Tải bản đầy đủ (.pdf) (79 trang)

Nghiên cứu phương pháp sản xuất và một số đặc tính của dịch đạm thủy phân từ nội tạng hải sâm holothuroidea

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (8.07 MB, 79 trang )

...

ĐẠI HỌC ĐÀ NẴNG
TRƯỜNG ĐẠI HỌC BÁCH KHOA
---------------------------------------

NGUYỄN THỊ ÁNH

NGUYỄN THỊ ÁNH

CÔNG NGHỆ SINH HỌC

C
C

NGHIÊN CỨU PHƯƠNG PHÁP SẢN XUẤT
VÀ MỘT SỐ ĐẶC TÍNH CỦA DỊCH ĐẠM
THỦY PHÂN TỪ NỘI TẠNG HẢI SÂM
(Holothuroidea)

R
L
T.

DU

LUẬN VĂN THẠC SĨ
CƠNG NGHỆ SINH HỌC

KHỐ K37


Đà Nẵng – Năm 2020


ĐẠI HỌC ĐÀ NẴNG
TRƯỜNG ĐẠI HỌC BÁCH KHOA
---------------------------------------

NGUYỄN THỊ ÁNH

NGHIÊN CỨU PHƯƠNG PHÁP SẢN XUẤT
VÀ ĐẶC TÍNH CỦA DỊCH ĐẠM THỦY PHÂN
TỪ NỘI TẠNG HẢI SÂM

C
C

R
L
T.

DU

Chuyên ngành :
Mã số:

Công nghệ sinh học
8420201

LUẬN VĂN THẠC SĨ


NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. Tạ Ngọc Ly
PGS.TS Đặng Minh Nhật

Đà Nẵng – Năm 2020


LỜI CẢM ƠN
Để hoàn thành Luận văn thạc sĩ này tơi xin bày tỏ lịng cảm ơn sâu sắc đến thầy
TS. Tạ Ngọc Ly và thầy PGS.TS Đặng Minh Nhật đã hướng dẫn cho tôi trong suốt thời
gian qua. Nhờ sự tận tình chỉ dạy của thầy đã giúp tơi hồn thành luận văn một cách tốt
nhất.
Đồng thời tơi xin chân thành cảm ơn các thầy cô giáo bộ môn Cơng nghệ Sinh học
nói riêng, cũng như thầy cơ khoa Hóa nói chung tại trường Đại học Bách Khoa – Đại
học Đà Nẵng đã tham gia giảng dạy và tạo điều kiện tốt nhất cho tơi hồn thành luận
văn này.
Đà Nẵng, ngày 10 tháng 11 năm 2020
Học viên thực hiện

C
C

DU

R
L
T.

Nguyễn Thị Ánh



LỜI CAM ĐOAN

Tôi xin cam đoan đề tài “Nghiên cứu phương pháp sản xuất và một số đặc tính của
dịch đạm thủy phân từ nội tạng Hải sâm (Holothuroidea)” là cơng trình nghiên cứu của
riêng tơi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai
cơng bố trong bất kỳ cơng trình nào khác.
Người cam đoan

Nguyễn Thị Ánh

C
C

DU

R
L
T.


NGHIÊN CỨU PHƯƠNG PHÁP SẢN XUẤT VÀ MỘT SỐ ĐẶC TÍNH
CỦA DỊCH ĐẠM THỦY PHÂN TỪ NỘI TẠNG HẢI SÂM (Holothuroidea)
Học viên: Nguyễn Thị Ánh Chuyên ngành: Công nghệ Sinh học
Mã số: 8420201
Khóa: K37
Trường Đại học Bách khoa - ĐHĐN
Tóm tắt – Nội tạng Hải sâm là phế phẩm chính của ngành chế biến Hải sâm. Phế phẩm này chứa
nhiều protein, chất béo và khoáng chất nên nghiên cứu này nhằm khảo sát khả năng ứng dụng của
phụ phẩm Hải sâm vào đời sống. Quy trình cơng nghệ sản xuất dịch đạm thủy phân từ nội tạng Hải
sâm đã được nghiên cứu bằng cách bổ sung papain. Nội tạng Hải sâm xay nhuyễn được bổ sung

nước/nguyên liệu theo tỷ lệ khác nhau, tốc độ khuấy và thời gian thủy phân cũng khác nhau. Kết
quả cho thấy, mức độ thủy phân cao nhất đạt được khi tỷ lệ bổ sung nước/nguyên liệu: 1,5/1 (v/w);
tốc độ khuấy: mức 1; thời gian thủy phân: 180 phút. Mơ hình tốn học về động học phản ứng của
papain cũng đã được khảo sát để nghiên cứu ảnh hưởng của các yếu tố đến tốc độ phản ứng của
enzyme bằng mơ hình Lineweaver-Burk. Các thơng số động học Km và Vmax đã được tính tốn lần
lượt là 0,21 g/L và 1,69 mg/phút. Nghiên cứu còn chỉ ra papain thơ từ mủ đu đủ có thể thay thế cho
papain thương mại. Kết quả phân tích thành phần acid amin trong nội tạng Hải sâm chỉ ra nội tạng
Hải sâm có thành phần dinh dưỡng cao khi phát hiện được 16/22 loại acid amin, trong đó có 8/9
acid amin thiết yếu. Acid amin chiếm thành phần cao nhất là Acid Glutamic (3,182 mg/g chất khô)
và Alanine (1,925 mg/g chất khô). Khả năng bắt gốc tự do DPPH của dịch đạm thủy phân khá cao:
62,8% khi mức độ thủy phân 10 % tại 62oC. Từ các kết quả này cho thấy, dịch đạm thủy phân từ
nội tạng Hải sâm có khả năng ứng dụng cao vào việc sản xuất mỹ phẩm, dược phẩm, phân bón,…
và cần được nghiên cứu rộng rãi hơn nhằm góp phần phát triền bền vững ngành chế biến thủy sản.

C
C

R
L
T.

DU

Từ khóa – nội tạng Hải sâm; papain; điều kiện thủy phân; động học; DPPH.

RESEARCH ON PRODUCTION METHOD AND CHARACTERISTICS OF
HYDRAULIC PEPPER FROM SEA CUCUMBER INNARDS (Holothuroidea)
Abstract – Sea cucumber innards is the main waste of the sea cucumber processing industry. This
byproduct contains many proteins, fats and minerals so this study is to investigate the applicability
of by-products of sea cucumber in life. The technological process of producing hydrolyzate from

Sea cucumber innards have been studied by the addition of the papain. Sea cucumber innards are pureed,
add water with different ratios, different stirring speed and hydrolysis time. The results show that the
highest hydrolysis efficiency is achieved when the ratio of water/material addition: 1.5/1 (v/w); stirring
speed: level 1; hydrolysis time: 180 minutes. The mathematical model of the papain enzyme reaction
kinetics was also investigated to study the effects of factors on the enzyme reaction rate using the
Lineweaver-Burk model. Kinematic parameters of Km and Vmax were calculated to be 0.21 g / L and
1.69 mg / min, respectively. Research has also show that papain from papaya latex can be a substitute
for commercial papain. Results of analysis of amino acids in the intestine of sea cucumbers show that
sea cucumbers have high nutritional components when detecting 16/22 amino acids, including 8/9
essential amino acids. Amino acids with the highest composition are Glutamic Acid (2.828 mg / g dry
matter) and Alanine (1.711 mg / g dry matter). DPPH free radical capture ability of hydrolyzate is quite
high: 62.8% when 10 % hydrolyzed efficiency is reached at 62oC. From these results show that, sea
cucumber innards should be studied more extensively to contribute to the sustainable development of
the seafood processing industry.
Key words – sea cucumber innards; papain; hydrolysis conditions; kinetic; DPPH.


MỤC LỤC
MỞ ĐẦU .........................................................................................................................1
1. Tính cấp thiết của đề tài ........................................................................................1
2. Mục đích nghiên cứu .............................................................................................1
3. Ý nghĩa khoa học và thực tiễn của đề tài ..............................................................2
a. Ý nghĩa khoa học ...............................................................................................2
b. Ý nghĩa thực tiễn ................................................................................................2
CHƯƠNG I: TỔNG QUAN TÀI LIỆU ..........................................................................3
1.1. Hải sâm ..............................................................................................................3
1.1.1. Khái niệm và phân bố .................................................................................3
1.1.2. Vai trò, giá trị của Hải sâm .........................................................................4
1.1.3. Tình hình khai thác Hải sâm .......................................................................5
1.2. Tình hình nghiên cứu về việc sử dụng các chế phẩm nội tạng hải sản ..............7

1.2.1. Nghiên cứu trên thế giới..............................................................................7
1.2.2. Nghiên cứu trong nước................................................................................7
1.3. Papain .................................................................................................................9
1.4. Hoạt tính chống oxy hóa ..................................................................................11
1.4.1. Khái niệm ..................................................................................................11
1.4.2. Các nghiên cứu hoạt tính chống oxy từ dịch đạm thủy phân ....................13
CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU ............................14
2.1. Đối tượng nghiên cứu ......................................................................................15
2.2. Phương pháp nghiên cứu .................................................................................16
2.2.1. Phương pháp thủy phân bằng enzyme ......................................................16
2.2.2. Xác định hàm lượng N acid amin giải phóng bằng phương pháp
Ninhydrin ................................................................................................................16
2.2.3. Phương pháp khảo sát ảnh hưởng của tỷ lệ bổ sung nước/nội tạng Hải sâm
đến mức độ thủy phân .............................................................................................19
2.2.4. Phương pháp khảo sát ảnh hưởng của tốc độ khuấy đến mức độ thủy phân
...................................................................................................................20
2.2.5. Phương pháp khảo sát ảnh hưởng của thời gian thủy phân đến mức độ
thủy phân.................................................................................................................21
2.2.6. Phương pháp xác định các thông số động học (Km, Vmax) của phản ứng .22
2.2.7. Xác định thành phần và tỷ lệ các acid amin ..............................................22
2.2.8. Xác định hoạt tính chống oxi hóa của dịch đạm thủy phân bằng 1,1diphenyl-2-picrylhydrazyl (DPPH) ........................................................................22
2.2.9. Phương pháp thu nhận papain thơ từ mủ đu đủ ........................................24
2.2.10. Phân tích thống kê .....................................................................................24

C
C

DU

R

L
T.


CHƯƠNG 3: KẾT QUẢ VÀ BÀN LUẬN ...................................................................25
3.1. Động học của phản ứng thủy phân ..................................................................25
3.2. Hồn thiện cơng nghệ sản xuất dịch đạm thủy phân .......................................27
3.2.1. Khảo sát ảnh hưởng của tỷ lệ bổ sung nước/nội tạng Hải sâm đến mức độ
thủy phân.................................................................................................................28
3.2.2. Khảo sát ảnh hưởng của tốc độ khuấy đến mức độ thủy phân .................29
3.2.3. Xác định sự thay đổi của mức độ thủy phân theo thời gian ......................30
3.2.4. Khả năng sử dụng papain thô thay thế papain thương mại .......................31
3.3. Đặc tính của dịch đạm thủy phân nội tạng Hải sâm ........................................33
3.3.1. Thành phần acid amin của sản phẩm dịch đạm thủy phân nội tạng Hải
sâm
...................................................................................................................33
3.3.2. Hoạt tính chống oxy hóa của dịch đạm thủy phân nội tạng Hải sâm........34
CHƯƠNG 4: KẾT LUẬN .............................................................................................36
TÀI LIỆU THAM KHẢO .............................................................................................37
PHỤ LỤC 1: SỐ LIỆU VÀ KẾT QUẢ NGHIÊN CỨU ..............................................46
PHỤ LỤC 2: CÁC THIẾT BỊ SỬ DỤNG TRONG NGHIÊN CỨU ...........................47
PHỤ LỤC 3: KẾT QUẢ PHÂN TÍCH THÀNH PHẦN ACID AMIN ........................51

C
C

DU

R
L

T.


DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ BIẾT TẮT

v/w

: volume/weigh – Thể tích/khối lượng

U

: Unit – Đơn vị hoạt độ của enzyme

TCA

: Trichloroacetic acid

OD

:Optical density – Mật độ quang

DH

: Degree of Hydrolysis – Mức độ thủy phân

C
C

DU


R
L
T.


DANH MỤC CÁC BẢNG
Bảng
Bảng 2.1
Bảng 3.1
Bảng 3.2

Tên bảng

Số trang

Bố trí thí nghiệm xác định Vmax, Km
Hàm lượng N acid amin của các mẫu thử nghiệm
động học
Thành phần acid amin của sản phẩm dịch đạm
thủy phân (mg/g chất khô)

C
C

DU

R
L
T.


22
25
33


DANH MỤC CÁC HÌNH
Hình

Tên hình

Số trang

Hình 1.1

Hải sâm

3

Hình 1.2

9
12

Hình 2.1

Cấu trúc 3D của papain
Q trình chuyển từ đỏ tía sang vàng của phản ứng
DPPH
Sơ đồ thí nghiệm


Hình 2.2

Nội tạng Hải sâm

15

Hình 2.3

Papain thương mại

15

Hình 2.4

Mẫu thủy phân trong tủ ấm ở 62oC
Quá trình Ninhydrin kết hợp với acid amin để tạo
thành phức chất màu xanh
Dịch đạm thủy phân sau khi thêm thuốc thử Ninhydrin

16

18

Hình 2.11

Đường chuẩn Glycine
Sơ đồ bố trí thí nghiệm khảo sát ảnh hưởng của tỷ lệ
bổ sung nước/nội tạng Hải sâm (v/w) trong quá trình
thủy phân
Sơ đồ bố trí thí nghiệm khảo sát ảnh hưởng của tốc độ

khuấy trong q trình thủy phân
Sơ đồ bố trí thí nghiệm khảo sát ảnh hưởng của thời
gian thủy phân trong quá trình thủy phân
Mẫu đối chứng và mẫu thủy phân sau khi thêm DPPH

Hình 2.12

Quy trình thu nhận papain thơ từ mủ đu đủ

24

Hình 1.3

Hình 2.5
Hình 2.6
Hình 2.7
Hình 2.8

Hình 2.9
Hình 2.10

C
C

R
L
T.

DU


14

17
17

19

20
21
23

Hình 3.4

Sự biến thiên nồng độ sản phẩm thủy phân theo thời
gian
Phương trình Lineweaer – Burk để tính Km, Vmax
Ảnh hưởng tỷ lệ nước/nguyên liệu đến mức độ thủy
phân
Ảnh hưởng tốc độ khuấy đến mức độ thủy phân

Hình 3.5

Sự thay đổi mức độ thủy phân theo thời gian

31

Hình 3.6

Sơ đồ hồn thiện quy trình thủy phần nội tạng Hải sâm
Phần trăm bắt gốc tự do của dịch đạm thủy phân nội

tạng Hải sâm

32

Hình 3.1
Hình 3.2
Hình 3.3

Hình 3.7

26
26
28
29

34


1

MỞ ĐẦU
Tính cấp thiết của đề tài
Hải sâm là lồi hải sản có giá trị dinh dưỡng và y học cao. Ở Việt Nam, Hải sâm
là một trong những nhóm nguồn lợi quan trọng, có mức độ phong phú về thành phần
lồi, trong đó có nhiều lồi có giá trị thương mại cao (khoảng 9 loài) đã được khai thác
với sản lượng lớn (trong những năm 90).
Ước chừng nội tạng Hải sâm chiếm 40% trọng lượng cơ thể. Nhiều thành phần
trong nội tạng của Hải sâm đã được nghiên cứu phát hiện ra như là EPA, DHA là các
axit béo chiếm lần lượt là 13,09% và 6,88% , 8 loại axit amin thiết yếu chiếm 39,93%
tổng axit amin toàn cơ thể [1]. Các cơ quan nội tạng cũng rất giàu khoáng chất như các

nguyên tố Mg, Fe, Zn, V, Se [1], lectin [2] [3] [4]. Với hàm lượng chất dinh dưỡng,
protein lớn như vậy, nội tạng Hải sâm cần được ứng dụng nhiều hơn vào các lĩnh lực
như chế biến đồ hộp, sản xuất nước mắm, phân bón, ngồi ra cịn có thể nghiên cứu cho
lĩnh vực dược phẩm. Sự đánh giá ngày càng cao về Hải sâm ở các thị trường châu Á,
châu Âu và sự công nhận của các nhà khoa học về hàm lượng dinh dưỡng của Hải sâm
đã dẫn đến việc sức tiêu thụ Hải sâm ngày càng tăng trên thế giới, kéo theo lượng phụ
phẩm của Hải sâm bị thải bỏ cũng tăng theo. Chính vì vậy, việc chế biến, xử lý các phụ
phẩm Hải sâm nhằm thu được protein có giá trị thương mại cao hơn, đồng thời tránh các
vấn đề về môi trường đang là những mục tiêu được quan tâm nghiên cứu.
Hiện nay nhu cầu về thực phẩm chế biến sẵn ngày càng tăng cao trên toàn thế giới,
nên protease đang là đối tượng được nghiên cứu rộng rãi trong lĩnh vực này vì chúng có
khả năng phân giải làm mềm thịt, tạo ra dịch đạm thủy phân giàu dinh dưỡng. Do đó,
việc thủy phân bằng protease để thu hồi protein từ phụ phẩm Hải sâm là một cách tiếp
cận hiệu quả và nên được ứng dụng rộng rãi. Tuy nhiên vẫn chưa có một cơng trình nào
cơng bố về việc nghiên cứu nội tạng Hải sâm để ứng dụng vào một lĩnh vực cụ thể. Do
đó, trong nghiên cứu này, tơi tiến hành xác định điều kiện tối ưu hóa nội tạng Hải sâm,
từ đó thu nhận dịch đạm thủy phân và đánh giá hoạt tính sinh học của chúng, nhằm góp
phần giảm thiểu ơ nhiễm mơi trường góp phần xử lý chất thải một cách khoa học, giúp
phát triển bền vững ngành khai thác, chế biến thủy - hải sản.
2. Mục đích nghiên cứu
Đề tài hướng đến 3 mục đích nghiên cứu chính:
- Xác định động học phản ứng enzyme.
- Xác định các thông số công nghệ sản xuất và hồn thiện quy trình sản xuất dịch
đạm thủy phân từ nội tạng Hải sâm.
- Xác định được một số đặc tính của dịch đạm thủy phân từ nội tạng Hải sâm
1.

C
C


DU

R
L
T.


2
Ý nghĩa khoa học và thực tiễn của đề tài
a. Ý nghĩa khoa học
- Thu được một quy trình sản xuất dịch đạm thủy phân từ nội tạng Hải sâm một cách
tối ưu.
- Từ những đặc tính của dịch đạm thủy phân từ nội tạng Hải sâm, có thể ứng dụng
rộng rãi hơn trên các đối tượng khác và lĩnh vực khác.
b. Ý nghĩa thực tiễn
Cơng trình nghiên cứu này có ý nghĩa thực tiễn như sau:
Tận dụng được nguồn nguyên liệu bỏ đi là nội tạng Hải sâm để tạo nên sản phẩm
thủy phân với hàm lượng dinh dưỡng cao, đồng thời góp phần giảm thiểu ơ nhiễm mơi
trường, hướng đến việc khai thác và chế biến Hải sâm bền vững.
3.

C
C

DU

R
L
T.



3

CHƯƠNG I: TỔNG QUAN TÀI LIỆU
1.1. Hải sâm
1.1.1. Khái niệm và phân bố

C
C

R
L
T.

Hình 1.1. Hải sâm

DU

Hải sâm hay cịn gọi là dưa biển, sâm biển, đỉa biển, là loài động vật không xương
sống, thành viên lớp Holothuroidea, cùng ngành động vật da gai với sao biển, nhím
biển,…Chúng thường sống dưới đáy biển từ vùng nước nhiệt đới ấm áp đến rãnh biển
sâu lạnh. Hải sâm thường được tìm thấy ở các vịnh và những nơi có nhiều đá ngầm ở
biển khơi. Thân có dạng ống dài như quả dưa, phình ra ở giữa và thon nhỏ ở hai đầu với
những gai thịt nhỏ. Phía trước miệng có vành tua rõ rệt, phía sau là hậu mơn. Dọc thân
là các dãy chân ống. Da mềm có các phiến xương nằm rải rác dưới da. Hải sâm là động
vật phân tính, trừ một số lồi thuộc bộ Khơng chân (Apoda). Trứng thụ tinh và phát triển
ngồi cơ thể mẹ. Chúng bị trên nên đáy, ở độ sâu khác nhau, chỉ có một số loài thuộc
họ Pelagothuridae là bơi lội. Hải sâm phân bố ở nhiều nước trên thế giới và có nhiều
lồi [5], chúng có khả năng tái sinh rất cao và sức chịu đựng bền bỉ, ngư dân đánh bắt
thường để chế biến các món ăn đặc sản, hoặc phơi sấy khô làm thực phẩm và thuốc.

Theo GS Đỗ Tất Lợi (2001), Hải sâm bổ khơng kém gì nhân sâm nên được gọi là sâm
biển và trong y học cổ truyền- Hải sâm được coi như là loại thuốc bổ thận, bổ âm, tráng
dương ích tinh, nhuận táo, chữa lị, chữa viêm phế quản, thần kinh suy nhược, cầm máu,
thành phần lipit của Hải sâm cịn có tác dụng chữa xơ vữa động mạch, hen suyễn
Hải sâm là một nhóm đa dạng và phong phú, chúng phân bố khắp đại dương trên
thế giới với khoảng 2500 loài thuộc 25 họ khác nhau [6]. Chúng có thể được tìm thấy
trong hầu hết các môi trường từ khu vực thủy triều nông đến tầng sâu nhất của các rãnh
đại dương. Một trong những tài liệu sớm nhất được tìm thấy về Hải sâm là các hóa thạch
của Hải sâm từ kỉ Silur từ 400 triệu năm trước [7]. Một nghiên cứu năm 2009 tại các rạn


4
san hô của Biển Đông, Biển Sulu và Biển Sulawesi đã được thực hiện. Kết quả tìm thấy
12 lồi Hải sâm từ 4 họ và 9 chi khác nhau. Họ chiếm ưu thế nhất là Holothurridae (5
loài), tiếp theo là Stichopodidae (3 loài) và Synaptidae (3 loài) và Cucumarridae (1 loài)
[8].
Năm 1991, cuộc khảo sát thực địa về sự phân bố của một loại Hải sâm điển hình
đó là Hải sâm đỏ ở vùng biển Đông Nam Alaska cho thấy mật độ Hải sâm đếm được
trong các tuyến trung bình là 20,8 cá thể trên 1ha ở tầng trong; 70,9 cá thể ở tầng giữa
và 103,7 cá thể ở tầng ngồi của vịnh. Hải sâm được tìm thấy ở hầu hết các độ sâu từ
vùng triều đến độ sâu 183 m. Mật độ cao hơn được tìm thấy ở 2 vùng sâu rõ rệt: trên 60
m và từ 100 – 150 m [9]. Có 6 loại địa tầng đã bắt gặp được Hải sâm đó là bùn / cát,
mảnh vụn, đá, vỏ sị, tường đá và tảo. Trong đó mật độ phận bố của Hải sâm dọc theo
tường đá là cao nhất, lên đến 234 cá thể / 1 ha. Việc phân bố này chưa giải thích được
nhưng cũng có giả thiết rằng Hải sâm có thể ưa thích các tường dốc, hoặc chúng chọn
nơi đây để làm nơi sinh sản [9]. Trên nền địa chất phủ đầy đá, sỏi thì tốc độ di chuyển
trung bình của Hải sâm là 3,9 m/ngày [10]. Hải sâm thu thập thức ăn bằng cách lấy thức
ăn dưới dạng hạt từ đáy biển hoặc bằng cách nuốt một lượng lớn chất nền chưa đầy chất
dinh dưỡng mà chúng đào bới được [11].
1.1.2. Vai trò, giá trị của Hải sâm

Trên thế giới đã có nhiều nghiên cứu về thịt Hải sâm để đánh giá các thành phần
có giá trị cao và các hoạt chất sinh học từ Hải sâm cho các loại thực phẩm chức năng.
Hải sâm là nguồn thức ăn của con người, đặc biệt một số vùng ở châu Á [12]. Về mặt
dinh dưỡng, Hải sâm có các chất dinh dưỡng quý giá như Vitamin A, Vitamin B1
(thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin) và các khoáng chất, đặc biệt
là canxi, magiê, sắt và kẽm [13]. Ngoài ra, hàm lượng protein trong Hải sâm cao hơn và
hàm lượng chất béo thấp hơn so với hầu hết các loại thực phẩm khác [14]. Thành cơ thể
Hải sâm chứ nhiều collagen, được sử dụng như chất bổ sung dinh dưỡng cho quá trình
tạo máu. Protein Hải sâm rất giàu lysine, arginine và tryptophan. Gelatin từ Hải sâm
được coi là có giá trị hơn các gelatin khác vì thành phần axit amin đặc trưng của nó, đặc
biệt là các axit amin thiết yếu [14]. Ở Đông Á, Hải sâm từ lâu đã được sử dụng như một
loại thuốc truyền thống để điều trị hen suyễn, tăng huyết áp, thấp khớp, thiếu máu và tắc
nghẽn xoang [15]. Chúng cũng đã được báo cáo là có hiệu quả trong việc chữa lành các
vết thương bên ngoài khác nhau, chẳng hạn như vết cắt và vết bỏng, cả những vết thương
bên trong, đặc biệt là sau khi phẫu thuật lâm sàng, chấn thương [15]. Khả năng chữa
lành các mô của Hải sâm được cho là có liên quan đến hàm lượng axit eicosapentaenoic
(EPA) cao [15] [16]. Hải sâm được công nhận là một nguồn Chondrotin sulfate tốt, là
một loại thuốc giảm đau khớp. Điều trị viêm khớp dạng thấp, viêm xương khớp và thối
hóa khớp mắt cá chân bằng Hải sâm đã được thử nghiệm thành công [14]. Hải sâm còn
cho thấy một số chức năng khác như ức chế ung thư phổi và lalactophore trong tuyến
vú [17]. Nghiên cứu chỉ ra rằng, Hải sâm có khả năng ức chế sự hình thành các gốc tự

C
C

DU

R
L
T.



5
do AAPH và DPPH, các mẫu có cơ quan nội tạng có khả năng ức chế các gốc oxy hóa
cao hơn đáng kể so với các mẫu khơng có nội tạng, cho thấy các cơ quan nội tạng có
hoạt chống oxy hóa cao hơn thành cơ thể của chúng [18].
Trong hệ sinh thái, Hải sâm giữ vai trò quan trọng như chúng là động vật ăn lọc,
ăn mùn bã và cả con mồi. Trong các khu rừng tảo bẹ và rạn san hô, chúng tiêu thụ kết
hợp cả vi khuẩn, tảo cát và mùn bã hữu cơ [19] [20]. Chức năng của chúng như một hệ
thống treo hoặc bộ lọc có giá trị đáng kể dưới đáy biển. Là động vật ăn lọc, Hải sâm
điều chỉnh chất lượng nước bằng cách làm thay đổi hàm lượng carbonate và độ pH của
nước [21]. Hải sâm thay đổi kích thước của các hạt ăn vào và chuyển vào trầm tích thơng
qua các q trình sinh học, nhờ đó thay đổi sự phân tầng, ổn định đáy bùn và cát [21].
Ví dụ, trên các rạn san hô, quần thể Hải sâm khỏe mạnh có thể làm xáo trộn tồn bộ trên
5 milimét trầm tích mỗi năm một lần, làm giảm đáng kể sinh khối vi khuẩn trong trầm
tích [22] và đóng vai trị quan trọng trong việc tái chế các chất dinh dưỡng trong mơi
trường thiếu chất dinh dưỡng, khi đó các chất dinh dưỡng sẽ được giữ lại trong trầm tích
[23]. Bruckner và cộng sự (2003) lưu ý rằng sự tuyệt chủng của họ Holothurian đã dẫn
đến sự cứng lại của đáy biển, do đó loại bỏ mơi trường sống tiềm năng của các sinh vật
đáy khác [24]. Holothurian là con mồi quan trọng trong rạn san hô và lưới thức ăn ôn
đới [25] [26] [27], cả ở vùng nước nông và nước sâu [28] [21], nơi chúng là nguồn thức
ăn đặc biệt của cá, sao biển và động vật giáp xác [27].
Ngồi tầm quan trọng về sinh thái, Hải sâm cịn có giá trị xã hội và kinh tế to lớn
đối với các cộng đồng dân cư ven biển. Chẳng hạn, nghề khai thác Hải sâm là nguồn thu
nhập chính của nhiều cộng đồng ven biển ở Quần đảo Solomon [29] và cho 4000 – 5000
gia đình ở Sri Lanka [30].
1.1.3. Tình hình khai thác Hải sâm
1.1.3.1.
Trên thế giới
Vào những năm 1990, tổng sản lượng đánh bắt Hải sâm thương mại trên toàn thế

giới đạt mức 30.000 tấn/năm, chủ yếu là do nhu cầu ngày càng tăng ở thị trường Trung
Quốc. Mặc dù, Hải sâm có tầm quan trọng về mặt sinh thái và xã hội, việc đánh giá tình
trạng tồn cầu của chúng là một thách thức: dữ liệu thiếu phong phú; thống kê đánh bắt,
nhập khẩu và xuất khẩu thường không đầy đủ; và việc buôn bán Hải sâm rất phức tạp.
Trong thế kỉ qua, chúng ta đã chứng kiến sự suy giảm của nhiều nghề khai thác cá truyền
thống, cũng như sự mở rộng của nghề khai thác động vật không xương sống [31]. Sự
gia tăng của nghề khai thác động vật không xương sống được cho là do nhu cầu tiêu thụ
ngày càng tăng [32] [33], nhu cầu về nguồn hải sản mới để thu hoạch [34] [35] và sự gia
tăng của động vật không xương sống ngày càng lớn. Mặc dù sự gia tăng toàn cầu của
động vật không xương sống, nhiều nghề đánh bắt cá riêng lẻ cho thấy sự suy giảm
nghiêm trọng hoặc thậm chí sụp đổ. Ví dụ, nghề khai thác nhím biển đã đi theo chu kì
bùng nổ và suy thối trên khắp thế giới [36] [33] [37], hàu đã bị cạn kiệt dọc theo bờ

C
C

DU

R
L
T.


6
biển của Hoa Kỳ và miền Đông của Australia [38], quần thể tôm, cua đã bị cạn kiệt ở
Vịnh Greater Alaska [39].
Nghề khai thác Hải sâm đã mở rộng trên toàn thế giới về sản lượng và giá trị trong
hai đến ba thập kỷ qua [40] [41] [42]. Các khu vực Ấn Độ - Thái Bình Dương đã thu
hoạch và khai thác hơn một năm nay để cung cấp cho thị trường châu Á, chủ yếu là
Trung Quốc [40], đặc biệt là khi Trung Quốc tái gia nhập thương mại thế giới trong

những năm 1980. Tuy nhiên việc quản lý không đầy đủ nghề khai thác Hải sâm đã dẫn
đến tình trạng đánh bắt nghiêm trọng tại nhiều quốc gia, do đó nguồn dự trữ thiên nhiên
bị cạn kiệt ở hầu hết ở những nơi mà chúng phân bố. Quần thể Hải sâm dễ bị đánh bắt
q mức vì ít nhất hai lý do chính. Đầu tiên, người đánh bắt có thể dễ dàng thu hoạch
được Hải sâm ở các vùng nước nông [43] [24]. Thứ hai, tuổi trưởng thành của chúng
muộn, tăng trưởng chậm [43] [44], hơn nữa mật độ quần thể thấp, việc sinh sản của
chúng có thể gây ra hiệu ứng Allee [45], dẫn đến sự suy thoái quần thể và ức chế sự
phục hồi [46] [44]. Do các yếu tố này cùng với việc đánh bắt quá mức đã làm suy giảm
nghiêm trọng số lượng của nhiều quần thể Hải sâm. Cho đến nay, dù việc khai thác Hải
sâm đã dừng lại, trữ lượng Hải sâm phục hồi dường như rất chậm [47] [43], và sự phục
hồi có khả năng diễn ra hàng thập kỷ [43].
1.1.3.2.
Ở Việt Nam
Ở Việt Nam, các nghiên cứu về đặc điểm phân bố của Hải sâm tại Việt Nam cho
thấy, vùng biển ở nước ta có khoảng 60 lồi Hải sâm, trong đó chủ yếu tập trung ở vùng
biển Phú Yên, Khánh Hòa và các đảo xa bờ như Phú Quốc, Thổ Chu, Trường Sa, Côn
Đảo… với nhiều loại như Hải sâm vú, Hải sâm mít, Hải sâm lựu, Hải sâm trắng, hải sâm
đen, hải sâm gai [48].
Hải sâm vú (Holothuria fuscogilva) và Hải sâm lựu (Thelenota ananas) là hai loài
đang có nguy cơ bị tuyệt chủng. Một nghiên cứu năm 2017 về nguồn lợi hai loài này đã
được thực hiện tại vùng biển Khánh Hịa và Bình Thuận, đây là nơi có nguồn lợi thủy
sản cao và phong phú bậc nhất cả nước. Tại huyện Phú Quý (Bình Thuận) sản lượng
khai thác khoảng năm 2012 khoảng 15 tấn/chuyến. Sau đó sản lượng giảm dần qua các
năm. Đến năm 2017, sản lượng cịn 5 tấn/chuyến. Qua đó, có thể thấy nguồn lợi Hải
sâm vú và Hải sâm lựu đã bị suy giảm nghiêm trọng. Tương tự tại vùng biển Nha Trang,
sản lượng khai thác Hải sâm cũng suy giảm, cụ thể năm 2012 sản lượng khai thác là 5
tấn/chuyến, sau đó giảm dần qua các năm. Đến năm 2017, sản lượng khai thác chỉ cịn
2 tấn/chuyến. Có chuyến khơng khai thác được Hải sâm vú, Hải sâm lựu [49]. 100% số
người được phỏng vấn cho rằng nguyên nhân suy giảm nguồn lợi Hải sâm là sự khai
thác quá mức của người dân vì Hải sâm là lồi có giá trị kinh tế cao, đặc tính di chuyển

chậm nên việc đánh bắt khá dễ dàng.
Ngoài sản lượng khai thác từ tự nhiên, hiện nay Hải sâm được nuôi thương phẩm
theo các mô hình ni bãi, ni lồng, ni biển rất phổ biến ở các tỉnh ven biển như Vân
Đồn – Quảng Ninh, Khánh Hịa, Vũng Tàu…, ước tính ni trên 1.000 ha; năng suất

C
C

DU

R
L
T.


7
nuôi đạt 2,5 tấn/ha [50]. Mặt khác, để phục vụ nhu cầu xuất khẩu các sản phẩm từ Hải
sâm thì nguồn nguyên liệu nhập khẩu tăng đáng kể, sản lượng nguyên liệu Hải sâm phải
nhập khẩu hàng năm ước tính khoảng 80 nghìn tấn. Như vậy, tổng sản lượng nguyên
liệu Hải sâm phải sử dụng trong chế biến là khá lớn, ước chừng khoảng trên 100 nghìn
tấn mỗi năm.
1.2. Tình hình nghiên cứu về việc sử dụng các chế phẩm nội tạng hải sản
1.2.1. Nghiên cứu trên thế giới
Hiện nay trên thế giới đã có rất nhiều nghiên cứu trên thịt Hải sâm, nhưng vẫn
chưa có nghiên cứu nào trên nội tạng của Hải sâm mặc dù lượng nội tạng Hải sâm bị
thải bỏ là rất lớn. Tuy nhiên có nhiều nghiên cứu tương tự trên những phế phẩm thủy
sản như vỏ đầu tôm, nội tạng cá ba sa, … chúng mang lại giá trị rất lớn về mặt kinh tế
cũng như môi trường.
Theo Shahidi và Synowiecki (1991), các phụ phẩm từ quy trình chế biến tơm đã
được xác định là một nguồn protein lớn, đồng thời cũng là một nguồn quan trọng để sản

xuất chitin và asthaxanthin [51]. Việc thu hồi một phần protein từ phụ phẩm tôm bằng
enzyme thủy phân cũng đã được nghiên cứu rộng rãi [52] [53]. Đặc biệt, alcalase thường
được sử dụng để thủy phân protein từ phụ phẩm tôm [54] [55]. Holanda and Netto (2006)
nghiên cứu thu hồi 3 thành phần chính của phế liệu tôm, protein, chitin, astaxanthin bằng
việc sử dụng enzyme alcalase và pancreatin [56]. Bên cạnh vai trò dinh dưỡng, sản phẩm
thủy phân protein cịn là nguồn peptit có hoạt tính sinh học mang đến tiềm năng đáng
kể trong dược phẩm như: khả năng chống oxy hóa, khả năng kiểm sốt enzyme gây cao
huyết áp [56] [57] [58], khả năng chống đột biến gen có khả năng gây ung thư [59] [60].
Các thành phần và chất lượng dinh dưỡng của các sản phẩm phụ chế biến (đầu, vỏ
và đuôi) của tôm hồng Bắc và tôm đốm được đánh bắt gần Tongyeong, Hàn Quốc, đã
được Min Soo Heu (2003) khảo sát. Hàm lượng protein thô nằm trong khoảng 9,31%
và tổng lượng chất béo xấp xỉ 0,7%. Axit aspartic, axit glutamic, phenylalanine, lysine
và arginine là các axit amin chiếm ưu thế trong phần protein. Hàm lượng canxi (3000
mg / 100 g) cao hơn so với phốt pho (400 mg / 100 g), natri (270 mg / 100 g) và magie
(100 mg / 100 g). Khơng có sự khác biệt đáng kể về hàm lượng nitơ phi protein giữa các
phần ăn được và phụ phẩm chế biến của tôm. Tổng hàm lượng axit amin tự do của các
sản phẩm phụ chế biến (2000 mg / 100 g) cao hơn 15% so với các phần ăn được (1700
mg / 100 g). Các axit amin tự do chính là taurine, threonine, leucine, tryrosine và
phenylalanine [61].
Nghiên cứu của See và tập thể (2011) đã sử dụng enzyme thủy phân protein từ phụ
phẩm từ cá hồi để tạo ra các peptit và các acid amin có giá trị dinh dưỡng cao. Sử dụng
Alcalase 2.4 L để thủy phân protein từ da cá hồi ở nhiệt độ từ 55,3oC, pH 8,39 với tỷ lệ
enzyme là 2,5% đã tìm được mức độ thủy phân cao nhất đạt 77,03% [62].
1.2.2. Nghiên cứu trong nước

C
C

DU


R
L
T.


8
Ở Việt Nam, Bùi Thị Hồng Thạnh (2012) tiến hành nghiên cứu thu nhận dịch đạm
thủy phân từ vỏ đầu tôm bằng enzyme alcalase cố định ở điều kiện nhiệt độ, pH môi
trường, tỉ lệ enzyme và cơ chất, thời gian phản ứng enzyme lần lượt là 56 oC, tự nhiên,
0,42% và thời gian 8,8 giờ thu được hàm lượng DDPH bị khử 0,4794 mM/g [63].
Nguyễn Thị Ngọc Hoài và cộng sự (2013) sử dụng tối ưu hóa q trình thủy phân protein
từ đầu tôm thẻ chân trắng bằng alcalase theo phương pháp bề mặt đáp ứng, tuy nhiên lại
cố định pH thủy phân của alcalase là 6,5 [64].
Võ Văn Song Toàn (2016) đã khảo sát được hàm lượng đạm amin và đạm
ammoniac sinh ra lần lượt là 4,679 ± 0,101 mgN/mL và 0,256 mgN/mL khi thủy phân
protein 2 gram cơ chất vỏ đầu tôm bằng bromelain (10,68 U.mg – 1) từ vỏ khóm trong
mơi trường dung dịch đệm phosphate pH 8, nhiệt độ 45 oC, trong 4 giờ là điều kiện thích
hợp [65].
Trần Quốc Hiền và Lê Văn Việt Mẫn (2006) đã khảo sát quá trình tinh sạch
protease từ ruột cá ba sa. Dịch chiết protease kiềm thu được tổng hoạt tính cao nhất là
15,79 UI/g (chất khơ nội tạng) trong điều kiện chiết: tỷ lệ mẫu/dung môi 1/1(w/w); pH
9,5; nhiệt độ 35 oC; thời gian chiết 10 phút [66].
Kết quả nghiên cứu của Vương Bảo Thy (2014) về thành phần enzyme trong các
cơ quan nội tạng của hệ tiêu hóa cá tra (Pangasius hypophthalmus) cho thấy là enzyme
tập trung nhiều nhất ở gan tụy với hoạt độ lipase 337,01 U/g chất khô, protease 42,14
U/g và amylase 209,85 U/g chất khô [67]. Sau khi tiến hành thủy phân phụ phẩm từ cá
tra bằng enzyme Alcalase, Cao Xuân Thủy và cộng sự đã tìm ra được thành phần hóa
học của nội tạng cá tra protein 90,8%, tro 4,3%, chất béo 0,76% [68].
Một nghiên cứu khác cũng trên phụ phẩm cá Tra, kết quả hoạt độ chống oxy hóa
của dịch đạm thủy phân cho thấy nồng độ ức chế 50% DPPH (IC50) của dịch đạm thủy

phân đạt khoảng 6775 μg / mL cao hơn 1645 lần so với vitamin C và cao hơn 17 lần so
với BHT ( Butylated Hydroxytoluene) với mức độ thủy phân (DH) của dịch đạm thủy
phân là 14,6% khi thời gian thủy phân là 5h, tỷ lệ enzyme / cơ chất (E/S) là 30 U/g
protein, nhiệt độ thủy phân là 55 oC, và pH là 7,5 [69].
Trần Thị Hồng Nghi và cộng sự (2009) đã tiến hành thủy phân phụ phẩm cá tra
bằng protease từ vi khuẩn (Bacillus subtilis). Tác giả đã thu được dịch đạm thủy phân
đạt chất lượng tương đối tốt cấp 1 theo tiêu chuẩn chất lượng nước mắm. Kết quả nghiên
cứu đã cho thấy các điều kiện tối ưu cho hoạt động của protease từ Bacilus subtilis là ở
nhiệt độ 50 oC; pH 7,6; hàm lượng nước 30%; nồng độ muối 2%, 50 UI enzyme và thời
gian thủy phân 18 giờ [70].
Theo nghiên cứu của Trần Kiều Anh (2017), dịch đạm thủy phân thu được từ phụ
phẩm các hồi có hàm lượng acid amin đạt 29,48 mg/ml và có hoạt tính chống ơ xi hóa
đo qua khả năng bắt gốc tự do DPPH (SC) là 70,34% [71].

C
C

DU

R
L
T.


9
1.3. Papain
1.3.1. Cấu tạo của papain
Papain dạng bột màu vàng nâu nhạt tùy thuộc vào phương pháp sấy, không tan
trong hầu hết các chất hữu cơ nhưng tan trong H2O hay glycerine. Tâm hoạt động của
papain gồm có nhóm -SH của cystein 25 và nitrogen bậc 3 của histidine 159. Bên cạnh

đó nhóm imidazole của His 159 cũng liên kết với Asp 175 bởi liên kết hydrogen. Vùng
tâm hoạt động của papain chứa mạch polypeptide với các acid amin là: Lys-Asp-GluGly-Ser-Cys-Gly-Ser-Cys [74].

C
C

R
L
T.

DU

Hình 1.2. Cấu trúc 3D của papain

1.3.2. Hoạt tính của papain
Papain là một chất endoprotease có chứa 16,1% N và 1,2% S. Khoảng pH thích
hợp để papain hoạt động là 6,0 ÷ 8,0. Nhiệt độ tối thích để hoạt động tùy vào từng cơ
chất khác nhau và có thể duy trì hoạt tính đến 60oC. Một điều cần lưu ý là khoảng pH
và nhiệt độ tối thích của papain sẽ không cố định mà thay đổi tùy vào nguồn thu nhận,
cơ chất phản ứng, cách thức trích ly và tinh chế papain.
So với các protease có nguồn gốc từ động vật hoặc vi sinh vật, papain có khả năng
thuỷ phân sâu hơn, vì vậy nó được dùng để thủy phân tiếp các liên kết peptide còn lại
sau khi đã thủy phân bằng trypsin hay chymotrypsin. Khả năng thủy phân cơ chất của
papain còn phụ thuộc vào trạng thái của cơ chất, tức là có biến tính hay khơng. Nếu cơ
chất bị biến tính thì papain có khả năng thủy phân sâu hơn [74]. Papain thủy phân
protein, đóng vai trị vừa là endopeptidase vừa là exopeptidase. Các endopeptidase thủy
phân protein chủ yếu tạo thành peptide.

Trong đó: i + k = n



10
Các exopeptidase thủy phân protein chủ yếu tạo thành acid amin:

Trong đó: i’ + k’ = n
Tính đặc hiệu cơ chất của papain rất rộng, có khả năng phân hủy hầu hết các liên
kết peptide trừ các liên kết với protein và với glutamic acid có nhóm carboxyl tự do.
Các yếu tố ảnh hưởng đến hoạt tính papain
- Nhiệt độ:
+ Papain là enzyme chịu được nhiệt độ tương đối cao. Ở dạng nhựa khơ papain bị
mất hoạt tính sau 30 phút ở 82,5oC và nếu tăng nhiệt độ cao hơn 100oC thì nó
sẽ bị mất hồn tồn hoạt tính kể cả khi thêm lượng lớn chất hoạt hóa vào dung
dịch. Điều này là do ở dạng dung dịch khi tăng lên đến nhiệt độ lớn hơn 1000C
thì cấu trúc tâm hoạt động của enzym bị phá hủy hoàn toàn.
+ Đáng chú ý khi đã được tinh sạch và ở trạng thái tinh thể thì papain có độ bền
nhiệt độ thấp hơn papain ở trong mủ nhựa, bởi lẽ trong mủ nhựa cịn chứa các
protein khác có tác dụng bảo vệ nó, papain trong dung dịch NaCl giữ ở 4oC bền
trong nhiều tháng. Trong dung dịch dẫn xuất thủy ngân, papain cũng khơng mất
hoạt tính trong nhiều tháng, enzyme mất hoạt tính của nó mỗi ngày 1÷ 2% do
sự tự phân hoặc oxy hóa.
+ Khi thủy phân protein tùy thuộc vào cơ chất mà nhiệt độ tối ưu cho papain cũng
khác nhau, đối với cơ chất casein nhiệt độ tối ưu là 37oC, papain dạng ổn định
ở trạng thái khơ có thể chịu nhiệt độ sấy ở 115oC trong thời gian 2h mà hoạt
tính vẫn duy trì được 90%.
- pH:
+ Papain hoạt động trong khoảng pH tương đối rộng từ 4,5 ÷ 8,2 nhưng lại dễ biến
tính trong mơi trường acid có pH < 4,5 hoặc trong mơi trường kiềm mạnh có
pH >12, khi phản ứng với các cơ chất thì tùy thuộc vào bản chất của cơ chất mà
pH tối ưu sẽ khác nhau. Chẳng hạn papain phản ứng với casein ở pH tối ưu là 7
÷ 7,5 với albumin ở pH tối ưu 4,5 ÷ 7,1 và với gelatin lại có pH tối ưu 5,2 ÷ 6,4,

điểm đẳng điện pI = 9.
+ Papain dạng ổn định tức là dạng mà cấu trúc khơng gian của enzym được ổn
định, có thể chịu được các pH=1,5 và pH= 8,5 trong 90 phút. Người ta nhận
thấy rằng, sự thay đổi pH có ảnh hưởng lớn đến trạng thái ion hóa của cả enzyme
và cơ chất nên sẽ tác động đến quá trình hình thành phức hợp enzyme-cơ chất
[ES], từ đó làm thay đổi vận tốc phản ứng do enzyme xúc tác [74].
- Dung mơi:
+ Papain cần nhóm sulfhyryl tự do để thể hiện hoạt tính xúc tác. Chất hoạt hóa có
ảnh hưởng rất lớn đến hoạt tính của protease thực vật nói chung hay papain nói

C
C

DU

R
L
T.


11
riêng. Do trung tâm hoạt động của papain bao gồm nhóm cysteine 25 và nitrogen
bậc 3 của histidine 159 có tính khử nên các chất đóng vai trị hoạt hóa papain là
các chất có tính khử như: cysteine, glutation, acid hydrocyanic,
hydrogensulfite... trong đó cysteine là chất thường được sử dụng nhất. Khi có
mặt các chất này thì nhóm –SH ở trung tâm hoạt động của papain được phục
hồi làm tăng hoạt tính papain.
+ Để thu được papain hoạt tính cao nhất, thích hợp nhất là dùng hỗn hợp cysteine
và EDTA, trong đó cysteine đóng vai trị hoạt chất hóa papain cịn EDTA đóng
vai trị liên kết tạo phức với ion kim loại nặng có trong nhựa đu đủ.

- Chất kiềm hãm
+ Papain bị kìm hãm (ức chế bất thuận nghịch) bởi các chất oxy hóa như: O2,
ozon, hydroperoxide, iodur acetate, iodur acetamide, thủy ngân chlobenzoate,
cystine và các hoạt chất disulfur khác. Đặc biệt papain rất dễ bị mất hoạt tính
khi có mặt hydrogen peroxide, các chất này ức chế papain bằng phản ứng với
nhóm –SH ở trung tâm hoạt động của papain và do vậy mà phá vỡ cấu trúc tâm
hoạt động của nó.
+ Papain bị bất hoạt thuận nghịch bởi khơng khí, khi cysteine ở nồng độ thấp, các
ion kim loại nặng: Cd2+ , Cu2+, Zn2+, Hg2+, Pb2+, Fe2+ và các tác nhân gây ức chế
papain.
+ Nhiều chất ức chế papain chứa phenylalanine ở vị trí nhóm thế thứ hai kể từ đầu
mạch C là chất ức chế cạnh tranh mạnh của papain do chiếm một phần trung
tâm hoạt động.
+ Chế phẩm papain bảo quản vài tháng có độ hoạt động khoảng 30%, ngay cả khi
hoạt hóa, lượng sulfuhydryl tự do vẫn nhỏ hơn 1 mol SH/1 mol papain và thường
khơng q 0,5 mol/mol. Ngun nhân do nhóm sulfuhydryl đã bị khóa bất thuận
nghịch một phần và bản chất hóa học của hiện tượng này hiện nay vẫn chưa
được nghiên cứu hết.
1.4. Hoạt tính chống oxy hóa
1.4.1. Khái niệm
Oxy rất cần thiết cho sự tồn tại của mọi sinh vật. Khoảng 5% oxy hít vào bị khử
thành các gốc tự do có nguồn gốc oxy trong các q trình trao đổi chất và sinh lý bình
thường [75]. Các nguyên tử hoặc phân tử sở hữu các điện tử chưa ghép đôi được gọi là
các gốc tự do. Một số gốc tự do bao gồm gốc hydroxyl (-OH), gốc superoxide (O2-), và
gốc hydroperoxyl (HO2). Mặc dù các gốc tự do được tạo ra một cách tự nhiên trong điều
kiện hiếu khí, sự dư thừa của các gốc tự do có thể làm hỏng tất cả các đại phân tử tế bào
bao gồm protein, carbohydrate, lipid và axit nucleic [76]. Các gốc tự do bắt đầu các phản
ứng như quá trình oxy hóa DNA, cuối cùng có thể gây ra đột biến trong vật liệu di truyền
và có thể gây ung thư [77]. Khi oxy hóa protein, người ta nhận thấy rằng gốc tự do có
thể ức chế các enzym hoặc làm biến tính hoặc phân hủy protein [78]. Các gốc tự do cũng


C
C

DU

R
L
T.


12
có liên quan đến bệnh sinh của bệnh tiểu đường, tổn thương gan, xơ vữa động mạch,
viêm nhiễm, rối loạn tim mạch, rối loạn thần kinh và trong quá trình lão hóa [79] [80].
Chất chống oxy hóa là chất trung hịa các gốc tự do có hại trong cơ thể chúng ta.
Chất chống oxy hóa hoạt động như '' người nhặt gốc tự do '' và do đó ngăn ngừa hoặc
làm chậm thiệt hại do các gốc tự do này gây ra. Chức năng của chúng là như một chất
khử, cuối cùng loại bỏ các chất trung gian gốc tự do và ngăn chặn q trình oxy hóa tiếp
tục bằng cách tự oxy hóa. Trái cây và rau quả được biết đến là nguồn cung cấp chất
chống oxy hóa dồi dào, chẳng hạn như retinol (Vitamin A), axit ascorbic (Vitamin C),
a-tocopherol (Vitamin E), carotenoid, flavonoid, tannin và các hợp chất phenolic khác
[81]. Nhiều nghiên cứu cho thấy rằng tiêu thụ trái cây và rau quả hàng ngày có liên quan
đến việc giảm nguy cơ mắc các bệnh thối hóa như ung thư và các bệnh tim mạch. Một
số chất chống oxy hóa có thể được tổng hợp trong cơ thể, nhưng hầu hết được lấy qua
chế độ ăn uống hoặc thực phẩm chức năng.
Một số nghiên cứu cho thấy dâu tây (Rosaceae Fragaria), việt quất (Vaccinium
corymbosum L.), mâm xôi (Rubus idaeus L.), blackberry (Rubus fruticosus), resveratrol
(Polygonum cuspidatum), và acaiberry (Euterpe Oleracea) nói chung có hàm lượng cao
của hoạt động chống oxy hóa có liên quan đến mức độ của các hợp chất polyphenolic
như flavanoid, catechin và anthocyanin trong trái cây [82] [83]. Những chất này đã được

chứng minh là ức chế lipoprotein mật độ thấp của con người và quá trình oxy hóa
liposome [84]. Resveratrol là thành phần chính trong rượu vang đỏ giúp ngăn ngừa tổn
thương các mạch máu, giảm cholesterol “xấu” và ngăn ngừa đông máu. Là một chất
chống oxy hóa, nó được cho là giúp bảo vệ họ khỏi bệnh béo phì và bệnh tiểu đường, cả
hai đều là những yếu tố nguy cơ mạnh đối với bệnh tim.

C
C

R
L
T.

DU

Màu tím
Màu vàng
Hình 1.3. Q trình chuyển từ đỏ tía sang vàng của phản ứng DPPH
Thử nghiệm thu gom gốc 1,1-Diphenyl-2-picrylhydrazyl (DPPH) là một thử
nghiệm so màu nhanh chóng, đơn giản và rẻ tiền, xác định phần trăm ức chế chất chống
oxy hóa. DPPH được sử dụng rộng rãi để kiểm tra khả năng của các hợp chất hoạt động
như chất thu gom gốc tự do và đánh giá hoạt động chống oxy hóa của thực phẩm. DPPH


13
là một gốc tự do ổn định là do electron bị phân chia. Nó có màu tím trong dung dịch
metanol và cực đại hấp thụ mạnh ở bước sóng 517 nm được quan sát do sự hiện diện
của một điện tử lẻ [85]. Ngay sau khi gốc tự do DPPH được trộn với chất chống oxy
hóa, chúng có thể tặng một proton, dạng khử sẽ được tạo ra. Điều này có thể được quan
sát thấy vì DPPH trong dung dịch metanol chuyển từ màu tím sang màu vàng, khi điện

tử lẻ của gốc DPPH bắt cặp với hydro từ chất chống oxy hóa để tạo thành DPPH-H bị
khử [86].
1.4.2. Các nghiên cứu hoạt tính chống oxy từ dịch đạm thủy phân
Thịt đầu tôm thẻ chân trắng đã được Nguyễn Văn Mười (2018) khảo sát và phát
hiện ra dịch đạm thủy phân này có khả năng kháng DPPH cao nhất là 31,57% [87]. Phụ
phẩm cá hồi được thủy phân bằng Trypsin 2% ở pH 8,5, nhiệt độ 40oC trong 4 giờ có
khả năng bắt gốc DPPH 70,34% [88].
Năm 2002, Chia – Ling Jao cùng cộng sự đã nghiên cứu hoạt tính chống oxi hóa
trên dịch đạm thủy phân cá ngừ. Sản phẩm thủy phân thu được ở mức độ thủy phân
25,68% (sau khi thủy phân trong 2,5 giờ) cho thấy hiệu quả thu hồi gốc DPPH đạt cao
nhất, đạt 82,19% [89]. Chia – Ling Jao cũng đã tham gia nghiên cứu dịch đạm thủy phân
cá ngừ với men orientase (Bacillus subtilis) năm 2009 cùng với Kuo – Chiang Hsu và
cộng sự, kết quả khá tương đồng khi hiệu suất thu hồi gốc tự do DPPH khoảng 80% sau
khi thủy phân 60 phút [90]. Cơ sẫm màu của cá ngừ sau khi thủy phân bằng enzyme
Alcalase cho hoạt động thu gom gốc DPPH lên đến 75% [91].
Phụ phẩm cá hồi cũng có tiềm năng nhặt gốc tự do khi sản phẩm thủy phân có giá
trị IC50 đối với hoạt động thu gom gốc tự do DPPH và ABTS (2,2'-azino-bis (3ethylbenzothiazoline) – 6 - sulfonic acid) lần lượt là 486 và 152 µM [92]. Nội tạng cá
ngừ sau khi được thủy phân bằng Alcalase bắt được gốc tự do DPPH 40%, ABTS
khoảng 98% ở mức độ thủy phân 20% [93]. Năm 2012, Amissah đã đánh giá hoạt tính
của các peptit được thủy phân từ da cá hồi cho thấy chúng có khả năng chống oxi hóa,
kháng khuẩn và đặc tính ức chế protease. Kết quả hiệu quả loại bỏ các gốc tự do của sản
phẩm peptit đạt 58,3% khi thủy phân bằng trypsin, đạt 26,3% khi thủy phân với αchymotrypsin và khả năng loại bỏ gốc tự do đạt 55,9% khi thủy phân da cá hồi bằng
papain [94]. Dịch đạm thủy phân cơ mực cho thấy có thể thu dọn gốc tự do khoảng
50,96% ở 220 oC [95].

C
C

DU


R
L
T.


14

CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
Đề tài nghiên cứu được thực hiện với các nội dung sau:

Nội tạng Hải sâm

Xác định thành phần, tỷ lệ các
acid amin có trong dịch đạm
thủy phân nội tạng Hải sâm.

Xác định các thông số động học
Vmax, Km của phản ứng

Khảo sát ảnh hưởng của tỷ lệ bổ
sung nước/nội tạng Hải sâm đến
mức độ thủy phân kết hợp với
papain.

C
C

DU

R

L
T.

Xác định hoạt tính chống oxy
hóa của dịch đạm thủy phân
bằng DPPH

Khảo sát ảnh hưởng của tốc độ
khuấy đến mức độ thủy phân kết
hợp với papain

Xác định sự thay đổi của mức
độ thủy phân theo thời gian

Hình 2.1. Sơ đồ thí nghiệm


15
2.1. Đối tượng nghiên cứu
- Nội tạng Hải sâm được cung cấp bởi công ty TNHH chế biến thủy sản – xuất
nhập khẩu Việt Trường. Nội tạng Hải sâm sau khi nhập về, cho vào các túi PE nhỏ rồi
bảo quản trong tủ lạnh -20◦C.

C
C

R
L
T.


DU

Hình 2.2. Nội tạng Hải sâm

- Papain: được cung cấp bởi Công ty cổ phần dược phẩm Novaco, nhiệt độ hoạt
động tối ưu: 50-60oC, pH hoạt động tối thích: 6-7. Hoạt lực của enzyme được kiểm tra
lại bằng phương pháp Anson là 2.245 UI/g

Hình 2.3. Papain thương mại
- Papain thô được thu nhận từ nhựa đu đủ


×