Tải bản đầy đủ (.doc) (9 trang)

Gián án Đề&đáp án thi thử Toán 2011 (đề 3)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (225.64 KB, 9 trang )

é THI thử I HC lần ii
NM học: 2010-2011
Mụn thi : TON
làm bài:180 phútThời gian (không kể thời gian giao đề)
PHN CHUNG CHO TT C TH SINH (7,0 im)
Cõu I:(2 im) Cho hm s y = x
3
+ 3x
2
+ mx + 1 cú th l (C
m
); ( m l tham s)
1. Kho sỏt s bin thiờn v v th hm s khi m = 3.
2. Xỏc nh m (C
m
) ct ng thng: y = 1 ti ba im phõn bit C(0;1), D, E
sao cho cỏc tip tuyn ca (C
m
) ti D v E vuụng gúc vi nhau.
Cõu II:(2 im)
1. Giai hờ phng trinh:
2 0
1 2 1 1
x y xy
x y

=


=



2. Tìm
);0(


x
thoả mãn phơng trình: cotx 1 =
xx
x
x
2sin
2
1
sin
tan1
2cos
2
+
+
.
Cõu III: (2 im)
1. Trờn cnh AD ca hỡnh vuụng ABCD cú di l a, ly im M sao cho AM = x (0 < x a).
Trờn ng thng vuụng gúc vi mt phng (ABCD) ti A, ly im S sao cho SA = 2a.
a) Tớnh khong cỏch t im M n mt phng (SAC).
b) Kẻ MH vuông góc với AC tại H . Tìm vị trí của M để thể tích khối chóp SMCH lớn nhất
2. Tớnh tớch phõn: I =
2
4
0
( sin 2 )cos2x x xdx


+

.
Cõu IV: (1 im) : Cho các số thực dơng a,b,c thay đổi luôn thoả mãn : a+b+c=1.
Chng minh rng :
2 2 2
2.
a b b c c a
b c c a a b
+ + +
+ +
+ + +

PHN RIấNG (3 im) ( Chú ý!:Thí sinh chỉ đợc chọn bài làm ở một phần)
A. Theo chng trỡnh chun
Cõu Va : 1.Trong mặt phẳng Oxy cho tam giác ABC biết A(2; - 3), B(3; - 2), có diện tích bằng
3
2

trọng tâm thuộc đờng thẳng

: 3x y 8 = 0. Tìm tọa độ đỉnh C.
2.Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1;4;2),B(-1;2;4)
và đờng thẳng

:
1 2
1 1 2
x y z +

= =

.Tìm toạ độ điểm M trên

sao cho:
2 2
28MA MB
+ =
Cõu VIa : Giải bất phơng trình:
32
4
)32()32(
1212
22

++
+
xxxx
B. Theo chng trỡnh Nõng cao
Cõu Vb : 1. Trong mpOxy, cho ng trũn (C): x
2
+ y
2
6x + 5 = 0. Tỡm M thuc trc tung sao cho qua
M k c hai tip tuyn ca (C) m gúc gia hai tip tuyn ú bng 60
0
.
2.Trong khụng gian vi h ta Oxyz, cho im M(2 ; 1 ; 0) v ng thng d với
d :
x 1 y 1 z

2 1 1
+
= =

.Vit phng trỡnh chớnh tc ca ng thng i qua im M,
ct v vuụng gúc vi ng thng d và tìm toạ độ của điểm M đối xứng với M qua d
Cõu VIb : Gii h phng trỡnh
3 3
log log 2
2 2
4 4 4
4 2 ( )
log ( ) 1 log 2 log ( 3 )
xy
xy
x y x x y

= +


+ + = + +


....Ht.
(Cán bộ coi thi không giải thích gì thêm)

Hớng dẫn chấm môn toán
C©u
ý
Néi Dung

§iĨm
I 2
1 Kh¶o s¸t hµm sè (1 ®iĨm) 1
y = x
3
+ 3x
2
+ mx + 1 (C
m
)
1. m = 3 : y = x
3
+ 3x
2
+ 3x + 1 (C
3
)
+ TXĐ: D = R
+ Giới hạn:
lim , lim
x x
y y
→−∞ →+∞
= −∞ = +∞
0,25
+ y’ = 3x
2
+ 6x + 3 = 3(x
2
+ 2x + 1) = 3(x + 1)

2
≥ 0; ∀x


hµm sè ®ång biÕn trªn R
0,25
• Bảng biến thiên:

0,25
+ y” = 6x + 6 = 6(x + 1)
y” = 0 ⇔ x = –1

tâm đối xứng U(-1;0)
* Đồ thò (C
3
):
Qua A(-2 ;-1) ; U(-1 ;0) ; A’(0 ;1)
0,25
2 1
Phương trình hoành độ giao điểm của (C
m
) và đường thẳng y = 1 là:
x
3
+ 3x
2
+ mx + 1 = 1 ⇔ x(x
2
+ 3x + m) = 0 ⇔
=



+ + =

2
x 0
x 3x m 0 (2)
0,25
* (C
m
) cắt đường thẳng y = 1 tại C(0;1), D, E phân biệt:
⇔ Phương trình (2) có 2 nghiệm x
D
, x
E
≠ 0.



∆ = − >



 
<
+ × + ≠



2

m 0
9 4m 0
4
m
0 3 0 m 0
9
(*)
0,25
Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là:
k
D
=y’(x
D
)=
+ + = − +
2
D D D
3x 6x m (3x 2m);
k
E
=y’(x
E
)=
+ + = − +
2
E E E
3x 6x m (3x 2m).
0,25
Các tiếp tuyến tại D, E vuông góc khi và chỉ khi: k
D

k
E
= –1
⇔ (3x
D
+ 2m)(3x
E
+ 2m) =-1
⇔ 9x
D
x
E
+6m(x
D
+ x
E
) + 4m
2
= –1
⇔ 9m + 6m(–3) + 4m
2
= –1 (vì x
D
+ x
E
= –3; x
D
x
E
= m theo đònh lý Vi-ét).

⇔ 4m
2
– 9m + 1 = 0 ⇔
9 65
8
9 65
8
m
m

+
=




=


 So s¸nhĐk (*): m =
( )

1
9 65
8
0,25
II 2
1 1
1. §k:
1

1
2
x
y







(1)

( ) 0 ( )( 2 ) 0
2 0
2
0( )
x y y xy x y x y
x y
x y
x y voly
⇔ − − + = ⇔ + − =

− =
⇔ ⇔ =


+ =

0,5

⇔ x = 4y Thay vµo (2) cã

4 1 2 1 1 4 1 2 1 1
4 1 2 1 2 2 1 1 2 1 2 2 1
1
( )
2 1 0
2
2
5 10
2 1 2
( )
2
y y y y
y y y y y
y tm
y
x
x
y
y tm
− − − = ⇔ − = − +
⇔ − = − + − + ⇔ − = −

=


− =
=


⇔ ⇔ ⇒



=

− =



=



0,25
V©y hƯ cã hai nghiƯm (x;y) = (2;1/2) vµ (x;y) = (10;5/2) 0,25
2 1
®K:



−≠





≠+

1tan

02sin
0cossin
02sin
x
x
xx
x
PT
xxx
xx
xx
x
xx
cossinsin
sincos
cos.2cos
sin
sincos
2
−+
+
=



xxxxxx
x
xx
cossinsincossincos
sin

sincos
22
−+−=


0,25



)2sin1(sinsincos xxxx
−=−


0)1sincos)(sinsin(cos
2
=−−−
xxxxx



0,25



0)32cos2)(sinsin(cos
=−+−
xxxx

(cos )( 2 sin(2 ) 3) 0
4

x sinx x
π
⇔ − + − =

cos 0
2 sin(2 ) 3( )
4
x sinx
x voly
π
− =




+ =


0,25


0sincos =− xx


tanx = 1
)(
4
Zkkx
∈+=⇔
π

π
(tm®k)
Do
( )
4
0;0
π
π
=⇒=⇒∈
xkx
0,25
III 2
1 1
Do
( )
( ) ( )
( )
SA ABCD
SAC ABCD
SA SAC


⇒ ⊥



Lai cã
( ) ( )
( ) ( , ) .sin 45
2

o
MH AC SAC ABCD
x
MH SAC d M SAC MH AM
⊥ = ∩
⇒ ⊥ ⇒ = = =
0,25
Ta cã

0
. 45 2
2 2
1 1
. ( 2 )
2 2
2 2
1 1
. 2 ( 2 )
3 6
2 2
MHC
SMCH MCH
x x
AH AM cos HC AC AH a
x x
S MH MC a
x x
V SA S a a



= = ⇒ = − = −
⇒ = = −
⇒ = = −

O,5
Tõ biÓu thøc trªn ta cã:

[ ]
3
2
2
1
2 2
3 2 6
2
2 2
SMCH
x x
a
a
V a
x x
a
x a
+ −
≤ =
⇔ = −
⇔ =



M trïng víi D
0,25
2 1

I =
4 4 4
2 2
1 2
0 0 0
( sin 2 ) 2 2 sin 2 2x x cos xdx xcos xdx xcos xdx I I
π π π
+ = + = +
∫ ∫ ∫
0,25

×