Chun Đề Bồi Dưỡng Học Sinh Giỏi Lớp 12
Chun đề I: Ứng Dụng Đạo Hàm Trong Các Bài Tốn Đại Số
I.Các vài tốn liên quan đến nghiệm của pt-bpt:
Định lí 1: Số nghiệm của pt f(x)=g(x) chính là số giao điểm của hai đồ thị y=f(x) và
y=g(x)
Định lí 2: Nếu hàm số y=f(x) lt trên D và
min ( )
x D
m f x
∈
=
,
ax ( )
x D
M M f x
∈
=
thì pt: f(x)=k có
nghiệm khi và chỉ khi
m k M≤ ≤
Định lí 3: Bất phương trình
( ) ( )f x g x≥
nghiệm đúng mọi x thuộc D khi và chỉ khi
( ) ( )
x D x D
Min f x Max g x
∈ ∈
≥
Các ví dụ:
Bài 1:Tìm m để pt sau có nghiệm:
2 2
1 1x x x x m+ + − − + =
(HSG Nghệ an 2005)
Lời giải: Xét hàm số
2 2
( ) 1 1f x x x x x
= + + − − +
có tập xác định là D=R
( )
( )
+ −
= − ⇒ = ⇔
+ + − +
+ − + = − + +
⇒ + + = − + + ⇔ =
÷ ÷
2 2
2 2
2 2
2 2
2 1 2 1
'( ) ' 0
2 1 2 1
(2 1) 1 2 1 1 (1)
1 1 3 1 1 3
[( - ) ] [( ) ] 0 thay vào (1)ta thấy không
2 2 4 2 2 4
thỏa mãn. Vậy f'(x)=0 vô nghiệm, mà f'(0)=1>0, do
x x
f x f x
x x x x
x x x x x x
x x x x x
→ ∞
→ ∞ →−∞
∀ ∈
= = −
+ + + − +
⇔ < <
2 2
x +
x +
đó f'(x)>0 x
2
Mặt khác: Lim ( ) = Lim 1; Lim ( ) 1
1 1
Vậy pt đã cho có nghiệm -1 1
x
R
x
f x f x
x x x x
m
Bài 2:Tìm tất cả các giá trị của a để pt:
2
1 cosax x+ =
có đúng một nghiệm
0;
2
x
π
∈
÷
(Đề thi HSG tỉnh Hải Dương Lớp 12 năm 2005)
Giải: Ta thấy để pt có nghiệm thì
0a ≤
( )
π
π π
−
⇔ ⇔ = = ∈
÷
÷
−
= < ∀ ∈ ⇒
÷ ÷
2
2 2
2 2
sin
cos 1 sin
2
Khi đó pt =a -2 . Xét hàm số ( ) với t 0;
4
2
cos -
.cos sin
ta có '( ) = 0 với t 0; ( ) ngb trên 0;
4 4
t
x
x t
a f t
t
x
x
t t tgt
t t t
f t f t
t
Nguyễn Tất Thu
Chun Đề Bồi Dưỡng Học Sinh Giỏi Lớp 12
π π
π π
π
π
π π
→
= ⇒ < < ⇒ < < ∀ ∈
÷
∈ ⇔ < − < ⇔ − < < −
2
2 2
0
2 2
sin
2 2 2 2 8
2
Mà f( )= và ( ) 1 ( ) 1 1 (0; )
4 2
2
8 1 4
Vậy pt đã cho có đúng 1 nghiệm (0; ) 2 1
2 2
t
x
Lim f t f t x
x
x a a
Bài 3: Cho phương trình
+ − − − + + =
6 5 4 3 2
3 6 ax 6 3 1 0x x x x x
. Tìm tất cả các giá trị
của tham số a, để phương trình có đúng 2 nghiệm phân biệt. (HSG Nam Định 2004)
Giải: Vì
0x =
khơng phải là nghiệm pt. Chia hai vế pt cho x
3
ta được
+ + + − + − +
− + − − = ⇔ + − = +
− + = ∆ ≥ ⇔ ≥
= ±
3 2
3 2
2 2 3 2
2 2
1 1 1 1
( ) 3( ) 6( ) a=0 (1). Đặt t= ta thu được pt
( 3) 3( 2) 6 3 9 6 (1')
Từ cách đặt t ta có: 1 0 (2)pt này có = - 4 0 2. Từ đây ta có
*Nếu 2 thì pt
x x x x
x x
x x
t t t t a t t t a
x tx t t
t
>
⇔ ±
đã cho có một nghiệm
*Nếu 2 thì với mỗi giá trò của cho tương ứng hai giá trò của x
Nên pt (1) có đúng hai nghiệm phân biệt pt(1') có đúng hai nghiệm t= 2
hoặc (1') có đúng
t t
>
= +
± ⇒
= +
>
= + − > = + − = −
3 2 2
1nghiệm thỏa mãn 2
2 6
1: Nếu (1') có đúng hai nghiệm t= 2 vô nghiệm
22 6
2 :(1') có đúng một nghiệm 2
Xét hàm số ( ) 3 9 với 2, ta có '( ) 3 6 9 3( 1
t t
a
TH
a
TH t
f t t t t t f t t t t +)( 3)t
Ta có bảng biến thiên:
Dựa vào bảng bt ta thấy pt(1’) có đúng một nghiệm
> 2t
khi và chỉ khi
< + < ⇔ − < <2 6 22 4 16a a
Nguyễn Tất Thu
f(t)
f’(t)
x
-2 21-3
0
0
+-
2
22
27
Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Lớp 12
Bài 4:Cho hàm số
= − + + +( )( )y x x a x b
với a,b là hai số thực dương khác nhau cho
trước.Cmr với mỗi số thực
( )
∈ 0;1s
đếu tồn tại duy nhất số thực
α α
+
> =
÷
1
0 : ( )
2
s s
s
a b
f
( HSG QG bảng A năm 2006)
Giải: Trước hết ta cos BĐT :
+ +
≤ ( )
2 2
s s
s
a b a b
(1) ta có thể cm (1) bằng hàm số hoặc
bằng BĐT Bécnuli
Áp dụng BĐT Côsi và (1) ta có :
1
( )
2 2
s s
s
a b a b
ab
+ +
< <
(*) (do
a b≠
)
Mặt khác ta có:
2 2 ( )( )
'( )
2 ( )( )
x a b x a x b
f x
x a x b
+ + − + +
=
+ +
ta dễ dàng cm được f’(x) >0 mọi
x>0 suy ra f(x) đồng biến với x>0 nên
0
( ) ( ) ( )
2
x
x
a b
Lim f x ab f x Lim f x
+
→+∞
→
+
= ≤ ≤ =
(**)
Vì f(x) liên tục khi x>0 nên từ (*) và (**) ta có điều phải cm
Bài tập:
1. Tìm m để pt sau có nghiệm duy nhất thuộc
π
[0; ]
4
− + − + − − − =
3 2
(4 6 )sin 3(2 1)sin 2( 2)sin cos (4 3)cos 0m x m x m x x m x
2.Tìm m để số nghiệm của pt:
2 2 4 2
15 2(6 1) 3 2 0x m x m m− + − + = không nhiều hơn số
nghiệm của pt:
2 3 6 8
(3 1) 12 2 6 (3 9) 2 0,25
x m m
m x x
− + + = − −
(HSG Nghệ an 1998)
3. Tìm tất cả các giá trị a để bpt:
2
ln(1 ) x x ax+ ≥ −
nghiệm đúng
0x∀ ≥
4. a)Cmr nếu a >0 là số sao cho bpt:
1
x
a x≥ +
đúng với mọi
0x
≥
thì
a e≥
b) Tìm tất cả các giá trị của a để :
1
x
a x x≥ + ∀
(HSG 12 Nam Định 2006)
Nguyễn Tất Thu
Chun Đề Bồi Dưỡng Học Sinh Giỏi Lớp 12
II.Giải pt bằng phương pháp hàm số:
Định lí 1:Nếu hàm số y=f(x) ln đb (hoặc ln ngb) thì số nghiệm của pt : f(x)=k
Khơng nhiều hơn một và f(x)=f(y) khi và chỉ khi x=y
Định lí 2: Nếu hàm số y=f(x) ln đb (hoặc ln ngb) và hàm số y=g(x) ln ngb (hoặc
ln đb) trên D thì số nghiệm trên D của pt: f(x)=g(x) khơng nhiều hơn một
Định lí 3:Cho hàm số y=f(x) có đạo hàm đến cấp n và pt
( )
( ) 0
k
f x =
có m nghiệm, khi đó
pt
( 1)
( ) 0
k
f x
−
=
có nhiều nhất là m+1 nghiệm
Các ví dụ:
Bài 1:Giải pt:
2 2
3 (2 9 3) (4 2)( 1 1) 0x x x x x+ + + + + + + =
(Olympic 30-4 ĐBSCL 2000)
Giải: Ta thấy pt chỉ có nghiệm trong
1
( ;0)
2
−
( )
2 2
2 2
3 (2 ( 3 ) 3) (2 1)(2 (2 1) 3)
(2 3) (2 3) (1)
pt x x x x
u u v v
⇔ − + − + = + + + +
⇔ + + = + +
Với u=-3x, v=2x+1; u,v>0. Xét hàm số
4 2
( ) 2 3f t t t t
= + +
với t>0
Ta có
3
4 2
2 3
'( ) 2 0 0 ( ) ( )
3
t t
f t t f u f v u v
t t
+
= + > ∀ > ⇒ = ⇔ =
+
(1)
⇔
u=v
⇔
-3x=2x+1
1
5
x⇔ = −
là nghiệm duy nhất của pt
Bài 2: Giải pt:
π π
+ ∈
÷
2
osx=2 với - ;
2 2
tg x
e c x
(HSG Lớp 12 Nam Định 2006)
Giải: Xét hàm số :
π π
= + ∈
÷
2
( ) osx với - ;
2 2
tg x
f x e c x
, ta có
−
÷
= − =
÷
2
2
tg 3
2 3
1 2e os
'( ) 2 . sin sin
cos os
x
tg x
c x
f x tgx e x x
x c x
Vì
≥ > >
2
3
2 2 os 0
tg x
e c x
Nên dấu của f’(x) chính là dấu của sinx. Từ đây ta có
≥ =( ) (0) 2f x f
Vậy pt đã cho có nghiệm duy nhất x=0
Bài 3: Giải pt:
+ = +2003 2005 4006 2
x x
x
(HSG Nghệ an 2005)
Giải: Xét hàm số :
= + − −( ) 2003 2005 4006 2
x x
f x x
Ta có:
= + −'( ) 2003 ln2003 2005 ln2005 4006
x x
f x
= + > ∀ ⇒ =
⇒ ⇒
2 2
''( ) 2003 ln 2003 2005 ln 2005 0 "( ) 0 vô nghiệm
f'(x)=0 có nhiều nhất là một nghiệm f(x)=0 có nhiều nhất là hai nghiệm
x x
f x x f x
Nguyễn Tất Thu
Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Lớp 12
Mà ta thấy f(1)=f(0)=0 nên pt đã cho có hai nghiệm x=0 và x=1
Bài 4: Giải pt:
= + + +
3
3 1 log (1 2 )
x
x x
(TH&TT)
Giải: Đk: x>-1/2
⇔ + = + + + ⇔ + = + + +
3 3 3
3 1 2 log (1 2 ) 3 log 3 1 2 log (1 2 )
x x x
pt x x x x x
(1)
Xét hàm số:
= +
3
( ) logf t t t
ta có f(t) là hàm đồng biến nên
⇔ = + ⇔ = + ⇔ − − =(1) (3 ) (1 2 ) 3 2 1 3 2 1 0 (2)
x x x
f f x x x
Xét hàm số:
= − − ⇒ = − ⇒ = >
2
( ) 3 2 1 '( ) 3 ln3 2 "( ) 3 ln 3 0
x x x
f x x f x f x
⇒ =( ) 0f x
có nhiều nhất là hai nghiệm, mà f(0)=f(1)=0 nên pt đã cho có hai nghiệm
x=0 và x=1
Bài 5: Giải hệ pt:
π
>
sinx-siny=3x-3y (1)
x+y= (2)
5
, 0 (3)x y
Giải: Từ (2) và (3) ta có :
π
∈, (0; )
5
x y
⇔(1) sinx-3x=siny-3y
. Xét hàm số f(t)=sint-3t với
π
∈(0; )
5
t
ta có f(t) là hàm nghịch
biến nên f(x)=f(y)
⇔
x=y thay vào (2) ta có
π
= =
10
x y
là nghiệm của hệ
Bài 6: Giải hệ:
− = −
+ − = − +
(1)
1 1 8 (2)
tgx tgy y x
y x y
(30-4 MOĐBSCL 2005)
Giải: Đk:
≥ −
≥ +
1
8
y
x y
(*)
(1)
tgx x tgy y⇔ + = +
x y⇔ =
(do hàm số
( ) f t tgt t= +
là hàm đồng biến)
Thay vào (2) ta có:
+ − = − + ⇔ + = − + +1 1 8 1 8 1y y y y y y
⇔ + = − + + − + + ⇔ + = − +
≥ ≥
⇔ − = + ⇔ ⇔ ⇔ =
− + = + − − =
2 2
1 8 2 8 1 8 4 4 8
8 8
3 3
3 8 4 8 8
9 48 64 16 128 9 64 64 0
y y y y y y y y
y y
y y y
y y y y y
Vậy
8 x y= =
là nghiệm duy nhất của hệ đã cho
Nguyễn Tất Thu