Tải bản đầy đủ (.doc) (30 trang)

Gián án Tai lieu on thi HSG toan 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (301.3 KB, 30 trang )

tuần 1+2 Căn bậc hai - hằng đẳng thức
2
A A
=
.
I, Mục tiêu:
* Kiến thức - Kĩ năng:
- HS đợc củng cố đ/n, phân biệt cách tìm CBH, CBHSH của một số thực.
- Nắm vững và tìm đợc đkxđ của
A

- áp dụng khai triển HĐT
2
A A=
, vận dụng rút gọn đợc biểu thức.
* Thái độ: Rèn tính cẩn thận, chính xác.
II, Lí thuyết cần nhớ:
Căn bậc hai của một số a không âm là một số x sao cho
2
x
= a.
Số a > 0 có hai CBH là
a

a
.
Số a

0 ,
a
đợc gọi là CBHSH của a.


a, b là các số không âm, a < b


a
<
b
.

A
xác định (hay có nghĩa)

A

0 (A là một biểu thức đại số).
III, Bài tập và h ớng dẫn:
Bài tập:
Tìm CBH, CBHSH của những số sau: 25; 3; 5; 17; 23, 81, 144; 225; 324; 289.
Bài 1. Tính:
a,
9
;
4
25
;
2
3
;
2
6
;

2
( 6)
;
25
16



;
9
25


.
b,
2
5
;
2
( 7)
;
2
3
4





;

2
3
4



.
c,
4
5
;
4
(2)
;
( Sử dụng HĐT
2
A A=
).
Bài 2. So sánh các cặp số sau:
a, 10 và
3
;
10
và 3;
3 5

5 3
;
b,
8 1

và 2; -2
5
và -5
2
;
3

16
2
.
( Sử dụng a, b là các số không âm, a < b


a
<
b
).
Bài 3 . Tính:
a,
2
(3 2)+
;
2
(2 3)
;
( )
2
2 3+
;
( )

2
3 2
.
b,
2
a
(a

0);
4
2 a
(a < 0) ;
2
2 x
;
6
3 x
;
2
(2 )x
;

2
6 9x x +
( x > 3);
2
2 1x x+ +
;
2
4( 2)a

(a < 2);
2
(3 11)
.

4
9( 5)x
;
2 2 2
( 2 )b a ab b+ +
(b > 0);
2 2 2
3 4
( )
( 0; 0; )
a b a b
b a a b
bc a

> <
.
c,
2
(2 5)+
;
2
(3 15)
;
3 2 2+
;

4 2 3+
;
11 6 2
;
28 10 3
.
( Chú ý ĐK của các chữ trong biểu thức )
1
Bài 4 . Tìm điều kiện xác định của các CTBH sau:
a,
3a
;
3a
;
2a
;
5 a
;
3 6a +
;
4 2a
;
2 5a
;
7 3a
.
b,
2
2 1a
;

4
3 b
;
2
2 1a


;
2
1 8 16b b +
;
3 4
5
a

.
c,
2
2x
;
2
2x
;
2
2 1x +
;
2
5
1x


+
.
d,
2
2 x
;
2
5 3
x
x
;
2
4 4 1x x +
;
2
1
2x x+
.
( Chú ý ĐK để biểu thức dới căn không âm, mẫu khác 0).
Bài 5. Tìm x biết:
a,
2
16 0x =
;
2
1
9
x =
;
2

16 0x + =
;
2
9 0x + =
.
b,
5x =
;
1
2
x =
;
5x =
;
3
2
x =
;
2 2 0x =
.
c,
3
2
x
=
;
2 0
3
x
+ =

;
2
4
x
=
;
1
0
2
x =
.
( Chú ý sử dụng định nghĩa CBH
2
0x
a x
x a


=

=

).
Bài 6. Phân tích thành nhân tử:
a,
2
5x
; 7 - x (x > 0); 3 + 2x (x < 0).
b,
2

3 16x
; x - 9 (x > 0).
c,
4 2 3
;
3 2 2
;
6 2 5
;
7 2 6
.
( Rút ra HĐT
2
( 1) 2 ( 1)a a a+ = +
)
Bài 7. Rút gọn:
a,
( , 0; )
a b
a b a b
a b

>

;
2 1
( 0; 1)
1
x x
x x

x
+


;
( Chú ý sử dụng HĐT
2 2
( )( )a b a b a b = +
và HĐT
2
A A=
).
b,
4 7 4 3+ +
;
5 3 5 48 10 7 4 3+ + +
;
13 30 2 9 4 2+ + +
.
c,
2 1 2 1( 1)x x x x x+ +
.
( Chú ý sử dụng HĐT
2
( 1) 2 ( 1)a a a+ = +
và HĐT
2
A A=
).
Bài 8. Giải các PT sau:

1,
2
4 4 3x x + =
;
2
12 2x =
;
x x=
;
2
6 9 3x x + =
;
2,
2
2 1 1x x x + =
;
2
10 25 3x x x + = +
.
3,
5 5 1x x + =
( Xét ĐK

pt vô nghiệm);

2
2 1 1x x x+ + = +
( áp dụng:
0( 0)A B
A B

A B


=

=

).
4,
2 2
9 6 9 0x x x + + =
(áp dụng:
0
0
0
A
A B
B
=

+ =

=

) .
5,
2 2
4 4 0x x + =
( ĐK, chuyển vế, bình phơng 2 vế).
2


2 2 2
4 5 4 8 4 9 0x x x x x x + + + + + =
(
1 4 5 3 5VT + + = +
;
2
( 2) 0 2x x= = =
)

2 2 2
9 6 2 45 30 9 6 9 8x x x x x x + + + = +
(
2 2 2
(3 1) 1 5(3 1) 4 9 (3 1)x x x + + + =
;
vt

3; vp
3


x = 1/3) .

2 2 2
2 4 3 3 6 7 2 2x x x x x x + + + = +
(đánh giá tơng tự).
6,
2 2
4 5 9 6 1 1x x y y + + + =

(x =2; y=1/3);
2 2
6 5 6 10 1y y x x + =
(x=3; y=3).
tuần 3
Hệ thức giữa cạnh và đờng cao trong tam giác vuông.
I, Mục tiêu:
- HS đợc củng cố, ghi nhớ hệ thống các hệ thức giữa cạnh và đờng cao trong tam giác vuông.
- áp dụng các hệ thức đó vào làm đợc bài thập cơ bản tính toán các độ dài của các yếu tố
trong tam giác vuông.
II, Nhắc lại lí thuyết:
Hệ thức giữa cạnh và đờng cao trong tam giác vuông:


2 ,
2 ,
2 2 2
.
.
b a b
c a c
a b c
=
=
= +

2 , ,
2 2 2
. .
.

1 1 1
a h b c
h b c
h b c
=
=
= +
III, Bài tập.
1, Tìm x, y trong các hình vẽ sau:
3
B
C
H
A
B
C
H
A
B
C
H
A
B
C
H
A
2, Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7. Kẻ đờng cao ứng với cạnh huyền.
Tính đờng cao và hai đoạn thẳng mà nó định ra trên cạnh huyền.
3, Đờng cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3
và 4.Tính các yếu tố còn lại của tam giác vuông này.

4, Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuônglà 3 : 4 và cạnh hguyền là 125 cm, Tính độ
dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.
5, Cho tam giác ABC vuông tại A, biết
5
6
AB
AC
=
. đờng cao AH = 30 cm. Tính HB, HC?
6, Cho tam giác ABC vuông tại A, kẻ đờng cao AH. Biết hai cạnh góc vuông là 7 và 8. Tính các yếu tố
còn lại của tam giác vuông đó.
7, Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7
và 12. Tính các yếu tố càon lại của tam giác vuông đó.
8, Cho tam giác PRK vuông tại R. Kẻ đờng cao RH, biết đờng cao RH = 5, một hình chiếu
là 7.Tính các yếu tố còn lại của tam giác vuông đó.
tuần 4

Các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai.
I, Mục tiêu:
* Kiến thức - Kĩ năng:
- HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai .
Vận dụng tính toán,rút gọn đợc biểu thức chứa căn thức bậc hai.
* Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt.
II, Lí thuyết cần nhớ:
Căn bậc hai của một số a không âm là một số x sao cho
2
x
= a.
Số a > 0 có hai CBH là
a


a
.
Số a

0 ,
a
đợc gọi là CBHSH của a.
4
B
C
H
A
B
C
H
A
B
C
H
A
a, b là các số không âm, a < b


a
<
b
.

A

xác định (hay có nghĩa)

A

0 (A là một biểu thức đại số).
Các công thức biến đổi đơn giản biểu thức chứa căn thức bậc hai.(GV cùng HS nhắc lại).
III, Bài tập và h ớng dẫn:
Bài 1. Tính.
1,
20 5
;
12 27
;
3 2 5 8 2 50+
;
2 5 80 125 +
;
3 12 27 108 +
;

2 45 80 125+
;
75 48 300+
;
8 50 18 +
;
32 50 98 72 +
;

1

2 20 18 6 200
2
+
;
0,09 0,64 0,81 0,01 0,16 0,25+ +
.
2,
10. 40
;
5. 45
;
52. 13
;
2. 162
;
5 18
.
8 5
;
8. 18. 98
;
2 3
. 6
3 2

+



.

3,
45.80
;
75.48
;
90.6,4
;
2,5.14,4
.
4,
( 12 27 3) 3+
;
( )
20 45 5 5 +
;
9 1
2 2
2 2

+



;
5,
( ) ( )
2 1 2 1+
;
7 4. 4 7+
;

4 3 2. 4 3 2+
;
3 5 2 . 3 5 2 + + +
.
6,
3
3
;
2
2 1
;
3 3
3
+
;
5
3 20
;
3 2
2 1


;
5 3
5 2

+
;
2 3
2 3


+
;
3 2
3 2

+
.
7,
2 2
2 1


;
10 2
1 5


;
15 6
2 5


;
3 2 2 3
2 3


.
8,

8 2 15+
;
12 2 35+
;
8 60+
;
17 12 2
;
9 4 2+
;
(Chú ý rút ra HĐT:
( )
2
2a ab b a b + =
)
Bài 2. Rút gọn
1,
3
9
a
a


;
2 1
1
a a
a
+


;
4 4
4
a a
a
+

;
5 4
1
a a
a
+

;
5 6
3
a a
a
+

;
2,
6 24 12 8 3+ + +
;
5 3 29 12 5
;
6 2 2 12 18 128 + +
.
3,

a a b b
ab
a b
+

+
(a > o; b > 0).
4,
x y y x
xy
+
(x > 0; y > 0).
5,
1
:
a b b a
ab a b
+


( )
, 0;a b a b>
.
6,
1 1
1 1
a a a a
a a

+

+
ữ ữ
ữ ữ
+


( )
0; 1a a
.
7,
1 1 4
4
2 2
x
x x
+

+
(
0; 4x x
).
5
tuần 5+6

rút gọn biểu thức có chứa căn thức bậc hai.
I, Mục tiêu:
* Kiến thức - Kĩ năng:
- HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai .
Vận dụng tính toán,rút gọn đợc biểu thức có chứa căn thức bậc hai.
* Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt.

II, Lí thuyết cần nhớ:
* Cách tìm ĐKXĐ của các căn thức, phân thức.
- Biểu thức dới căn không âm.
- Mẫu thức khác 0.
* Phân tích đa thức thành nhân tử thành thạo.
* Nắm vững thứ tự thực hiện các phép tính.
( )
[ ]
{ }
.
;
,: ,
n
a ì +

và các phép tính về đơn thức, đa thức, phân thức, căn thức.
* Vận dụng linh hoạt các HĐT:
2
( 1) 2 ( 1)a a a
+ = +
;
( )
2
2a ab b a b
+ =

( ) ( )
a a b b a b a ab b = +m
;
( ) ( )

a b a b a b = +
.
III, Bài tập và h ớng dẫn:
* Ph ơng pháp: - Tìm ĐKXĐ(BT dới căn có nghĩa, mẫu

0).
- Rút gọn từng phân thức trong biểu thức (Nếu có thể).
- Biến đổi, rút gọn cả biểu thức.
- Kết luận.
* Bài tập. Rút gọn các biểu thức sau:
1
1 1 1 1 1
:
1 1 1 1 1
A
x x x x x

= + +
ữ ữ
+ +

kq:
1
x x
2
1 1 2
:
2
a a a a a
A

a
a a a a

+ +
=



+

kq:
2 4
2
a
a

+
3
1 2
1 :
1
1 1
x x
A
x
x x x x x

= +
ữ ữ
ữ ữ

+
+

kq:
1
1
x x
x
+ +

4
1 1 2
:
1
1 1
x
A
x
x x x x


= +




+


kq:

1x
x

( )
5
2
:
a a b b b
A a b
a b a b
+
= +
+ +
kq:
a ab b
a b
+

6
:
2
a a a a a
A
b a
a b a b a b ab

= +
ữ ữ
ữ ữ


+ + + +

kq:
( )
a b
a b a
+

7
1
1 1 :
1 1 1
a a a a a
A
a a a

+ +
= +
ữ ữ
ữ ữ
+

6
8
1 1 8 3 2
: 1
9 1
3 1 3 1 3 1
x x x
A

x
x x x


= +
ữ ữ
ữ ữ

+ +

kq:
3 1
x x
x
+

9
2 9 3 2 1
5 6 2 3
x x x
A
x x x x
+ +
=
+
kq:
1
3
x
x

+

10
:
x x y y
x y
A xy
x y x y

+

=


+ +

* Các dạng toán có sử dụng kết quả của bài toán rút gọn.
1. Tính giá trị của biểu thức sau khi rút gọn.
+ Hớng dẫn: - Nếu biếu thức đã rút gọn chứa căn, giá trị của biến chứa căn, ta biến đổi giá
trị của biến về dạng HĐT.
- Nếu giá trị của biến chứa căn ở mẫu, ta trục căn thức ở mẫu trớc khi thay vào
biểu thức.
+ Ví dụ: Tính
1
A
khi
7 4 3x = +
. ( ta biến đổi
( )
2

7 4 3 2 3+ = +
rồi hãy thay vào tính).
2. Tìm giá trị của biến để biểu thức đã rút gọn bằng một số.
+ Hớng dẫn: - Thực chất là giải PT A = a.
- Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL.
+ Ví dụ: Tìm x để
4
5A =
. (Ta giải PT:
1
5
x
x

=
. ĐK:
0; 1x x>
).
3. Tìm giá trị của biến để biểu thức đã rút gọn lớn hơn, hoặc bé hơn một số ( một biểu
thức).
+ Hớng dẫn: - Thực chất là giải BPT A > a(P) ( hoặc A < a(P)).
- Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL.
+ Ví dụ: Tìm x để
4
1A >
. (Ta giải BPT:
1
5
x
x


>
. ĐK:
0; 1x x>
).
4. Tìm giá trị nguyên của biến để biểu thức đã rút gọn nhận giá trị nguyên.
+ Hớng dẫn: - Tách phần nguyên, xét ớc.
- Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL.
+ Ví dụ: Tìm giá trị nguyên của biến x để biểu thức
9
A
nhận giá trị nguyên.
( Ta có
9
1 4
1
3 3
x
A
x x
+
= =

.
9
A
nguyên


3x

là ớc của 4. Sau đó xét ớc của 4, rồi
đối chiếu với ĐK để KL).
5. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức đã rút gọn.
+ Hớng dẫn: Có thể đánh giá bằng nhiều cách, tuỳ bài toán cụ thể mà ta chọn cách nào đó
cho phù hợp.
6. So sánh biểu thức đã rút gọn với một số hoặc một biểu thức.
+ Hớng dẫn: Xét hiệu A - m
- Nếu A - m > 0 thì A > m.
- Nếu A - m < 0 thì A < m.
- Nếu A - m = 0 thì A = m.
+ Ví dụ: So sánh
4
A
với 1. ( Lập hiệu
1
1
x
x


, rồi xét xem hiệu này > 0; < 0; = 0

KL).
7
tuần 7 + 8 +9
Bài tập tổng hợp.
Bài 1. Cho biểu thức:
1 1 3
: 1
1

x x x x x
A
x x x x x

+
=
ữ ữ
ữ ữ
+ +

kq:
1
1
x
x
+


1, Tìm ĐK XĐ của biểu thức A.
2, Rút gọn A.
3, Tính giá trị của biểu thức A khi
1
6 2 5
x =

4, Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5, Tìm giá trị của x để giá trị biểu thức A bằng -3.
6, Tìm giá trị của x để giá trị biểu thức A nhỏ hơn -1.
7, Tìm giá trị của x để giá trị biểu thức A lớn hơn
2

1x

+
8, Tìm giá trị của x để giá trị biểu thức A - 1 Max
9, So sánh A với
1x +

Bài 2. Cho biểu thức:
4 1 2
1 :
1 1
1
x x x
B
x x
x


= +





kq:
3
2
x
x



1, Tìm x để biểu thức B xác định.
2, Rút gọn B.
3, Tính giá trị của biểu thức B khi x =
11 6 2
4, Tìm giá trị nguyên của x để biểu thức B nhận giá trị nguyên.
5, Tìm giá trị của x để giá trị biểu thức B bằng -2.
6, Tìm giá trị của x để giá trị biểu thức B âm.
7, Tìm giá trị của x để giá trị biểu thức B nhỏ hơn -2.
8, Tìm giá trị của x để giá trị biểu thức B lớn hơn
1x

Bài 3. Cho biểu thức:
3
3
2 1 1
1 1
1
x x x
C x
x x x
x


+ +
=





+ + +



kq:
1x

1, Biểu thức C xác định với những giá trị nào của x?
2, Rút gọn C.
3, Tính giá trị của biểu thức C khi x =
8 2 7
4, Tìm giá trị của x để giá trị biểu thức C bằng -3.
5, Tìm giá trị của x để giá trị biểu thức C lớn hơn
1
3

.
6, Tìm giá trị của x để giá trị biểu thức C nhỏ hơn
2 3x +
.
7, Tìm giá trị của x để giá trị biểu thức C nhỏ nhất.
8, So sánh C với
2
x

.
Bài 4. Cho biểu thức:
2 4 2 3
1 :
4

6 3 2
x x x x x
D
x
x x x x


=
ữ ữ
ữ ữ

+

kq:
2
3x

1, Tìm ĐK XĐ của biểu thức D.
8
2, Rút gọn D.
3, Tính giá trị của biểu thức D khi x =
13 48
.
4, Tìm giá trị của x để giá trị biểu thức D bằng 1.
5, Tìm giá trị của x để giá trị biểu thức D âm.
6, Tìm giá trị của x để giá trị biểu thức D nhỏ hơn -2 .
7, Tìm giá trị nguyên của x để biểu thức D nhận giá trị nguyên.
8, Tìm giá trị của x để giá trị biểu thức D lớn nhất.
9, Tìm x để D nhỏ hơn
1

x
.
Bài 5. Cho biểu thức:
1 1 8 3 1
:
1 1
1 1 1
a a a a a
E
a a
a a a

+
=
ữ ữ
ữ ữ

+

kq:

1, Tìm a để biểu thức E có nghĩa.
2, Rút gọn E.
3, Tính giá trị của biểu thức E khi a =
24 8 5
4, Tìm giá trị của a để giá trị biểu thức E bằng -1.
5, Tìm giá trị của a để giá trị biểu thức E dơng.
6, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn
3a +
.

7, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất.
8, So sánh E với 1 .
Bài 6. Cho biểu thức:
1 1 1
4
1 1
a a
F a a
a a a

+

= +



+


kq: 4a
1, Tìm ĐK XĐ của biểu thức F.
2, Rút gọn F.
3, Tính giá trị của biểu thức F khi a =
6
2 6+
4, Tìm giá trị của a để giá trị biểu thức F bằng -1.
5, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn
1a
.
6, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất.

7, Tìm giá trị của a để
F F>
. (
2
1
0 0
4
F F a > < <
).
8, So sánh E với
1
a
.
Bài 7. Cho biểu thức:
2
2 2 2 1
1 2
2 1
x x x x
M
x
x x

+ +
=



+ +


kq:
x x +

1, Tìm x để M tồn tại. 2, Rút gọn M.
3, CMR nếu 0 <x < 1 thì M > 0. (
1 0; 0 0x x M > > >
)
3, Tính giá trị của biểu thức M khi x = 4/25.
4, Tìm giá trị của x để giá trị biểu thức M bằng -1.
5, Tìm giá trị của x để giá trị biểu thức M âm ; M dơng.
6, Tìm giá trị của x để giá trị biểu thức M lớn hơn -2 .
7, Tìm giá trị nguyên của x để biểu thức M nhận giá trị nguyên.
8, Tìm giá trị của x để giá trị biểu thức M lớn nhất.
9
9, Tìm x để M nhỏ hơn -2x ; M lớn hơn
2 x
.
10, Tìm x để M lớn hơn
2 x
.
Tuần 10 + 11 .
Tỉ số lợng giác của góc nhọn.
I, Mục tiêu:
* Kiến thức - Kĩ năng:
- HS đợc củng cố các định nghĩa tỉ số lợng giác của góc nhọn, tính chất tỉ số
lợng giác của góc nhọn, các hệ thức giữa cạnh và góc trong tam giác .
- Vận dụng tính toán,tìm đợc tỉ số lợng giác của một góc, dựng một góc biết tỉ
số lợng giác của góc đó .
* Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt.
II, Lí thuyết cần nhớ:

*Đ/n tỉ số lợng giác của góc nhọn.

* T/ c tỉ số lợng giác của góc nhọn:
+
0 sin , 1cos

< <
;
2 2
sin 1cos

+ =
;
sin : cos tg

=
;
: sin coscos tg

=
.
+ Nếu



là hai góc phụ nhau thì
sin cos

=
;

cottg g

=
+
.cot 1tg g

=
.
* Hệ thức giữa cạnh và góc trong tam giác vuông.
III, Bài tập và h ớng dẫn:
Bài tập 1: Cho hình vẽ sau, chỉ ra các hệ thức sai.
B
A
C
1,
sin
BC
A
AC
=
; 2,
cos
AB
C
AC
=
; 3,
AB
tgC
BC

=
; 4,
cot
BC
gA
AB
=
; 5,
.cot 1tgA gB =
6,
0
sin cos(90 )A C=
; 7,
2 2
sin cos 1A C+ =
; 8,
sin
cos
A
tgA
C
=
; 9,
sin
cot
cos
A
gA
A
=

; 10,
cottgA gC=
Bài tập 2: Cho hình vẽ sau, các hệ thức nào sau đây là đúng.
B
A
C
H
1,
.cosAB BC C
=
; 2,
.AC AH tgC=
; 3,
.AH AB tgB=
; 4,
.BH AH tgB=
; 5,
.sinAC BC B
=
;
6,
.AB AC tgC=
; 7,
.cosBH AB B
=
; 8,
cos
AB
BC
C

=
; 9,
cot
AC
AB
gC
=
; 10,
AB
AC
tgC
=
Bài tập 3:
10
Cho tam giác ABC vuông tại A. AB = 30 cm góc B bằng

. Biết
5
12
tg

=
. Tính cạch AB, AC.
Bài tập 4:
Tìm x trong hình vẽ sau:
Bài tập 5:
Cho tam giác ABC vuông tại A. Kẻ đờng cao AH. Tính
sin ,sinB C
trong các trờng hợp sau:
A, AB = 13 ; BH = 5.

B, BH = 3 ; CH = 4.
Bài tập 6:
Dựng góc nhọn

biết :
a,
1
sin
2

=
; b,
2
cos
3

=
; c,
4
5
tg

=
; d,
3
cot
4
g

=

Bài tập7:
a, Sắp xếp các tỉ số lợng giác sau theo thứ tự từ nhỏ đến lớn : 1 1,
0 0 0 ' 0 0
sin 35 ,cos 28 ,sin 34 72 ,cos 62 ,sin 45

2,
0 0 ' 0 0 0
cos37 ,cos 65 30 ,sin 72 , cos59 ,sin 47

b, Sắp xếp các tỉ số lợng giác sau theo thứ tự từ lớn đến nhỏ :
1,
0 0 0 0 ' 0
42 , cot 71 , 38 , cot 69 15 , 28tg g tg g tg

2,
0 0 0 ' 0 0
cot 57 , 46 , cot 73 43 , 64 ,cot 75g tg g tg g

Bài tập 8:
Cho tam giác ABC vuông tại A, kẻ đờng cao AH. Biết hai cạnh góc vuông là 7 và 8. Tính các yếu tố
còn lại của tam giác vuông đó.
Bài tập 9:
Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7 và
12. Tính các yếu tố còn lại của tam giác vuông đó.
Bài tập 10:
Cho tam giác PRK vuông tại R, kẻ đờng cao RH. Biết đờng cao RH là 5 và một hình chiếu
là 7. Tính các yếu tố còn lại của tam giác vuông đó.
Bài tập 11: Tính giá trị biểu thức:
a,
2 0 0 2 0 0

cos 52 sin 45 sin 52 cos 45A
= +
b,
0 2 0 2 0 0
sin 45 cos 47 sin 47 cos 45B
= +

Bài tập 12: Tìm
sin ,cot ,g tg

biết
1
cos
5

=
Bài tập 13 : Cho tam giác ABC vuông ở A, góc C bằng
0
30
, BC = 10 cm.
a, Tính AB, AC.
b, Kẻ từ A các đờng thẳng AM, AN lần lợt vuông góc với các đờng phân giác trong và ngoài của
góc B. CMR:
MN // BC; MN = BC
11
c, Tam giác MAB đồng dạng với tam giác ABC. Tìm tỉ số đồng dạng.
Tuần 12 .
Hàm số bậc nhất- đồ thị hàm số bậc nhất.
I, Mục tiêu:
* Kiến thức - Kĩ năng:

- HS đợc củng cố khái niệm HSBN, đk để một hàm số là hàm số bậc nhất.
- HS xác định đợc tính đồng biến, nghịch biến, hình dạng, cách vẽ đồ thị HSBN.
* Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt.
II, Lí thuyết cần nhớ:
* Dạng HSBN y = ax + b (a

0)
Là đờng thẳng song song với đờng thẳng y = ax , cắt trục tung tại b, cắt trục hoành tại -
b
a
* T/ c đồng biến, nghịch biến của HSBN.
- Đồng biến khi a > 0.
- Nghịch biến khi a < 0.
* Cách vẽ đồ thị HSBN.
- Cho x = 0

y = b. Đồ thị hàm số cắt trục tung tại b.
- Cho y = 0

x= -
b
a
. Đồ thị hàm số cắt trục hoành tại -
b
a
.
- Vẽ đờng thẳng đi qua hai điểm vừa tìm ta đợc đồ thị hàm số y = ax + b.
III, Bài tập và h ớng dẫn:
Bài 1. Trong các hàm số sau hàm số nào là hàm số bậc nhất? Xác định a, b và tính đồng biến, nghịch
biến của hàm số đó.

y = 2 - 0,3 x; y = 3 - 2
2
x
; y =
2( 2)x
; y = -2,5x; y =
( 2 1) 3x +
;
y +
5
= x -
3
; y=
2 3x
; y = 2
x
+ 3; y =
1
x
x
+
;
y = x
2
- 1; y = (x + 1)(x + 2).
Bài 2. Tìm ĐK của tham số để một hàm số là hàm số bậc nhất.
1. y = (m - 3)x +5; y = (2 - 4m)x - 1; y = (1 - 2m)x +
1
2
; y = mx -

2
x + 3;
2. y =
7 m
(x -1); y =
2
100
2
m
x
m
+


; y =
2
4 4 3m m x + +
; y =
2
2
4,5
1
x
m

+

.
Bài 3. Cho các hàm số y = (m + 1)x - 5; y = (6 - 2m)x + 2
a. Tìm m để hàm số đồng biến.

b. Tìm m để hàm số nghịch biến.
Bài 4. Tìm tất cả các điểm trên mặt phẳng toạ độ:
a. Có tung độ là 5.
b. Có tung độ là 0.
c. Có hoành độ là -2.
d. Có hoành độ là 0.
e. Có hoành độ bằng tung độ.
12

×