2
4
=
<i>m</i>2<i><sub>n</sub></i><sub></sub><i><sub>m</sub></i>–1<i><sub>n</sub></i>–3
=
<i>m</i>2 – (–1)<i><sub>n</sub></i>1 – (–3)
=
4
3<i><sub>n</sub></i>
<i>m</i>
<b>12.</b>
1
=
<i>a</i>3<i><sub>b</sub></i>–9<sub></sub><i><sub>a</sub></i>–2<i><sub>b</sub></i>–1
=
<i>a</i>3 – (–2)<i><sub>b</sub></i>–9 – (–1)
=
<i>a</i>5<i><sub>b</sub></i>–8
=
8
5
<i>q</i> = 2(2 + <i>p</i>)
when <i>p</i> = 2, <i>q</i> = 2(2 +
2) = 8.
when <i>p</i> = 3, <i>q</i> = 2(2 +
3) = 10.
∴ A possible
solution is <i>p</i> = 2, <i>q</i> = 8 or <i>p</i>
= 3, <i>q</i> = 10.
(or any other
reasonable answers)
<b>16.</b>
<i>y</i>
<i>y</i> = 1 – <i>x </i>
When <i>x</i> = 2, <i>y</i> = 1
– 2 = –1.
When <i>x</i> = 3, <i>y</i> = 1
– 3 = –2.
∴ A possible
solution is <i>x</i> = 2, <i>y</i>
= –1or <i>x</i> = 3, <i>y</i> = –
2. (or any other
reasonable
answers)
5
12
23
12
23
)
3
2
(
4
3
<i>x</i> =4
<b>2.</b>
4
4
3
3
3
∴ <i>x</i> =4
<b>3.</b>
2
1
2
1
2
<i>x</i> =2
<b>4.</b>
2
3
2
5
2
<i>x</i> =3
<b>5.</b> 3<i>x</i> + 2<sub> – 3</sub><i>x</i><sub> = 8</sub>
(32<sub>)(3</sub><i>x</i><sub>) – 3</sub><i>x</i><sub> = 8</sub>
3<i>x</i><sub>(3</sub>2<sub> – 1) = 8</sub>
8(3<i>x</i><sub>) = 8</sub>
3<i>x</i><sub> = 1</sub>
3<i>x</i><sub> = 3</sub>0
∴ <i>x</i> =0
<b>6.</b> 3(3<i>x</i><sub>) – 3</sub><i>x</i> – 1<sub> = 216</sub>
3(3<i>x</i><sub>) – 3</sub><i>x</i><sub>(3</sub>–1<sub>) = 216</sub>
3<i>x</i><sub>(3 –3</sub>–1<sub>) = 216</sub>
3<i>x</i><sub>(3 –</sub>
) = 216
3<i>x</i>
3<i>x</i><sub> = 3</sub>4
∴ <i>x</i> =4
<b>7.</b> 2<i>x</i> + 2<sub> + 2</sub><i>x</i><sub> = 10</sub>
(22<sub>)(2</sub><i>x</i><sub>) + 2</sub><i>x</i><sub> = 10</sub>
2<i>x</i><sub>(2</sub>2<sub> + 1) = 10</sub>
5(2<i>x</i><sub>) = 10</sub>
2<i>x</i><sub> = 2</sub>
2<i>x</i><sub> = 2</sub>1
∴ <i>x</i> =1
<b>8.</b> 42<i>x</i><sub> = 16(2</sub><i>x</i><sub>)</sub>
(22<sub>)</sub>2<i>x</i><sub> = 2</sub>4<sub>(2</sub><i>x</i><sub>)</sub>
24<i>x</i><sub> = 2</sub>4 + <i>x</i>
∴ 4<i>x</i> = 4 + <i>x</i>
<i>x</i><sub> = 3</sub>4
<b>9.</b> 23<i>x</i><sub> = 8(4</sub><i>x</i><sub>)</sub>
23<i>x</i><sub> = 2</sub>3<sub>(2</sub>2<sub>)</sub><i>x</i>
23<i>x</i><sub> = 2</sub>3<sub>(2</sub>2<i>x</i><sub>)</sub>
23<i>x</i><sub> = 2</sub>3 + 2<i>x</i>
∴ 3<i>x</i> = 3 + 2<i>x</i>
<i>x</i> =3
<b>10.</b> 9(3<i>x</i> + 1<sub>) = 27</sub>2<i>x</i>
32<sub>(3</sub><i>x</i> + 1<sub>) = (3</sub>3<sub>)</sub>2<i>x</i>
3<i>x</i> + 3<sub> = 3</sub>6<i>x</i>
∴ <i>x</i> + 3 = 6<i>x</i>
<i>x</i><sub> = 5</sub>3
<b>11.</b> 4<i>x </i>+ 1<sub> + 4</sub><i>x</i><sub> – 4</sub><i>x</i> – 1<sub> = 19</sub>
(4)4<i>x</i><sub> + 4</sub><i>x</i><sub> – (4</sub>– 1<sub>)4</sub><i>x</i><sub> = </sub>
19
4<i>x</i><sub>(4 + 1 – 4</sub>– 1<sub>) = </sub>
19
4<i>x</i><sub>(5 –</sub>
19
4<i>x</i><sub>(</sub>
4<i>x</i><sub> = 4</sub>
∴ <i> x</i> =1
<b>12.</b> 6<i>x </i>+ 2<sub> – 2(6</sub><i>x </i>+ 1<sub>) – 12(6</sub><i>x</i><sub>) </sub>
= 2
(62<sub>)6</sub><i>x</i><sub> – 2(6)6</sub><i>x</i><sub> – 12(6</sub><i>x</i><sub>) </sub>
= 2
6<i>x</i><sub>(36 – 12 – 12) </sub>
= 2
6<i>x</i><sub>(12) </sub>
= 2
6<i>x</i>
=
6<i>x</i>
= 6–1
∴ <i>x</i>
=1
<b>13.</b> 22<i>x</i><sub> – 3(2</sub><i>x</i><sub>) + 2 = 0</sub>
(2<i>x</i><sub>)</sub>2<sub> – 3(2</sub><i>x</i><sub>) + 2 = 0</sub>
Let <i>y</i> = 2<i>x</i><sub>, the equation</sub>
becomes
<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0
<i>y</i> = 1 or
<i>y</i> = 2
∴ 2<i>x</i><sub> = 1</sub> <sub>or 2</sub><i>x</i><sub> = </sub>
2
2<i>x</i><sub> = 2</sub>0 <sub>or 2</sub><i>x</i><sub> = </sub>
21
∴ <i>x</i> =0 or <i>x</i> =
1
<b>14.</b> 32<i>x</i><sub> – 12(3</sub><i>x</i><sub>) + 27 = 0</sub>
(3<i>x</i><sub>)</sub>2<sub> – 12(3</sub><i>x</i><sub>) + 27 = 0</sub>
Let <i>y</i> = 3<i>x</i><sub>, the equation</sub>
becomes
<i>y</i>2<sub> – 12</sub><i><sub>y</sub></i><sub> + 27 = 0</sub>
(<i>y</i> – 3)(<i>y</i> – 9) = 0
<i>y</i> = 3 or
<i>y</i> = 9
∴ 3<i>x</i><sub> = 3</sub> <sub>or 3</sub><i>x</i><sub> = </sub>
9
3<i>x</i><sub> = 3</sub>1 <sub>or 3</sub><i>x</i><sub> = </sub>
32
∴ <i>x</i> =1 or <i>x</i> =
2
<b>15.</b> 5(52<i>x</i><sub>) – 26(5</sub><i>x</i><sub>) + 5 = 0</sub>
5(5<i>x</i><sub>)</sub>2<sub> – 26(5</sub><i>x</i><sub>) + 5 = 0</sub>
Let <i>y</i> = 5<i>x</i><sub>, the equation</sub>
becomes
5<i>y</i>2<sub> – 26</sub><i><sub>y</sub></i><sub> + 5 = 0</sub>
(5<i>y</i> – 1)(<i>y</i> – 5) = 0
<i>y</i> =
or<i>y</i> = 5
∴ 5<i>x</i><sub> = </sub>
or 5<i>x</i><sub> = </sub>
5
5<i>x</i><sub> = 5</sub>–1 <sub>or 5</sub><i>x</i><sub> = </sub>
51
∴ <i>x</i> =1 <sub>or</sub>
<i>x</i> =1
<b>16.</b> 24<i>x</i><sub> – 20(2</sub>2<i>x</i><sub>) + 64 = 0</sub>
(22<i>x</i><sub>)</sub>2<sub> – 20(2</sub>2<i>x</i><sub>) + 64 = 0</sub>
Let <i>y</i> = 22<i>x</i><sub>, the </sub>
equation becomes
<i>y</i>2<sub> – 20</sub><i><sub>y</sub></i><sub> + 64 = 0</sub>
(<i>y</i> – 4)(<i>y</i> – 16) = 0
<i>y</i> = 4
or <i>y</i> =
16
∴ 22<i>x</i><sub> = 4</sub> <sub>or 2</sub>2<i>x</i><sub> =</sub>
16
22<i>x</i><sub> = 2</sub>2 <sub>or 2</sub>2<i>x</i><sub> =</sub>
24
∴ 2<i>x</i> = 2 or 2<i>x</i>
= 4
<i>x</i> =1 <sub>or</sub> <i><sub>x</sub></i>
=2
<b>17.</b>
2
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
5<i>x</i> + 2<i>y</i><sub> = 5</sub>3
∴ <i>x</i> + 2<i>y</i> = 3
From (2),
252<i>x</i> + <i>y</i><sub> = 25</sub>0
∴ 2<i>x</i> + <i>y</i> = 0
<i>y</i> = –2<i>x</i>
Consider the
simultaneous
equations:
<i>x</i>
<i>y</i>
<i>y</i>
<i>x</i>
2
3
2
)
4
(
)
3
(
By substituting (4) into
(3), we have
<i>x</i> + 2(–2<i>x</i>) = 3
–3<i>x</i> = 3
<i>x</i> = –1
By substituting <i>x</i> = –1
into (4), we have
<i>y</i> = –2(–1)
= 2
∴ The solution is <i>x</i> =
–1, <i>y</i> = 2.
<b>18.</b>
3<i>x</i> <i>y</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
3<i>x</i> + <i>y</i><sub> = 3</sub>3
∴ <i>x</i> + <i>y</i> = 3
From (2),
43<i>x</i> – <i>y</i><sub> = 4</sub>1
∴ 3<i>x</i> – <i>y</i> = 1
Consider the
simultaneous
equations:
1
3
3
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
4
(
)
3
(
(3) + (4),
(<i>x</i> + <i>y</i>) + (3<i>x</i> – <i>y</i>) = 3 +
1
4<i>x</i> = 4
<i>x</i> = 1
By substituting <i>x</i> = 1
1 + <i>y</i> = 3
<i>y</i> = 2
1, <i>y</i> = 2.
<b>19.</b>
2
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
32<i>x</i> + <i>y</i><sub> = 3</sub>6
∴ 2<i>x</i> + <i>y</i> = 6
From (2),
(32<sub>)</sub><i>x</i> – 2<i>y</i><sub> = 3</sub>
32<i>x</i> – 4<i>y</i><sub> = 3</sub>1
∴ 2<i>x</i> – 4<i>y</i> = 1
Consider the
1
4
2
6
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
4
(
)
3
(
(3) – (4),
(2<i>x</i> + <i>y</i>) – (2<i>x</i> – 4<i>y</i>) = 6
– 1
5<i>y</i> = 5
<i>y</i> = 1
By substituting <i>y</i> = 1
into (3), we have
2<i>x</i> + 1 = 6
<i>x</i> =
∴ The solution is <i>x</i> =
<b>20.</b>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
23<i>x</i> – 2<i>y</i><sub> = 2</sub>2
∴ 3<i>x</i> – 2<i>y</i> = 2
From (2),
5<i>x</i> + <i>y</i><sub> = 5</sub>4
∴ <i>x</i> + <i>y</i> = 4
<i>y</i> = 4 – <i>x</i>
Consider the
simultaneous
equations:
<i>x</i>
<i>y</i>
<i>y</i>
<i>x</i>
4
2
2
3
)
4
(
)
3
(
By substituting (4) into
(3), we have
3<i>x</i> – 2(4 – <i>x</i>) = 2
5<i>x</i> = 10
<i>x</i> = 2
By substituting <i>x</i> = 2
into (4), we have
<i>y</i> = 4 – 2 = 2
∴ The solution is <i>x</i> =
2, <i>y</i> = 2.
<b>1.</b> ∵ 1 000 000 =
106
∴ log 1 000 000 =
6
<b>2.</b> ∵ 625 = 54
∴ log5 625 =4
<b>3.</b> ∵
= 4–2
∴ log4
=
2
<b>4.</b> ∵
= 10–2
∴ log
=
2
<b>5.</b> ∵ 10<i>x</i><sub> = 120</sub>
∴ <i>x</i> = log 120
=2.08
(cor. to 3 sig. fig.)
<b>6.</b> ∵ 10<i>x</i><sub> = 88</sub>
∴ <i>x</i> = log 88
=1.94
(cor. to 3 sig. fig.)
= log
100
= log
102
= 2 log
10
=2
<b>8.</b> log 4 + log 25 = log(4
25)
= log
100
= log
102
= 2 log
10
=2
<b>9.</b> log3
+ log3 108
= log3 (
108)
=
log3 9
=
log3 32
=
2 log3 3
=
2
<b>10.</b>
3
2
<b>11.</b>
2
3
<b>12.</b>
2
2
2
1
2
2
2
2
1
2
2
2
2
2
<b>13.</b> log 6 = log (2 3)
= log 2 + log 3
=<i>x</i><i>y</i>
<b>14.</b> log 18 = log
2
1
2
= log (
3)
= log <sub>2</sub>1
log 3
=
log 3
= <i>x</i><i>y</i>
2
1
<b>15.</b> Let log<i>a</i> 8 = <i>x</i>, log<i>b</i> 8 =
<i>y</i>.
Then <i>ax</i><sub> = 8 and </sub><i><sub>b</sub>y</i><sub> = 8.</sub>
∵ log<i>a</i> 8 log<i>b</i> 8 = 1
∴ <i>xy</i> = 1
<i>x</i> =
<i>y</i>
1
Let <i>a</i> = 2, then
2<i>x</i><sub> = 8</sub>
2<i>x</i><sub> = 2</sub>3
<i>x</i> = 3
∴ <i>y </i>=
∴ 3
1
<i>b</i> = 83
= 512
Let <i>a</i> =
, then
3
2
1
2
1
8
2
1
3
<i>x</i>
<i>x</i>
<i>x</i>
∴
∴
512
1
8
8
3
3
1
<i>b</i>
<i>b</i>
∴ A possible
solution is <i>a</i> = 2, <i>b</i>
= 512
or<i> a</i> =
, <i>b</i> =
. (or any
other reasonable
answers)
<b>16.</b>
<i>b</i>
<i>a</i>
log
log
= 3
log <i>a</i> = 3 log <i>b</i>
∴ <i>a</i> = <i>b</i>3
∴ A possible
solution is <i>a</i> = 8, <i>b</i>
= 2 or <i>a</i> = 27, <i>b</i> =
3. (or any other
reasonable
answers)
<b>17.</b> 3 log 5 + log
=
log 53<sub> + log</sub>
=
log
=
log 10
=
1
<b>18.</b> log(100 10)– log
)
10
10
( = log
10
10
10
100
= log 10
=1
<b>19.</b> log4 2 – log4 18 + 2 log4
= log4
+ log4
2
2
3
= log4
2
2
3
9
1
= log4
= log4
= log4 4–1
= –log4 4
=1
<b>20.</b>
2
5
2
2
1
5
3
<b>21.</b>
5
2
2
2
2
<b>22.</b>
2
2
3
<b>23.</b>
2
4
<b>24.</b>
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
<b>25.</b>
2
3
4
3
3
4
4
3
<b>26.</b>
2
2
4
3
<b>27.</b> log 200 = log (4 5
10)
= log 4 + log 5
+ log 10
=<i>x</i><i>y</i>1
<b>28.</b> log 320= log
2
1
=
log 320
=
5)
=
(log 43
+ log 5)
=
4 + log 5)
=
)
3
(
2
1 <i><sub>x</sub></i> <i><sub>y</sub></i>
log 2<i>x</i><sub> = log 10</sub>
<i>x </i>log 2 = 1
<i>x</i> =
2
log
1
=3.32 (cor.
to 3 sig. fig.)
<b>2.</b> 32<i>x</i> – 1<sub> = 6</sub>
log 32<i>x</i> – 1<sub> = log 6</sub>
(2<i>x</i> – 1) log 3 = log 6
2<i>x</i> – 1 =
3
log
6
log
2<i>x</i> =
3
log
6
log
+ 1
<i>x </i>=
2
1
3
log
6
log
=1.32
(cor. to 3 sig. fig.)
<b>3.</b> 41 – 3<i>x</i><sub> = 5</sub>
log 41 – 3<i>x</i><sub> = log 5</sub>
(1 – 3<i>x</i>) log 4 = log 5
1 – 3<i>x</i> =
4
log
5
log
3<i>x</i> = 1 –
4
log
5
log
<i>x </i>=
3
4
5
log
1 <sub></sub>
=
0537
.
0
<sub> (cor. to 3 </sub>
sig. fig.)
<b>4.</b> 2(3<i>x</i> + 2<sub>) = 5</sub>
log [2(3<i>x</i> + 2<sub>)] = log</sub>
5
log 2 + log 3<i>x</i> + 2<sub> = log</sub>
5
(<i>x</i> + 2) log 3 = log
5 – log 2
<i>x</i> + 2 =
3
log
2
log
5
log
<i>x </i>=
3
log
2
log
5
log
– 2
=
17
<sub> (cor. to 3 sig. </sub>
fig.)
<b>5.</b> 9<i>x</i> + 1<sub> = 8</sub><i>x</i>
log 9<i>x</i> + 1<sub> = log </sub>
8<i>x</i>
(<i>x</i> + 1) log 9 = <i>x</i> log
8
<i>x</i> log 9 + log 9 = <i>x</i>
log 8
(log 8 – log 9)<i> x</i> = log
9
<i>x </i>=
9
log
8
log
9
=
7
.
18
<sub> (cor. to 3 sig. </sub>
fig.)
<b>6.</b> 42<i>x</i><sub> = </sub>
63<i>x</i> – 1
log 42<i>x</i><sub> = </sub>
log 63<i>x</i> – 1
2<i>x</i> log 4 =
(3<i>x</i> – 1) log 6
2<i>x</i> log 4 =
3<i>x</i> log 6 – log 6
(3 log 6 – 2 log 4) <i>x</i> =
log 6
<i>x </i>=
4
log
2
6
log
3
6
log
=
688
.
0 <sub> (cor. to 3 sig. </sub>
fig.)
<b>7.</b> log (6<i>x</i> – 4) = 2
log (6<i>x</i> – 4) = log 100
6<i>x</i> – 4 = 100
6<i>x</i> = 104
<i>x</i> = 3
1
17
<b>8.</b> log3 (4<i>x</i> – 1) = 3
log3 (4<i>x</i> – 1) = 3 log3 3
log3 (4<i>x</i> – 1) = log3 33
4<i>x</i> – 1 = 27
4<i>x</i> = 28
<i>x</i> =7
<b>9.</b> log (3<i>x</i> – 2) = 0
log (3<i>x</i> – 2) = log 1
3<i>x</i> – 2 = 1
3<i>x</i> = 3
<i>x</i> =1
<b>10.</b> log2 (3<i>x</i> + 1) = 4
log2 (3<i>x</i> + 1) = 4 log2 2
log2 (3<i>x</i> + 1) = log2 24
3<i>x</i> + 1 = 16
3<i>x</i> = 15
<i>x</i> =5
<b>11.</b> log (8<i>x</i> – 2) – log 3 = 1
log (8<i>x</i> – 2) =
log 10 + log 3
log (8<i>x</i> – 2) =
log (10 3)
8<i>x</i> – 2 =
30
8<i>x</i> =
32
<i>x</i> =
4
<b>12.</b> log (2<i>x</i> – 3) + log 2 = –
1
log [(2<i>x</i> – 3) 2] =
–log 10
log (4<i>x</i> – 6) =
log 10–1
4<i>x</i> – 6 =
10–1
4<i>x</i> =
+ 6
4<i>x</i> =
<i>x</i> =
40
61
<b>13.</b> log4 (<i>x</i> + 3) + log4 (<i>x</i> –
3) = 2
log4 [(<i>x</i> + 3)(<i>x</i> –
3)] = 2log4 4
log4 (<i>x</i>2 –
9) = log4 42
<i>x</i>2<sub> –</sub>
9 = 16
<i>x</i>2<sub> = 25</sub>
<i>x</i> = 5
or
<i>x</i> = –5 (rejected)
∴ <i>x</i> =5
<b>14.</b> log3 (4<i>x</i> + 9) – log3 (3<i>x</i>
– 2) = 1
log3
= log3 3
= 3
4<i>x</i> + 9 = 9<i>x</i> – 6
5<i>x</i> = 15
<i>x</i> =3
<b>15.</b> log (<i>x</i> – 1) + log (2<i>x</i> –
1) = 1
log [(<i>x</i> – 1)(2<i>x</i> –
1)] = log 10
log (2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> + </sub>
1) = log 10
2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> +</sub>
1 = 10
2<i>x</i>2<sub> – 3</sub><i><sub>x</sub></i><sub> –</sub>
9 = 0
(<i>x</i> – 3)(2<i>x</i> +
3) = 0
<i>x</i> = 3
or
<i>x</i> =
∴ <i>x</i> =3
<b>16.</b> Let <i>y</i> = log2 (2<i>x</i> – 1),
then the equation
[log2 (2<i>x</i> – 1)]2 – 3 log2
(2<i>x</i> – 1) + 2 = 0 becomes
<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0
<i>y</i> = 1 or
<i>y</i> = 2
For <i>y</i> = 1, log2 (2<i>x</i> – 1)
= 1
2<i>x</i> – 1
= 2
<i>x</i>
=
For <i>y</i> = 2, log2 (2<i>x</i> – 1)
= 2
2<i>x</i> – 1
= 4
<i>x</i>
=
∴ <i>x</i><sub> = 2</sub>3 <sub> or 2</sub>5
<b>17.</b> Let <i>y</i> = log (<i>x</i> + 1),
[log (<i>x</i> + 1)]2<sub> – log (</sub><i><sub>x</sub></i><sub> +</sub>
1) – 12 = 0 becomes
<i>y</i>2<sub> – </sub><i><sub>y</sub></i><sub> – 12 = 0</sub>
(<i>y</i> + 3)(<i>y</i> – 4) = 0
<i>y</i> = –3 or
<i>y</i> = 4
For <i>y</i> = –3, log (<i>x</i> + 1)
= –3
<i>x</i> + 1
=
<i>x</i>
=
For <i>y</i> = 4, log (<i>x</i> + 1) =
4
<i>x</i> + 1 =
10 000
<i>x</i> =
9999
∴ <i>x</i> = <sub>1000</sub>999 or
9999
<b>18.</b> Let <i>y</i> = log (<i>x</i> – 1),
then the equation
[log (<i>x</i> – 1)]2<sub> – 3 log (</sub><i><sub>x</sub></i>
– 1) + 2 = 0 becomes
<i>y</i>2<sub> – 3</sub><i><sub>y</sub></i><sub> + 2 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 2) = 0
<i>y</i> = 1 or
<i>y</i> = 2
For <i>y</i> = 1, log (<i>x</i> – 1) =
1
<i>x</i> – 1 =
10
<i>x</i> =
11
For <i>y</i> = 2, log (<i>x</i> – 1) =
2
<i>x</i> – 1 =
100
<i>x</i> =
101
∴ <i>x</i> =11 or 101
<b>19.</b>
1
log
log
32
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (2),
log <i>x</i> = log <i>y</i> + log 10
log <i>x</i> = log 10<i>y</i>
<i>x</i> = 10<i>y</i>
……(3)
By substituting (3) into
(1), we have
10<i>y</i> – 2<i>y</i> = 32
8<i>y</i> = 32
<i>y</i> = 4
By substituting <i>y</i> = 4
into (3), we have
<i>x</i> = 10(4) = 40
∴ The solution is <i>x</i> =
40, <i>y</i> = 4.
<b>20.</b>
1
log
1
<i>x</i>
<i>y</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (2),
log <i>y</i> = log <i>x</i> – log 10
log <i>x</i> = log <i>y</i> + log 10
log <i>x</i> = log 10<i>y</i>
<i>x</i> = 10<i>y</i>
……(3)
By substituting (3) into
(1), we have
10<i>y</i> – <i>y</i> = 1
9<i>y</i> = 1
<i>y</i> =
By substituting <i>y</i> =
into (3), we have
<i>x</i> = 10(
) =
∴ The solution is <i>x</i> =
, <i>y</i> =
.
<b>1.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities in
restaurants <i>A</i> and <i>B</i>
respectively.
By the definition of
sound intensity level, we
have
60 = 10 log
0
1
and 75 = 10 log
0
2
∴ 75 – 60 = 10 log
0
2
– 10 log
0
1
0
2
= log
1
2
1
2
= 2
3
∴ The sound
intensity in
restaurant <i>B</i> is
31.6 times to that
in restaurant <i>A</i>.
<b>2.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities after
the party and during
the party respectively.
By the definition of
sound intensity level, we
have
35 = 10 log
0
1
and 67 = 10 log
0
2
∴ 35 – 67 = 10 log
0
1
– 10 log
0
0
2
0
1
log
2
1
2
1
=
5
16
= 0.000
631 (cor. to 3 sig. fig.)
∴ The sound
intensity after the
party is 0.000 631
times to that
during the party.
<b>3.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities
before adjustment and
after adjustment
respectively.
Then the sound
intensity levels before
and after adjustment
are 10 log
0
1
dB
and 10 log
0
2
dB
respectively.
∵ The sound
intensity level
increases by 5 dB
after the
adjustment.
∴ 5 = 10 log
0
– 10 log
0
1
5 = 10
0
1
0
2
1
2
1
2
= 2
1
∴ The sound
intensity after
adjustment is 3.16
times to that
before adjustment.
<b>4.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes measured
8 and 2 respectively.
By the definition of the
Richter scale, we have
8 = log <i>E</i>1 and
2 = log <i>E</i>2
i.e. <i>E</i>1 = 108 and
<i>E</i>2 = 102
∴ <sub>2</sub>
8
2
1
= 106
∴ The strength of an
earthquake
measured 8 is 106
times to that
measured 2.
<b>5.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes in the
Philippines and
Indonesia
respectively.
By the definition of the
Richter scale, we have:
For Philippines,
For
Indonesia,
7.3 = log <i>E</i>1
6.0 = log <i>E</i>2
<i>E</i>1 = 107.3
<i>E</i>2 = 106.0
∴ <sub>6</sub><sub>.</sub><sub>0</sub>
3
.
7
2
1
= 101.3
= 20.0 (cor. to
3 sig. fig.)
∴ The strength of the
earthquake in the
<b>6.</b> Let <i>I</i> be the sound
intensity of the
gathering when the
master of ceremony
does not speak, then
the sound intensity is
2<i>I</i> when the master of
ceremony speaks.
∵ The sound
intensity level in
the gathering is 30
dB.
∴ 30 = 10 log
0
Let dB be the sound
intensity level when
the master of ceremony
speaks.
∴ = 10 log
0
– 30 = 10 log
0
– 10 log
0
– 30 = 10
0
0
– 30 = 10 log 2
= 30 + 10 log 2
= 33.0 (cor. to 3
sig. fig.)
∴ The sound
intensity level is
33.0 dB when the
master of
ceremony speaks.
<b>7.</b> Let <i>I</i> be the original
sound intensity of the
∵ The original sound
intensity level is
90 dB.
∴ 90 = 10 log
0
Let dB be the sound
intensity level of the
Hi-Fi after adjustment.
∴ = 10 log
0
– 90 = 10 log
0
– 10 log
0
– 90 = 10
0
0
– 90 = 10 log 0.6
= 90 + 10 log
0.6
= 87.8 (cor. to 3
sig. fig.)
∴ The sound
intensity level of
the Hi-Fi is 87.8
dB after
adjustment.
<b>8.</b> Let <i>I</i> be the original
sound intensity of the
noise, then the sound
intensity is 1.1<i>I</i> after
adjustment.
The sound intensity
0
dB and 10 log
0
dB
respectively.
∴ 10 log
0
– 10 log
0
= 10
0
0
= 10 log 1.1
= 0.414 (cor. to 3
sig. fig.)
∴ The increase in the
sound intensity
level is 0.414 dB.
<b>9.</b> Let <i>E</i> be the relative
energy released by an
earthquake measured
5.8.
By the definition of the
Richter scale, we have
5.8 = log <i>E</i>
<i>E</i> = 105.8
∴ The relative
energy released by
an earthquake that
is 20 times to that
measured 5.8
= 20 105.8
∴ The magnitude of
the earthquake on
the Richter scale
= log (20 105.8)
=7.10 (cor. to
3 sig. fig.)
energy released by an
earthquake measured
7.2.
By the definition of the
Richter scale, we have
7.2 = log <i>E</i>
<i>E</i> = 107.2
∴ The relative
energy released by
an earthquake that
is
times to
that measured 7.2
=
107.2
∴ The magnitude of
107.2<sub>)</sub>
=6.30 (cor. to
3 sig. fig.)
5
7
7
5
1
7
5
<b> (b)</b>
3
4
3
4
3
1
4
3 4
<b>2.</b> <b>(a)</b>
36
25
25
36
5
6
5
6
125
216
125
216
1
1
2
1
3
2
1
3
2
3
2
<b>(b)</b>
3
7
7
3
7
3
343
27
343
27
1
1
3
1
3
1
3
1
1
<b>3.</b> <b>(a)</b>
4
3
2
4
1
3
2
3
1
12
3
2
3 2 3 12
<b>(b)</b>
6
7
6
7
2
3
3
1
2
3
3
1
2
1
3
6
1
2
3
6 2
<b>(c)</b>
3
50
3
50
3
3
4
18
3
1
4
3
15
3 4
3
3
5
<b> (d)</b>
<i>a</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>ab</i>
<i>b</i>
<i>a</i>
<i>ab</i>
<i>b</i>
<i>a</i>
<i>b</i>
<i>a</i>
<i>ab</i>
<i>ab</i>
<i>b</i>
<i>a</i>
1
)
(
]
)
[(
)
(
)
(
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
1
2
1
1
1
2
1
2
4
1
1
2
1
1
2
1
2
4
1
2
1
2
1
<b>4.</b> <b>(a)</b>
3
4
3
1
4
3
<i>x</i>
∴ <i>x</i><sub> = 3</sub>4
<b>(b)</b>
6
6
2
1
2
6
2
1
2
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
∴ <i>x</i> =6
<b>(c)</b> 5<i>x</i> + 1<sub> – 2(5</sub><i>x</i><sub>) =</sub>
5(5<i>x</i><sub>) – 2(5</sub><i>x</i><sub>) =</sub>
3(5<i>x</i><sub>) =</sub>
5<i>x</i><sub> =</sub>
5<i>x</i><sub> = 5</sub>–1
<i>x</i> =
1
<b>(d)</b> 2<i>x</i> + 2<sub> – 2</sub><i>x</i><sub> = 24</sub>
22<sub>(2</sub><i>x</i><sub>) – 2</sub><i>x</i><sub> = 24</sub>
(22<sub> – 1)2</sub><i>x</i><sub> = 24</sub>
3 2<i>x</i> = 24
2<i>x</i><sub> = 8</sub>
2<i>x</i><sub> = 2</sub>3
<i>x</i> =3
<b>5.</b> <b>(a)</b> ∵
000
10
1
= 10–4
∴ log
000
10
1
=4
<b>(b)</b> ∵ 0.000 000
1 = 10–7
∴ log 0.000 000
1 =7
<b>(c)</b> ∵ 64 = 82
∴ log8 64 =2
<b>(d)</b> ∵
2
1
∴
2
1
5
1
log5 <sub></sub>
<b>6.</b> <b>(a)</b> ∵ 10<i>x</i><sub> = 45</sub>
∴ <i>x</i> = log 45
=
65
.
1 (cor. to 3 sig.
fig.)
<b>(b)</b> ∵ 102<i>x</i><sub> = 20</sub>
∴ 2<i>x</i> = log
20
<i>x</i> =
651
.
0 (cor. to 3 sig.
fig.)
<b>7.</b> <b>(a)</b> log 400 – log 8 +
log 2 = log
+
log 2
= log 50 + log 2
= log (50 2)
= log 100
=2
<b>(b)</b> log 125 + log 80 =
log (125 80)
=
log 10 000
=
log 104
=
4
<b>(c)</b> log6 108 + log6 2 =
log6 (108 2)
=
log6 216
=
log6 63
=
3
<b>(d)</b> log9 9 + log9
= log9
= log9
= log9 9–1
=1
<b>(e)</b>
2
4
log
2
4
log
4
4
log
4
log
16
log
256
log
2
4
<b>(f)</b>
2
1
4
<b>8.</b> <b>(a)</b> 5<i>x</i><sub> = 10</sub>
log 5<i>x</i><sub> = log 10</sub>
<i>x </i>log 5 = 1
<i>x</i> =
5
log
1
=1.43
(cor. to 3 sig. fig.)
<b>(b)</b> 2<i>x</i> – 1<sub> = 6</sub>
log 2<i>x</i> – 1<sub> = log </sub>
6
(<i>x </i>– 1) log 2 = log
6
<i>x</i> – 1 =
2
log
6
log
<i>x</i> =
2
log
6
log
+ 1
=
58
.
3 <sub> (cor. to 3 sig. fig.)</sub>
<b>(c)</b> 32<i>x</i> + 3<sub> = 33</sub>
log 32<i>x</i> + 3<sub> = </sub>
log 33
(2<i>x </i>+ 3) log 3 =
log 33
2<i>x</i> + 3 =
3
log
33
log
2<i>x</i> =
3
log
33
log
– 3
<i>x</i> =
0913
.
0 <sub> (cor. to 3 sig. </sub>
fig.)
<b>(d)</b> log (3<i>x</i> + 1) = 2
log (3<i>x</i> + 1) = log
100
3<i>x</i> + 1 = 100
3<i>x</i> = 99
<i>x</i> =
33
<b>(e)</b> log
= –
1
log
=
log
1.1
<i>x</i> =
2
.
2
<b>(f)</b> log2 (6<i>x</i> – 4) = 5
log2 (6<i>x</i> – 4) = log2
25
6<i>x</i> – 4 = 32
6<i>x</i> = 36
<i>x</i> =6
<b>9.</b> <b>(a)</b> log 144 = log (24
32<sub>)</sub>
= log 24<sub> + </sub>
log 32
= 4 log 2 +
2 log 3
=
<i>y</i>
<i>x</i> 2
4
<b>(b)</b> log 288 = log
2
1
=
log (25<sub></sub><sub> 3</sub>2<sub>)</sub>
=
(log 25<sub> + log 3</sub>2<sub>)</sub>
=
log 2 + 2 log 3]
=
)
2
5
(
2
1 <i><sub>x</sub></i> <i><sub>y</sub></i>
<b>10.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities of
groups <i>A</i> and <i>B</i>
respectively.
By the definition of
sound intensity level, we
have
45 = 10 log
0
1
and 53 = 10 log
0
2
∴ 53 – 45 = 10 log
0
2
– 10 log
0
1
0
1
0
2
= log
1
2
1
2
= 5
4
∴ The sound
intensity of group
<i>B</i> is 6.31 times to
that of group <i>A</i>.
<b>11.</b> Let <i>I</i>1 and <i>I</i>2 be the
sound intensities of the
cassette player before
and after adjustment.
∵ The sound
intensity level
increases by 8 dB.
∴ 10 log
0
2
–
10 log
0
1
= 8
0
1
0
2
= 8
log
1
2
=
1
2
= 5
4
<i>I</i>2 = 5
4
∴ The percentage
increase of the
sound intensity:
=
1
2
1
1
1
5
4
= 531% (cor.
to 3 sig. fig.)
<b>12.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes measured
7.5 and 6.5
respectively.
By the definition of the
Richter scale, we have
7.5 = log <i>E</i>1 and
6.5 = log <i>E</i>2
i.e. <i>E</i>1 = 107.5 and
<i>E</i>2 = 106.5
∴ 6.5
5
.
7
2
1
= 10
∴ The strength of an
earthquake
measured 7.5 is 10
times to that
measured 6.5.
<b>13.</b> Let <i>E</i>1 and <i>E</i>2 be the
relative energies
released by the
earthquakes in
Indonesia and Pakistan
respectively.
By the definition of the
Richter scale, we have:
For Indonesia,
For Pakistan,
7.5 = log <i>E</i>1
4.6 = log <i>E</i>2
<i>E</i>1 = 107.5
<i>E</i>2 = 104.6
∴ <sub>4</sub><sub>.</sub><sub>6</sub>
5
.
7
2
1
= 102.9
= 794 (cor. to
3 sig. fig.)
∴ The strength of the
earthquake in
Indonesia is 794
times to that in
Pakistan.
<b>14. (a)</b> log (4<i>x</i> – 2) – log
2<i>x</i> = <i>y</i>
= <i>y</i>
= 10<i>y</i>
2<i>x</i> –
1 = <i>x</i>10<i>y</i>
<i>x</i> (2 –
<i>x</i> =<sub>2</sub> <sub>10</sub><i>y</i>
1
<b>(b)</b> When <i>y</i> = 0, <i>x</i> =
0
1
∴ A possible
solution is <i>x</i> =
1, <i>y</i> = 0 or <i>x</i> =
<i>y</i> = 1. (or any
other
reasonable
answers)
<b>15. (a)</b>
6
1
6
1
3
1
6
1
3
1
3
1
2
1
3
1
3
1
2
4
1
3
1
3
2
4
<b>(b)</b>
2
1
2
1
10
1
5
3
5
2
2
1
5
3
5
1
2
6
5 2
6 3
5
3
<b>16. (a)</b>
4
7
)
2
1
(
4
5
3
2
1
2
1
3
2
4
5
2
1
3
2
2
1
4
3
4
3
2
1
3
2
4
3
2
1
4
3
4
1
2
1
3
2
4
3
2
1
4
1
3
2
1
4
3
4 3
<b>(b)</b>
12
19
6
7
2
1
12
13
2
1
3
5
2
1
2
1
12
13
3
5
2
1
2
1
)
3
1
(
4
3
)
3
2
1
2
1
3
1
3
2
4
3
2
1
2
1
1
3
1
3
2
4
3
2
1
2
2
1
1
3 2
4
3
<b>17. (a)</b> 5<i>x </i>+ 1<sub> + 5</sub><i>x</i><sub> – 5</sub><i>x</i> – 1
= 29
(5)5<i>x</i><sub> + 5</sub><i>x</i><sub> – (5</sub>– 1<sub>)5</sub><i>x</i>
= 29
5<i>x</i><sub>(5 + 1 – 5</sub>– 1<sub>)</sub>
= 29
5<i>x</i><sub>(6 –</sub>
) = 29
5<i>x</i><sub>(</sub>
) = 29
5<i>x</i><sub> = 5</sub>
∴
<i>x</i> =1
<b>(b)</b> 3<i>x </i>+ 3<sub> – 2(3</sub><i>x </i>+ 2<sub>) + </sub>
3<i>x</i><sub> = 30</sub>
(33<sub>)3</sub><i>x</i><sub> – 2(3</sub>2<sub>)3</sub><i>x</i><sub> + </sub>
3<i>x</i><sub> = 30</sub>
3<i>x</i><sub>(27 – 18 + </sub>
1) = 30
3<i>x</i><sub>(10) = 30</sub>
3<i>x</i><sub> = 3</sub>
∴
<i>x</i> =1
<b>(c)</b> 22<i>x</i><sub> – 5(2</sub><i>x</i><sub>) + 4 = </sub>
0
(2<i>x</i><sub>)</sub>2<sub> – 5(2</sub><i>x</i><sub>) + 4 = </sub>
0
Let <i>y</i> = 2<i>x</i><sub>, the </sub>
equation becomes
<i>y</i>2<sub> – 5</sub><i><sub>y</sub></i><sub> + 4 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 4) = 0
<i>y</i> = 1
or<i>y</i> =
4
∴ 2<i>x</i><sub> = 1</sub> <sub>or</sub>
2<i>x</i><sub> = 4</sub>
2<i>x</i><sub> = 2</sub>0 <sub>or</sub>
2<i>x</i><sub> = 2</sub>2
∴ <i>x</i> =0 or
<i>x</i> =2
<b>(d)</b> 42<i>x</i><sub> – 10(4</sub><i>x</i><sub>) + 16 </sub>
= 0
(4<i>x</i><sub>)</sub>2<sub> – 10(4</sub><i>x</i><sub>) + 16 </sub>
= 0
Let <i>y</i> = 4<i>x</i><sub>, the </sub>
equation becomes
<i>y</i>2<sub> – 10</sub><i><sub>y</sub></i><sub> + 16 = 0</sub>
(<i>y</i> – 2)(<i>y</i> – 8) = 0
<i>y</i> = 2
or<i>y</i> =
8
∴ 4<i>x</i><sub> = 2</sub> <sub>or</sub>
4<i>x</i><sub> = 8</sub>
22<i>x</i><sub> = 2</sub>1 <sub>or</sub>
22<i>x</i><sub> = 2</sub>3
2<i>x</i> = 1 or
2<i>x</i> = 3
∴ <i>x</i><sub> = 2</sub>1 or
<i>x</i><sub> = 2</sub>3
<b>18. (a)</b>
2
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
From (1),
4<i>x</i> + 2<i>y</i><sub> = 4</sub>3
∴ <i>x</i> + 2<i>y</i> = 3
From (2),
162<i>x</i> – <i>y</i><sub> = 16</sub>0
∴ 2<i>x</i> – <i>y</i> = 0
<i>y</i> = 2<i>x</i>
Consider the
simultaneous
equations:
<i>x</i>
<i>y</i>
<i>y</i>
<i>x</i>
2
3
2
)
4
(
)
3
(
By substituting (4)
into (3), we have
<i>x</i> + 2(2<i>x</i>) = 3
5<i>x</i> = 3
<i>x</i> =
=
into (4), we have
<i>y</i> = 2(
)
=
∴ The solution
is <i>x</i> =
, <i>y</i> =
.
<b>(b)</b>
3
2
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
3<i>x</i> + <i>y</i><sub> = (3</sub>2<sub>)</sub>2<i>x</i> – <i>y</i>
3<i>x</i> + <i>y</i><sub> = 3</sub>4<i>x</i> – 2<i>y</i>
∴ <i>x</i> + <i>y</i> = 4<i>x</i> –
<i>y</i> = <i>x</i>
From (2),
93<i>x</i> + <i>y</i><sub> = 9</sub>1
∴ 3<i>x</i> + <i>y</i> = 1
Consider the
simultaneous
equations:
1
3<i>x</i> <i>y</i>
<i>x</i>
<i>y</i>
)
4
(
)
3
(
By substituting (3)
into (4), we have
3<i>x</i> + <i>x</i> = 1
4<i>x</i> = 1
<i>x</i> =
By substituting <i>x</i>
=
into (3), we
have <i>y</i> =
∴ The solution
is <i>x</i> =
<b>19. (a)</b>
1
<b>= log</b>
625
1
– log 4
<b>= log</b>
<b>= log</b>
= log 10–2
=2
<b>(b)</b>
7
1
<b>(c)</b>
1
<b>(d)</b>
2
2
4
<b>20. (a)</b>
2
2
2
4
2
2
8
4
8
4
<b>(b)</b>
3
4
2
<b>(c)</b>
3
2
2
1
3
1
3
1
3
1
2
1
2
1
2
1
3
1
3
1
3
1
2
1
2
1
2
1
3
1
3
1
2
1
2
1
3
3
<b>(d)</b>
1
2
2
2
2
2
2
2
2
<b>21. (a)</b> log (3<i>x</i> – 2) + log
2 = 1
log [(3<i>x</i> – 2)
2] = log 10
(3<i>x</i> – 2)
2 = 10
3<i>x</i> –
2 = 5
<i>x</i><sub> = 3</sub>7
<b>(b)</b> log 2<i>x</i> + 6 log 2 =
log 96
log 2<i>x</i> + log 26<sub> = </sub>
log 96
log (2<i>x</i> 26) =
log 96
2<i>x </i> 26<sub> = </sub>
96
128<i>x</i> =
96
<i>x</i> =
4
3
<b>(c)</b> log3 (4<i>x</i> – 2) – log3
(<i>x</i> + 1) = 1
log3
= log3 3
= 3
4<i>x</i> – 2 = 3(<i>x</i> + 1)
4<i>x</i> – 2 = 3<i>x</i> + 3
<i>x</i> =5
<b>(d)</b> log5 (3<i>x</i> + 3) –
log5 (<i>x</i> – 1) = 2 log5
5
log5
= log5 2 2
1
= 5
3<i>x</i> + 3 = 5(<i>x</i> – 1)
3<i>x</i> + 3 = 5<i>x</i> – 5
2<i>x</i> = 8
<i>x</i> =4
<b>(e)</b> Let <i>y</i> = log3 (2<i>x</i> +
[log3 (2<i>x</i> + 3)]2 – 4
log3 (2<i>x</i> + 3) + 3 = 0
becomes
<i>y</i>2<sub> – 4</sub><i><sub>y</sub></i><sub> + 3 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 3) = 0
<i>y</i> = 1
or<i>y</i> =
3
For <i>y</i> = 1, log3 (2<i>x</i>
+ 3) = 1
2<i>x</i> + 3 = 3
2<i>x</i> = 0
<i>x</i> = 0
For <i>y</i> = 3, log3 (2<i>x</i>
+ 3) = 3
2<i>x</i> + 3 = 27
2<i>x</i> = 24
<i>x</i> = 12
∴ <i>x</i> =0<sub> or</sub>
12
<b>22. (a)</b>
2
2
3
2
log
2
log
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
log <i>x</i> + log <i>y</i>2
= log 100
log <i>xy</i>2
= log 100
<i>xy</i>2
= 100
……(3)
From (2),
3<i>x</i> = 2 + 2<i>y</i>
<i>x</i> =
……(4)
By substituting (4)
into (3), we have
<i>y</i>2<sub> = 100</sub>
2<i>y</i>2<sub> + </sub>
2<i>y</i>3<sub> = 300</sub>
<i> y</i>3<sub> + </sub><i><sub>y</sub></i>2<sub> – </sub>
150 = 0
(<i>y</i> – 5)(<i>y</i>2<sub> + 6</sub><i><sub>y</sub></i><sub> + </sub>
<i>y</i> = 5 or
<i>y</i> =
=
By substituting <i>y</i>
= 5 into (4), we have
<i>x</i> =
= 4
∴ The solution
is <i>x</i> = 4, <i>y</i> = 5.
<b>(b)</b>
1
2
log
log
1
)
5
6
log(
<i>xy</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
6<i>x</i> – 5<i>y</i> = 10
6<i>x</i> = 10
+ 5<i>y</i>
<i>x</i> =
……(3)
From (2),
log
log 10
= 10
<i>xy</i> = 20
<i>y</i> = 20
10<i>y</i> + 5<i>y</i>2
= 120
<i>y</i>2<sub> + 2</sub><i><sub>y</sub></i><sub> – 24 </sub>
= 0
(<i>y</i> – 4)(<i>y </i>+ 6)
= 0
<i>y</i>
= 4 or <i>y</i>
= –6
By substituting <i>y</i>
= 4 into (3), we have
<i>x</i> =
= 5
By substituting <i>y</i>
= –6 into (3), we have
<i>x</i> =
=
∴ The solution
is <i>x</i> = 5, <i>y</i> = 4 or <i>x</i> =
sound intensity, then
the increased sound
intensity is 1.8<i>I</i>.
The change of the
corresponding
sound intensity
level
=
0
0
dB
= 10
0
0
dB
= (10 log 1.8) dB
= 2.55 dB (cor. to 3
sig. fig.)
∴ The corresponding
sound intensity
level is increased
by 2.55 dB.
<b>24. (a)</b> Let <i>E</i> be the
relative energy
released by an
earthquake
measured 2.
By the definition
of the Richter scale, we
have
2 = log <i>E</i>
<i>E</i> = 102
∴ The relative
energy
released by
the
earthquake in
∴ The
magnitude of
the
earthquake in
City <i>A</i> on the
Richter scale
= log (1.5
102<sub>)</sub>
=2.18
(cor. to 3 sig. fig.)
<b>(b)</b> Let <i>E</i> be the
relative energy
released by an
earthquake
measured 8.
By the definition
of the Richter scale, we
have
8 = log <i>E</i>
the
earthquake in
City <i>B</i> is half
of that
measured 8
= 0.5 108
∴ The
magnitude of
the
earthquake in
City <i>B</i> on the
Richter scale
= log (0.5
108<sub>)</sub>
=7.70
(cor. to 3 sig. fig.)
4
4
3
2
3
4
3
2
3
4
1
3
3
2
1
4 3
3
<b>2.</b> <b>Answer: C</b>
log 0.18 = log
= log 18 – log
100
= log (2 32<sub>) </sub>
– log 100
= log 2 + log
32<sub> – log 100</sub>
= log 2 + 2 log
3 – log 100
=
2
2
<i>b</i>
<i>a</i>
<b>3.</b> <b>Answer: C</b>
9(32<i>x</i><sub>) – 10(3</sub><i>x</i><sub>) + 1 = 0</sub>
9(3<i>x</i><sub>)</sub>2<sub> – 10(3</sub><i>x</i><sub>) + 1 = 0</sub>
Let <i>y</i> = 3<i>x</i><sub>, the equation</sub>
becomes
9<i>y</i>2<sub> – 10</sub><i><sub>y</sub></i><sub> + 1 = 0</sub>
(9<i>y</i> – 1)(<i>y</i> – 1) = 0
<i>y</i> =
or
<i>y</i> = 1
∴ 3<i>x</i><sub> =</sub>
or 3<i>x</i><sub> = </sub>
1
3<i>x</i><sub> = 3</sub>–2 <sub>or 3</sub><i>x</i><sub> = </sub>
30
∴ <i>x</i> =2 <sub>or</sub>
<i>x</i> =0
<b>4.</b> <b>Answer: A</b>
2<i>x</i> <i>y</i>
<i>y</i>
<i>x</i>
)
2
(
)
1
(
From (1),
3<i>x</i> + <i>y</i><sub> = 3</sub>3
∴ <i>x</i> + <i>y</i> = 3
From (2),
22<i>x</i> – <i>y</i><sub> = 2</sub>0
∴ 2<i>x</i> – <i>y</i> = 0
Consider the
simultaneous
equations:
0
2
3
<i>y</i>
<i>x</i>
<i>y</i>
<i>x</i>
)
4
(
)
3
(
(3) + (4),
(<i>x</i> + <i>y</i>) + (2<i>x</i> – <i>y</i>) =
3 + 0
3<i>x</i>
= 3
<i>x</i> =
1
By substituting <i>x</i> =1
into (3), we have
1 + <i>y</i> = 3
<i>y</i> = 2
∴ The solution is <i>x</i> =
1, <i>y</i> = 2.
<b>5. Answer: C</b>
32<i>x</i><sub> = 2</sub>3<i>y</i>
log 32<i>x</i><sub> = log 2</sub>3<i>y</i>
log (32<sub>)</sub><i>x</i><sub> = log (2</sub>3<sub>)</sub><i>y</i>
<i>x</i> log 32<sub> = </sub><i><sub>y</sub></i><sub> log 2</sub>3
<i>x</i> log 9 = <i>y</i> log 8
9
log
8
log
<i>y</i>
<i>x</i>
<i>x</i> : <i>y </i>= <sub>log</sub>log<sub>9</sub>8
<b>6.</b> <b>Answer: C</b>
log3 (3<i>x</i> + 12) – log3
(2<i>x</i> + 1) = 1
log3
= log3 3
= 3
3<i>x</i> + 12 = 3(2<i>x</i> + 1)
3<i>x</i> + 12 = 6<i>x</i> + 3
3<i>x</i> = 9
<i>x</i> =3
<b>7.</b> <b>Answer: D</b>
(log <i>x</i>)2<sub> – 2 log </sub><i><sub>x</sub></i>2<sub> + 3 =</sub>
0
(log <i>x</i>)2<sub> – 4 log </sub><i><sub>x</sub></i><sub> + 3 = </sub>
0
Let <i>y</i> = log <i>x</i>, then the
equation (log <i>x</i>)2<sub> – 4 </sub>
log <i>x</i> + 3 = 0 becomes
<i>y</i>2<sub> – 4</sub><i><sub>y</sub></i><sub> + 3 = 0</sub>
(<i>y</i> – 1)(<i>y</i> – 3) = 0
<i>y</i> = 1 or
<i>y</i> = 3
For <i>y</i> = 1, log <i>x</i> = 1
<i>x</i> = 10
For <i>y</i> = 3, log <i>x</i> = 3
<i>x</i> = 1000
∴ <i>x</i> =10 or
1000
<b>8.</b> <b>Answer: A</b>
Since
2
1
undefined for <i>x</i> 0,
2
1
not cut the <i>y</i>-axis.
∴ C and D cannot be
the answer.
When <i>x</i> =
2
1
∴ The graph passes
through the point (
1).
∴ The answer is A.
<b>9.</b> <b>Answer: B</b>
When <i>x</i> = 0, <i>y</i> = <i>a</i>0<sub> = 1.</sub>
∴ The graph of <i>y</i> =
<i>ax</i><sub> passes through </sub>
the point (0, 1).
∴ III cannot be the
answer.
<b>10. Answer: D</b>
Since the graph cuts
the <i>y</i>-axis, it cannot be
a logarithmic function.
∴ A and C cannot be
the answer.
Read from the graph,
the function passes
through the point (1,
3).
The point (1, 3)
satisfies the function <i>y</i>
= 3<i>x</i><sub> but does not </sub>
satisfy the function <i>y</i> =
10<i>x</i><sub>.</sub>
∴ The answer is D.
<b>11. Answer: B</b>
<i>f</i>(5 +2<i>x</i>)<i> f</i>(5 – 2<i>x</i>) =
52(5 +2<i>x</i>) + 1<sub></sub><sub>5</sub>2(5 – 2<i>x</i>) + 1
=
510 +4<i>x</i> + 1+ 10 – 4<i>x</i> + 1
=
22
5
<b>12.</b> Answer: B
<i>x</i>4 log <i>x</i><sub> = 10</sub>
log <i>x</i>4 log <i>x</i><sub> = 1</sub>
4 log <i>x</i> log <i>x</i> = 1
(log <i>x</i>)2<sub> =</sub>
log <i>x</i> =
or
log <i>x</i> =
<i>x</i> = 2
1
25<i>b</i><sub> = 10</sub>
log 4<i>a</i><sub> = 1</sub> <sub>and</sub>
log 25<i>b</i><sub> = 1</sub>
<i>a </i>log 4 = 1 and
<i>b </i>
log 25 = 1
= log 4 and
= log 25
∴
+
= log 4
+ log 25
= log (4
25)
= log 100
=2
<b>2.</b> ∵ log<i>xt</i> = 6
∴ <i>x</i>6<sub> = </sub><i><sub>t</sub></i>
∵ log<i>yt</i> = 10
∴ <i>y</i>10<sub> = </sub><i><sub>t</sub></i>
∴ <i>z</i>15<sub> = </sub><i><sub>t</sub></i>
(<i>xyz</i>)60<sub> = </sub><i><sub>x</sub></i>60<i><sub>y</sub></i>60<i><sub>z</sub></i>60
= (<i>x</i>6<sub>)</sub>10<sub>(</sub><i><sub>y</sub></i>10<sub>)</sub>
6<sub>(</sub><i><sub>z</sub></i>15<sub>)</sub>4
= <i>t</i>10<i><sub>t</sub></i> 6<i><sub>t</sub></i>4
= <i>t</i>20
∴ log<i>xyzt</i>20 = 60
20 log<i>xyzt</i> = 60
log<i>xyzt</i> = 3
∴ <i>d</i> =3
<b>3.</b> <i>S</i> = log1443 2 + log144
6 <sub>3</sub>
= log144 <sub>3</sub>
1
6
1
= log144 <sub>6</sub>
1
2
log144 6
1
log144 4 +
log144 3
=
(log144 4 +
log144 3)
=
log144 12
log144 <sub>2</sub>
1
=