Tải bản đầy đủ (.pdf) (61 trang)

Nghiên cứu tính toán kết cấu chịu uốn siêu nhẹ tensairity

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.96 MB, 61 trang )

..

ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA

NGUYỄN DƢƠNG THÀNH

NGHIÊN CỨU TÍNH TỐN
KẾT CẤU CHỊU UỐN SIÊU NHẸ TENSAIRITY

LUẬN VĂN THẠC SĨ KỸ THUẬT

Đà Nẵng, năm 2017


ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA

NGUYỄN DƢƠNG THÀNH

NGHIÊN CỨU TÍNH TỐN
KẾT CẤU CHỊU UỐN SIÊU NHẸ TENSAIRITY

C u n ngàn

K t u t
d ng cơng trình DD&CN
M s : 60.58.02.08

LUẬN VĂN THẠC SĨ KỸ THUẬT


Ngƣời ƣ ng d n

oa ọc TS. NGUYỄN QUANG TÙNG

Đà Nẵng, năm 2017


LỜI CAM ĐOAN
Tơi cam đoan đây là cơng trình nghiên cứu của riêng tôi.
Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai cơng
bố trong bất kỳ cơng trình nào khác.
Tác giả luận văn

Ngu ễn Dƣơng T àn


TĨM TẮT LUẬN VĂN
NGHIÊN CỨU TÍNH TỐN KẾT CẤU CHỊU UỐN SIÊU NHẸ
TENSAIRITY
Học viên: Nguyễn Dƣơng Thành Chuyên ngành: Kỹ thuật xây dựng DD&CN.
Mã số: 60.58.02.08 Khóa: 31
Trƣờng Đại học Bách khoa-ĐHĐN
Tóm Tắt: Những nghiên cứu đầu tiên về kết cấu Tensairity đƣợc thực hiện
bởi nhóm nghiên cứu về kết cấu siêu nhẹ của Luchsinger – Thụy Sĩ. Nhóm
nghiên cứu này đã nghiên cứu, phối hợp khả năng làm việc của một thanh kim
loại chịu nén, một hệ dây cáp chịu kéo và một dầm thổi phồng làm nhiệm vụ
chống uốn dọc cho thanh kim loại đó. Với phƣơng pháp phối hợp này, nhóm đã
tận dụng tối đa đƣợc hiệu quả làm việc của từng thành phần chịu lực. Với nhiều
tính năng ƣu việt, kết cấu này hứa hẹn sẽ đƣợc sử dụng nhiều trong tƣơng lai.
Mục tiêu đặt ra là nghiên cứu đƣợc ứng xử của một dầm đƣợc cấu tạo theo

nguyên lý của kết cấu Tensairity. Qua đó đề xuất khả năng ứng dụng của loại
dầm này vào trong thực tiễn xây dựng.
Từ Khóa: NGHIÊN CỨU TÍNH TỐN KẾT CẤU CHỊU UỐN SIÊU NHẸ
TENSAIRITY
Study on calculation of ultra-lightweight Tensairity bending
The first research on Tensairity structure was carried out by Luchsinger's
ultra-light textiles research group in Switzerland. This team has studied,
combined the workability of a compressed metal rod, a pulling cable system and
an inflatable beam for anti-bending duty on the metal bar.With this coordination
method, the team makes the most of the performance of each component. With
many advanced features, this structure promises to be used in the future.
The objective is to study the behavior of a beams constructed in accordance
with the principle of Tensairity structure. This suggests the applicability of this
beam to the construction practice.
Key words: Study on behavior of Tensairity beam - Super lightweight
bending structure Abstract


MỤC LỤC
TRANG PHỤ BÌA
LỜI CAM ĐOAN
MỤC LỤC
DANH MỤC CHỮ VIẾT TẮT
DANH MỤC BẢNG BIỂU
DANH MỤC CÁC HÌNH
MỞ ĐẦU ......................................................................................................................... 1
1. Tính cấp thiết........................................................................................................... 1
2. Mục tiêu nghiên cứu ................................................................................................ 2
3. Đối tƣợng và phạm vi nghiên cứu ........................................................................... 2
4. Phƣơng pháp nghiên cứu ........................................................................................ 2

5. Bố cục luận văn ....................................................................................................... 2
CHƢƠNG 1. TỔNG QUAN VỀ CẤU KIỆN CHỊU UỐN ........................................ 4
1.1. KẾT CẤU CHỊU UỐN CỔ ĐIỂN ........................................................................... 4
1.1.1. Kết cấu dầm chịu lực......................................................................................... 4
1.1.1.1. Dầm thép .................................................................................................... 4
1.1.1.2. Dầm bê tông cốt thép ................................................................................. 5
1.1.1.3. Dầm gỗ ....................................................................................................... 6
1.1.2. Kết cấu dàn chịu lực .......................................................................................... 9
1.2. MỘT SỐ KẾT CẤU CHỊU UỐN MỚI .................................................................. 10
1.2.1. Dầm thổi phồng ............................................................................................... 10
1.2.2. Kết cấu Tensegrity .......................................................................................... 17
1.2.3. Kết cấu Tensairity ........................................................................................... 19
1.3. KẾT LUẬN CHƢƠNG .......................................................................................... 21
CHƢƠNG 2. LÝ THUYẾT TÍNH DẦM TENSAIRITY......................................... 22
2.1. TRƢỜNG HỢP DÂY CÁP ĐƢỢC ĐƢỢC LİÊN KẾT VÀO HAİ ĐẦU
THANH NÉN VÀ CHẠY DỌC THEO TRỤC ỐNG .................................................. 22
2.2. TRƢỜNG HỢP DÂY CÁP ĐƢỢC BỐ TRÍ XOẮN ỐC QUANH TRỤC ỐNG . 28
2.3. KẾT LUẬN CHƢƠNG .......................................................................................... 34
CHƢƠNG 3. TÍNH TỐN ĐỘ VÕNG CỦA DẦM TENSAIRITY ....................... 36
3.1. TRƢỜNG HỢP DÂY CÁP ĐƢỢC ĐƢỢC LİÊN KẾT VÀO HAİ ĐẦU
THANH NÉN VÀ CHẠY DỌC THEO TRỤC ỐNG .................................................. 36
3.1.1 Tính tốn độ võng của hệ dầm Tensairity ........................................................ 36
3.1.2. Phân tích hiệu quả sử dụng dầm Tensairity .................................................... 40


3.2. TRƢỜNG HỢP DÂY CÁP ĐƢỢC BỐ TRÍ XOẮN ỐC QUANH TRỤC ỐNG . 42
3.2.1. Tính tốn độ võng của hệ dầm Tensairity ....................................................... 42
3.2.2. Phân tích sự làm việc của dầm Tensairity ....................................................... 45
3.3. KẾT LUẬN CHƢƠNG .......................................................................................... 48
KẾT LUẬN - KIẾN NGHỊ ......................................................................................... 49

TÀI LIỆU THAM KHẢO........................................................................................... 50
QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN (bản sao)


DANH MỤC CHỮ VIẾT TẮT
Kết cấu Tensairit
w1 : Độ võng của thanh nén

w2

: Độ võng của dây căng

f

: Đƣờng kính ống thổi phồng

: Nửa chiều dài dầm Tensairity
T n c ất cơ ọc của v t iệu
EI : Độ cứng chống uốn của thanh nén
k
: Độ cứng của liên kết đàn hồi
E
: Mô đun đàn hồi
Tải trọng
q
: Tải trọng tác dụng
H
: Lực nén trong thanh nén và cũng là lực kéo trong dây cáp
p
: Áp suất thổi phồng



DANH MỤC BẢNG BIỂU
S

iệu

bảng

T n bảng

Trang

3.1.

Thông số đầu vào cho bài toán dầm Tensairity

36

3.2.

So sánh chuyển vị w1 của thanh nén trong hệ dầm Tensairity

39

3.3.

Độ võng dầm Tensairity và dầm thép hộp

41


3.4.

Thơng số đầu vào cho bài tốn dầm Tensairity

43

3.5.

Chuyển vị của dầm Tensairity theo hai phƣơng pháp tính tốn

44

3.6.

So sánh chuyển vị của dầm Tensairity – dầm thép hộp

45


DANH MỤC CÁC HÌNH
S

iệu
hình

Tên hình

Trang


1.1.

Một số dầm thép đƣợc áp dụng

4

1.2.

Dầm bê tơng cốt thép

5

1.3.

Cơng trình bằng gỗ

6

1.4.

Dàn thép

10

1.5.

Dầm thổi phồng

12


1.6.

Kết cấu thổi phồng đƣợc sử dụng tạm thời

11

1.7.

Một số cơng trình thổi phồng đƣợc ứng dụng trong đời
sống

12

1.8.

Tác phẩm nghệ thuật bằng vải kỹ thuật

13

1.9.

Những sân vận động với vòm mái sử dụng kết cấu thổi phồng

15

1.10.

Mặt cắt của 1 tấm panơ thổi phồng

19


1.11.

Một số cơng trình ứng dụng Tensegrity

16

1.12

Một số cơng trình theo kết cấu Tensairity

17

2.1.

Sơ đồ làm việc của dầm Tensairity

23

2.2.

Sơ đồ làm việc của dầm Tensairity

29

3.1.

Mô hình dầm Tensairity

38


3.2.

Chuyển vị của dầm theo phƣơng Y

38

3.3.

So sánh kết quả chuyển vị của dầm Tensairity

40

3.4.

So sánh độ võng của dầm Tensairity và dầm thép hộp

42

3.5.

So sánh độ võng của dầm Tensairity theo phƣơng pháp giải
tích và phƣơng pháp PTHH

44

3.6.

Khảo sát chuyển vị w1 ( x  0) của dầm Tensairity


47


1

MỞ ĐẦU
1. T n cấp t iết
1.1 . Tổng quan về kết cấu thổi phồng
Hiện nay, phần lớn những công trình xây dựng trên thế giới làm từ vật liệu gạch,
đá, bê tông và đặc biệt là bê tông cốt thép và thép. Ƣu điểm chung của các loại vật liệu
này là khả năng chịu lực lớn, tuổi thọ công trình cao. Tuy nhiên, nhƣợc điểm của nó là
trọng lƣợng bản thân lớn, việc xây dựng và tháo dỡ khi khơng dùng đến tốn nhiều chi
phí. Vì vậy, để hạn chế các nhƣợc điểm trên thì vật liệu composite ra đời.
Một trong những vật liệu composite đƣợc sử dụng phổ biến hiện nay là vật liệu
vải kĩ thuật. Các tấm vải kỹ thuật này thƣờng đƣợc tạo hình thành những ống kín, đƣợc
thổi khí vào để có thể chịu đƣợc tải trọng bản thân cũng nhƣ chịu các tải trọng khác
gọi là các ống thổi phồng. Các ống thổi phồng này đƣợc liên kết với nhau để tạo nên
khung chịu lực chính trong rất nhiều cơng trình xây dựng trên thế giới nhƣ mái vòm
sân vận động, nhà triển lãm, các nhà tạm dùng trong trƣờng hợp khẩn cấp hoặc các lều
trại quân đội, các cầu tạm... Dạng kết cấu này đƣợc gọi chung là kết cấu thổi phồng.
Kết cấu thổi phồng này có ƣu điểm là tiện dụng, dễ dàng vận chuyển lắp dựng. Tuy
nhiên chỉ thích hợp cho những trƣờng hợp khẩn cấp, khó có thể sử dụng lâu dài. Ngoài
ra, nhƣợc điểm cố hữu của loại kết cấu thổi phồng này là khả năng chịu lực rất bé.
Nhằm mục đích cải thiện hiệu quả sử dụng vật liệu, tăng khả năng chịu lực mà
không làm tăng trọng lƣợng bản thân kết cấu, dạng kết cấu chịu uốn Tensairity ra đời.
Kết cấu này sở hữu ƣu điểm của các kết cấu truyền thống là khả năng chịu lực cao; và
ƣu điểm của kết cấu thổi phồng là trọng lƣợng bản thân nhẹ, tính cơ động cao. Hiện
nay trên thế giới, đã có nhiều cơng trình đƣợc thực hiện theo dạng này, điển hình có
thể kể đến cầu Pont de Val-Cenis ở Pháp và rất nhiều kết cấu khác (xem Hình 1).


a) Pont de Val-Cenis (Pháp)

b) Garage ơ-tơ (Thụy Sĩ)

Hình 1: Kết cấu Tensairity


2
Với tầm quan trọng nhƣ vậy, nhƣng đến nay, vẫn chƣa có nhiều kết quả nghiên
cứu đƣợc đƣa ra, khơng có nhiều bài báo khoa học đề cập đến việc nghiên cứu ứng xử
của loại kết cấu mới này.
1.2. Thực trạng nghiên cứu về kết cấu thổi phồng
Những nghiên cứu đầu tiên về kết cấu Tensairity đƣợc thực hiện bởi nhóm
nghiên cứu về kết cấu siêu nhẹ của Luchsinger – Thụy Sĩ. Nhóm nghiên cứu này đã
nghiên cứu, phối hợp khả năng làm việc của một thanh kim loại chịu nén, một hệ dây
cáp chịu kéo và một dầm thổi phồng làm nhiệm vụ chống uốn dọc cho thanh kim loại
đó. Kết quả thu đƣợc là rất khả quan, với trọng lƣợng kết cấu chƣa đến 60 kG nhƣng
có thể vƣợt nhịp 5m và chịu đƣợc tải trọng lên đến 3T. Với phƣơng pháp phối hợp
này, nhóm đã tận dụng tối đa đƣợc hiệu quả làm việc của từng thành phần chịu lực.
Với nhiều tính năng ƣu việt, kết cấu này hứa hẹn sẽ đƣợc sử dụng nhiều trong tƣơng
lai.
Tuy nhiên, hiện nay vẫn chƣa có nhiều nghiên cứu và ứng dụng cho loại kết cấu
mới này. Do đó, đề tài “Nghiên cứu tính tốn kết cấu chịu uốn siêu nhẹ Tensairity” là
cần thiết và có ý nghĩa khoa học và thực tiễn cao.
2. Mục ti u ng i n cứu
Mục tiêu đặt ra là nghiên cứu đƣợc ứng xử của một dầm đƣợc cấu tạo theo
nguyên lý của kết cấu Tensairity. Qua đó đề xuất khả năng ứng dụng của loại dầm này
vào trong thực tiễn xây dựng.
3. Đ i tƣợng và p ạm vi ng i n cứu
Đối tƣợng và phạm vi nghiên cứu của đề tài bƣớc đầu đƣợc giới hạn trong các

cấu kiện chịu lực cơ bản nhƣ dầm. Các dầm này về cơ bản ứng xử giống nhƣ các dầm
“cổ điển” đƣợc cấu tạo từ các vật liệu quen thuộc nhƣ gỗ, thép hay bê tông cốt thép...
Tuy nhiên, điều khác biệt là dầm màng mỏng phải đƣợc thổi phồng ở một áp suất nhất
định nào đó trƣớc khi có thể tham gia hỗ trợ khả năng chịu uốn dọc cho thanh nén.
Khả năng chịu lực chính của dầm sẽ đƣợc đảm bảo bởi thanh chịu nén bằng kim loại
và hệ dây cáp. Về nguyên tắc, dầm Tensairity có cấu tạo giống nhƣ dầm, nhƣng làm
việc giống nhƣ kết cấu dàn.
4. P ƣơng p áp ng i n cứu
- Nghiên cứu lý thuyết tính tốn để xây dựng mơ hình theo phƣơng pháp phần tử
hữu hạn
- So sánh với kết quả để hợp thức hóa mơ hình tính tốn lý thuyết.
5. B cục u n văn
A. MỞ ĐẦU


3
1. Tính cấp thiết của đề tài
2. Mục tiêu nghiên cứu
3. Đối tƣợng và phạm vi nghiên cứu
4. Phƣơng pháp nghiên cứu
B. NỘI DUNG CHÍNH
C ƣơng 1: TỔNG QUAN VỀ CẤU KIỆN CHỊU UỐN
1.1. Kết cấu chịu uốn cổ điển
1.2. Một số kết cấu chịu uốn mới
1.3. Kết luận chƣơng
C ƣơng 2 LÝ THUYẾT TÍNH DẦM TENSAIRITY
2.1. Trƣờng hợp dây cáp đƣợc đƣợc liên kết vào hai đầu thanh nén và chạy dọc
theo trục ống
2.2. Trƣờng hợp dây cáp đƣợc bố trí xoắn ốc quanh trục ống
2.3. Kết luận chƣơng

C ƣơng 3 TÍNH TỐN ĐỘ VÕNG CỦA DẦM TENSAIRITY.
3.1.Trƣờng hợp dây cáp đƣợc đƣợc liên kết vào hai đầu thanh nén và chạy dọc
theo trục ống
3.2. Trƣờng hợp dây cáp đƣợc bố trí xoắn ốc quanh trục ống
3.3. Kết luận chƣơng.
C. KẾT LUẬN VÀ KIẾN NGHỊ
1. Kết luận
2. Kiến nghị


4

CHƢƠNG 1
TỔNG QUAN VỀ CẤU KIỆN CHỊU UỐN
1.1. KẾT CẤU CHỊU UỐN CỔ ĐIỂN
1.1.1. Kết cấu dầm c ịu c
Kết cấu dầm là kết cấu dạng thanh, chịu tải trọng vng góc với trục thanh.
Thƣờng đƣợc sử dụng nhƣ kết cấu chịu lực trong các cơng trình xây dựng dân dụng và
cơng nghiệp. Dầm chịu lực có thể đƣợc cấu tạo từ nhiều vật liệu khác nhau nhƣ: thép,
bê tông cốt thép, gỗ…
1.1.1.1. Dầm thép
Kết cấu thép sử dụng hoàn tồn thép làm kết cấu chịu lực chính. (cột thép, dầm
thép hình...) Tùy vào hình dạng cơng trình, khơng gian, ứng dụng... mà ngƣời ta sử
dụng những hệ kết cấu phù hợp.
Kết cấu thép đƣợc sử dụng rộng rãi trong ngành xây dựng hiện nay trên thế giới.
Cũng nhƣ các vật liệu khác, kết cấu thép cũng có những ƣu và nhƣợc điểm riêng.

Hình 1.1. Một số dầm thép được áp dụng



5

 Ƣu điểm của dầm t ép
- Có tính đa dạng cao, linh hoạt, áp dụng cho mọi cơng trình và hình dáng đa
dạng.
- Dễ sữa chữa, nâng cấp.
- Giá thành thấp.
- Chất lƣợng cao.
- Thi cơng nhanh.
- Chi phí bảo hành thấp.
 N ƣợc điểm
- Chịu lửa kém
- Chịu sự ăn mịn bởi tác động của mơi trƣờng, độ ẩm...
1.1.1.2. Dầm bê tông cốt thép
Bê tông cốt thép ngày nay đƣợc sử dụng rộng rãi trong nghành công nghiệp xây
dựng và trở thành một trong những vật liệu đƣợc xây dựng chủ yếu trong và ngồi
nƣớc.

Hình 1.2. Dầm bê tông cốt thép


6
Loại kết cấu này sở hữu nhiều ƣu điểm khiến nó ngày càng đƣợc ứng dụng nhiều
trong lĩnh vực xây dựng nhƣ:
- Đơn giản, dễ chế tạo, có thể sử dụng các loại vật liệu tại địa phƣơng (cát, đá...)
- Chịu lực tốt, tuổi thọ cơng trình cao, chi phí bão dƣỡng ít.
- Thiết kế và tạo hình dáng cho cấu kiện dễ dàng.
Tuy nhiên, bên cạnh các ƣu điểm khơng thể bàn cãi thì loại kết cấu này cũng còn
tồn tại một số nhƣợc điểm nhất định nhƣ:
- Trọng lƣợng bản thân lớn gây khó khăn trong việc xây dựng kết cấu vƣợt nhịp

lớn bằng BTCT thông thƣờng.
- Bê tơng cốt thép dễ có khe nứt ở vùng chịu kéo khi chịu lực, thông thƣơng bề
rộng khe nứt không lớn và ít ảnh hƣởng đến chất lƣợng sử dụng của kết cấu.
- Cách âm, cách nhiệt kém, thi công phức tạp, khó kiểm tra chất lƣợng, gia cố
hay sữa chữa.
1.1.1.3. Dầm gỗ
Gỗ là nguyên liệu, vật liệu đƣợc con ngƣời sử dụng rộng rãi và lâu đời. Đƣợc sử
dụng rộng rãi trong các ngành nông nghiêp, công nghiêp, xây dựng...


7

Hình 1.3. Cơng trình bằng gỗ
Kết cấu gỗ thƣờng có những ƣu điểm nhƣ sau:
- Trọng lƣợng bản thân bé, có tính cơ học cao, chịu uốn tốt.
- Sử dụng vật liệu địa phƣơng, giá thành thấp.
- Dễ chế tạo, đa dạng về hình dáng, kiến trúc cơng trình.


8
- Chi phí bão dƣỡng thấp.
- Chống xâm thực của mơi trƣờng hóa học tốt.
Tuy nhiên dầm gỗ cũng có những nhƣợc điểm nhƣ:
- Vật liệu không bền, dex mối mục, dễ cháy.
- Có nhiều khuyết tật làm giảm khả năng chịu lực.
- Kích thƣớc gỗ tự nhiên hạn chế.
- Vật liệu ngậm nƣớc, độ ẩm thay đổi theo nhiệt độ và độ ẩm môi trƣờng. Khi
khô co giãn không đều theo các phƣơng, dễ cong vênh, nứt nẻ làm hỏng liên kết.
Để hạn chế nhƣợc điểm của gỗ tự nhiên, khi sử dụng cần sử lý để gỗ khỏi bị
mục.

- Phải sấy, hong khô trƣớc khi sử dụng, không dung gỗ tƣơi, gỗ quá độ ẩm quy
định.
1.1.1.4. Dầm trên nền đàn hồi.
Khi dầm hay bộ phận cơng trình đặt trực tiếp trên nền, tác dụng của tải trọng
đƣợc truyền xuống nền bằng áp lực phân bố trên mặt tiếp xúc giữa dầm và nền. Nếu
nền có tính đàn hồi thì dầm đặt trực tiếp trên nền đƣợc gọi là dầm trên nền đàn hồi, thí
dụ nhƣ dầm móng, tà vẹt.
Trong thực tế kỹ thuật ta thƣờng gặp một dầm tựa trên một dãy gối đàn hồi liên
tiếp gần nhau thí dụ ray tựa lên tà vẹt.

Hình 1.4. Ray nằm lên tà vẹt


9
1.1.2. Kết cấu dàn c ịu c
Một trong các nhƣợc điểm quan trọng của kết cấu dầm là khả năng chịu lực và
khả năng vƣợt nhịp. Do trong dầm còn nhiều vùng làm việc không hiệu quả. Cụ thể
nhƣ vùng bụng của dầm hầu nhƣ không làm việc. Để giảm nhẹ trọng lƣợng kết cấu,
nâng cao hiệu quả sử dụng vật liệu cũng nhƣ để nâng cao khả năng chịu lực và khả
năng vƣợt nhịp của kết cấu. Ngƣời ta đã đề xuất kết cấu dàn. Kết cấu dàn đƣợc tổ hợp
từ các phần tử dạng thanh. Cũng nhƣ dầm, tuy nhiên dàn đƣợc thiết kế tối ƣu hơn, loại
bỏ đƣợc những phần không cần thiết, các thành phần của dàn hầu nhƣ chỉ chịu kéo
hoặc nén nên có khả năng làm việc tốt hơn kết cấu dầm.


10

Hình 1.4. Kết cấu dàn thép, cầu thép
So với dầm, kết cấu dàn đƣợc thiết kế tối ƣu hơn nên chịu lực và vƣợt nhịp tốt
hơn. Tuy nhiên việc chế tạo không hề đơn giản nên thƣờng đƣợc áp dụng cho các cơng

trình vƣợt nhịp lớn.
1.2. MỘT SỐ KẾT CẤU CHỊU UỐN MỚI
1.2.1. Dầm t ổi p ồng

Kết cấu màng mỏng là những kết cấu đƣợc làm bằng vải kỹ thuật và đƣợc
ổn định bằng cách tạo ra một ứng suất trƣớc trong vải. Dự ứng lực này đƣợc
cung cấp trong màng mỏng bằng cách:
- Đặt vào một ngoại lực làm căng màng mỏng. Đây là trƣờng hợp của các
kết cấu kéo căng.
- Tạo ra một áp lực từ bên trong để chịu tải trọng bản thân và tải trọng bên
ngoài. Đây là lĩnh vực nghiên cứu của kết cấu màng mỏng thổi phồng.
- Trong lĩnh vƣc này, có hai loại kết cấu khác nhau:
Kết cấu đƣợc giữ vững bằng máy thổi khí: các kết cấu này đƣợc cấu
thành từ một lớp màng mỏng, và khả năng chịu tải trọng bản thân và tải trọng
bên ngoài phụ thuộc vào áp lực khí thổi vào.
Kết cấu thổi phồng: loại kết cấu này đƣợc cấu tạo với hai lớp màng


11

mỏng. Kết cấu này tự chịu lực đƣợc, và tự tạo đƣợc hình dạng khi đƣợc thổi khí.
Kết cấu này đƣợc bịt kín, một khi đƣợc thổi đầy khí rồi thì khơng cần phải cung
cấp khí liên tục nữa. Trong một vài trƣờng hợp cụ thể, kết cấu bị xì, nó sẽ đƣợc
liên kết với máy để giữ nguyên áp suất thổi phồng cho kết cấu.


12

Hình 1.5. Dầm thổi phồng
1.2.2.Trong n v c

t u t
d ng
Đề xuất đầu tiên về 1 cơng trình thổi phồng đƣợc đƣa ra bởi Frederick William
Lanchester, ngƣời đƣợc cấp bằng sáng chế vì đã thiết kế thành cơng một bệnh viện dã
chiến (xem Hình 1.6) vào năm 1917 . Đó là một chiếc lều vải đƣợc thổi phồng với áp
suất thấp.

a. Bện viện d c iến

b. Lều

ic ữt



c. Lều tạm

Hình 1.6. Kết cấu thổi phồng được s dụng t m th i


13
Trong những năm tiếp theo, mơ hình kết cấu thổi phồng đã đƣợc sử dụng trong
phạm vi các hoạt động ngắn hạn nhƣ tạm trú khẩn cấp sau khi thiên tai, lều của Hội
Chữ thập đỏ .... Đấy là những trƣờng hợp cần những chỗ lƣu trú khẩn cấp, nhanh
chóng và dễ tháo lắp
Năm 1970, Hội nghị triển lãm tại Osaka Nhật Bản đƣợc tổ chức với chủ đề “ Sự
phát triển hài hòa của Nhân Loại “ . Trong đó, chủ đề về cấu trúc vật liệu nhẹ trong
xây dựng đƣợc nhắc đến rất nhiều, lý do là vì Nhật Bản là một nƣớc thƣờng xuyên xảy
ra động đất. Từ thời điểm đó, mơ hình kết cấu thổi phồng ngày càng phát triển và đƣợc
áp dụng vào nhiều lĩnh vực chứ không chỉ trong việc xây dựng nhà tạm, ở đây sẽ là


những cơng trình bền vững hơn, lâu dài hơn. Có thể chỉ ra một số ví dụ nhƣ: bục
danh dự tại Tour de France, những nhà kho thổi phồng, nhà mái vòm, và cả những
nhà thờ thổi phồng… (xem Hình 1.7)
Kết cấu thổi phồng cũng có thể đƣợc lựa chọn vì lý do thẩm mỹ. Các kết cấu
dạng cong, màu sắc rực rõ, kết cấu đẹp và mê hoặc có thể đƣợc sử dụng để gây ấn
tƣợng với ngƣời xem. Chính vì vậy, kết cầu thổi phồng có thể đƣợc xem nhƣ là một
cuộc cách mạng của tƣơng lai. Hai tác phẩm Leviathan và Air Forest ( xem Hình 1.7)
chính là những minh chứng rõ ràng nhất cho lập luận đó.

a. Nhà mái vịm

b. N à t ờ

Hình 1.7. Một số cơng trình thổi phồng được ứng dụng trong đ i sống


14

a. Leviathan – Paris

b. Air Forest - USA

Hình 1.8. Tác phẩm nghệ thuật bằng vải kỹ thuật

- Leviathan là một tác phẩm điêu khắc màng mỏng đƣợc thiết kế bởi nghệ
sĩ Anish Kapoor dành cho sự kiện Monumenta (xem hình1.7), tác phẩm này
đƣợc trƣng bày trong 5 tuần tại Cung điện hoàng gia Paris vào năm 2011. Tác
phẩm cao 35m với tổng diện tích bề mặt là 33x72 m2, bao gồm 3 bóng đ n lớn
hình cầu đƣợc kết nối với nhau bởi một mái vòng khu trung tâm. Sự thành cơng

của tác phẩm này chính là nhờ vào vẻ đẹp, kích thƣớc to lớn, và độ tƣơng phản
của nó.
- Air Forest là một tịa kiến trúc cơng cộng tạm thời, đƣợc đặt tại Park city,
Denver, Colorado, Hoa kỳ. Tọa lạc bên bờ rừng Denver .Kiến trúc của cơng
trình này trơng nhƣ chính là một phần của khu rừng. Tổng diện tích của nó là
56,3 × 25 m2 với độ cao 4m, đƣợc cấu thành bởi 9 mái vịm hình lục giác kết
nối với nhau. Tác phẩm này đƣợc thổi phồng lên bởi 14 máy quạt hơi khổng lồ
đặt tại mỗi chân trụ của nó. Tác phẩm này trở thành một khu vực công cộng để
tổ chức những buổi lễ, cả ngày lẫn đêm.
Do trọng lƣợng nhẹ, các kết cấu màng mỏng thổi phồng này còn đƣợc sử
dụng để làm những mái che khổng lồ, ví dụ nhƣ mái che sân vận động Minesota
Metrodome ở Mỹ hay sân vận đông Tokyo Dome ở Nhật Bản (xem Hình 1.8).


15

Việc sử dụng những mái che kiểu màng mỏng thổi phồng này giúp giảm đáng kể
chi phí xây dựng so với một cơng trình thơng thƣờng .

a. Metrodome Minnesota - USA

b. Tokyo Dome - N

t Bản

Hình 1.9. Những sân vận đơng với mái vịm s dụng kết cấu
thổi phồng

Trong một số trƣờng hợp, những kết cấu màng mỏng thổi phồng này còn
đƣợc sử dụng nhƣ là những yếu tố phụ đƣợc kết nối với những kết cấu chịu lực

chính nhằm mục đích làm mới cơng trình, cũng nhƣ tăng tính thẩm mỹ. Ví dụ
nhƣ trƣờng hợp Trung tâm vũ trụ quốc gia của Anh và sân Allianz Arena ở Đức.
Việc sử dụng các kết cấu dầm thổi phồng có nhiều lợi thế hơn khi so sánh với
những kết cấu thông thƣờng tƣơng đƣơng. Sau đây là những điểm nổi bật của kết cấu
màng mỏng thổi phồng:
- Nó rất nhẹ và chỉ chiếm ít thể tích lƣu kho.
- Chi phí sản xuất thấp.
- Thiết kế và chế tạo đơn giản hơn so với những kết cấu thông thƣờng tƣơng
đƣơng. Khi công nghệ này đƣợc áp dụng rộng rãi thì những ứng dụng mới sẽ trở nên
đơn giản và dễ phát triển hơn.


16
- Những dự án không gian thành công đã chỉ ra rằng kết cấu dầm thổi phồng có
độ tin cây cao và dễ triển khai.
Kết cấu dầm thổi phồng có rất nhiều ƣu điểm, tuy nhiên nó cũng có vài nhƣợc
điểm cần phải khắc phục nhƣ:
 Kết cấu có thể bị xì hơi
Các kết cấu thổi phồng thƣờng đƣợc cấu tạo từ vải kỹ thuật. Loại vải này đƣợc
đan từ các sợi ngang và sợi dọc và sau đó đƣợc phủ một lớp nhựa dẻo để bảo vệ.
Những sợi vải tạo nên khả năng chịu lực cho tẩm vải kỹ thuật. Khả năng chống thấm
loại vải này đƣợc bảo đảm bởi các lớp phủ và các công nghệ chế tạo khác nhau (hàn,
dán…). Tuy nhiên sau vài ngày hoặc vài tuần, khả năng chống thấm của lớp màng sẽ
bị suy giảm do áp suất bên trong. Bởi vậy phải có một hệ thống cung cấp khí để giữ ổn
định và độ cứng của cấu trúc. Trong môi trƣờng vũ trụ, đối với những dự án không
gian ngắn ngày, để khắc phục trƣờng hợp kết cấu bị xì hơi, ngƣời ta có thể cung cấp
một lƣợng khí ga vừa đủ để giữ áp suất bên trong. Đối với những sứ mệnh dài ngày,
chúng ta có thể dùng một số phƣơng pháp sau đây:
- Sử dụng tia cực tím, tia hồng ngoại để làm cứng lớp màng bảo vệ
- Dùng công nghê phun bọt làm cứng

- Làm cứng bằng cơ khí : Sử dụng một lá nhôm đƣợc kẹp giữa bởi 2 tấm phim
polymer gia cố bằng sợi carbon. Điều này cho phép làm ph ng và uốn cong nó sao cho
có thể chiếm một khơng gian hạn chế nhất, sau đó ngƣời ta sẽ làm phồng nó để phục
hồi hình dạnh ban đầu, từ đó áp lực sẽ làm biến dạng các lá nhôm. Kỹ thuật này cho
phép ta làm đƣợc những ống đủ lớn và có khả năng chống thấm cao hơn.
- Dùng hóa chất làm cứng : Các xi lanh sẽ đƣợc ngâm tẩm 1 loại nhựa giúp làm
nƣớc bay hơi vào trong khơng khí khiến cho kết cấu trở nên cứng hơn và chống thấm
cao. Kỹ thuật này có ƣu điểm là ta có thể đảo ngƣợc nó, chỉ cần tạo 1 môi trƣờng đủ
ẩm ƣớt để khôi phục lại sự linh hoạt, mềm dẻo ban đầu của kết cấu.
 Khó có được hình dạng phẳng
Có những hạn chế nhất định về hình dáng của kết dầm thổi phồng này. Bất kỳ
màng thổi phồng nào (túi khí, ống, vịng hình xuyến) đều có xu hƣớng hình dáng theo
đƣờng cong. Tuy nhiên, vẫn có một giải pháp để có thể làm đƣợc dạng ph ng: đó là sử
dụng những tấm panô 2 lớp, 2 mặt của kết cấu sẽ đƣợc kết nối bởi những sợi chỉ rất
khít đan nhau gần nhƣ liên tục. Điều này cho phép 2 lớp sẽ ln song song với nhau
(xem Hình 8). Kỹ thuật này khá phức tạp.


×