Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.03 MB, 15 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>Câu 1: </b>Một con lắc đơn gồm một vật nhỏ khối lượng m = 2g và một dây treo mảnh, chiều dài l, được kích
thích cho dao động điều hòa, Trong khoảng thời gian Δt con lắc thực hiện được 40 dao động. Khi tăng chiều
dài con lắc thêm một đoạn 7,9cm thì cũng trong khoảng thời gian Δt con lắc thực hiện được 39 dao động.
Lấy gia tốc trọng trường g = 9,8m/s2<sub>. Để con lắc với chiều dài tăng thêm có cùng chu kỳ dao động với con </sub>
lắc chiều dài l, người ta truyền cho vật điện tích q = + 0,5.10-8<sub>C rồi cho nó dao động điều hịa trong một điện </sub>
trường đều có đường sức thẳng đứng. Vecto cường độ điện trường này có
<b>A.</b> chiều hướng lên và độ lớn 1,02.105V/m
<b>B.</b> chiều hướng xuống và độ lớn bằng 1,02.105V/m
<b>C.</b> chiều hướng lên và độ lớn 2,04.105V/m
<b>D.</b> Chiều hướng xuống và độ lớn 2,04.105V/m
<b>Câu 2. </b>Trên mặt phẳng nằm ngang có hai con lắc lị xo. Các lị xo có cùng độ cứng k, cùng chiều dài tự
nhiên là 32 cm. Các vật nhỏ A và B có khối lượng lần lượt là m và 4m. Ban đầu, A và B được giữ ở vị trí sao
cho lị xo gắn với A bị dãn 8 cm còn lò xo gắn với B bị nén 8 cm. Đồng thời thả nhẹ để hai vật dao động điều
hòa trên cùng một đường thẳng đi qua giá I cố định (hình vẽ). Trong quá trình dao động, khoảng cách lớn
nhất và nhỏ nhất giữa hai vật có giá trị lần lượt là
<b>A. </b>64 cm và48cm. <b>B. </b>80 cm và48cm. <b>C. </b>64 cm và55cm. <b>D. </b>80 cm và 55cm
<b>Câu 3: </b>Một vật có khối lượng m = 1kg được treo vào lò xo độ cứng 100N/m, một đầu lò xo được giữ cố
định. Ban đầu vật được đặt ở vị trí lị xo khơng biến dạng và đặt lên một miếng ván nằm ngang. Sau đó người
ta cho miếng vãn chuyển động nhanh dần đều thẳng đứng xuống dưới với gia tốc a = 2m/s2<sub>. Lấy g = 10m/s</sub>2
.
Sau khi rời tấm ván vật dao động điều hòa với vận tốc cực đại là
<b>A. </b>60cm/s <b>B. </b>18cm/s <b>C. </b>80cm/s <b>D. </b>36cm/s
<b>Câu 4: </b>Một vật có khối lượng khơng đổi, thực hiện đồng thời hai dao động điều hịa có phương trình dao
động lần lượt là x<sub>1</sub> 10cos 2 .t
2
<sub></sub> <sub></sub>
x A cos 2 t cm.
3
<sub></sub> <sub></sub>
Khi năng lượng dao động của vật cực đại thì biên độ dao động A2 có giá trị là
<b>A. </b>20 / 3 cm<b> </b> <b>B. </b>10 3 cm<b> </b> <b>C. </b>10 / 3 cm<b> </b> <b>D. </b>20cm
<b>Câu 5: </b>Một con lắc lị xo ngang có độ cứng k = 50 N/m nặng 200g. Bỏ qua ma sát giữa vật và mặt phẳng
ngang. Khi vật đang ở vị trí cân bằng thì tác dụng vào vật một lực không đổi 2N theo dọc trục của lò xo, Tốc
độ của vật sau 2/15s
<b>A. </b>43,75 cm/s <b>B. </b>54,41 cm/s <b>C. </b>63,45 cm/s <b>D. </b>78,43 cm/s
<b>Câu 6: </b> Hai dao động cùng phương lần lượt có phương trình x<sub>1</sub> A cos<sub>1</sub> t (cm)
6
<sub></sub> <sub></sub>
và
1
x 6 cos t (cm)
2
<sub></sub> <sub></sub>
. Dao động tổng hợp của hai dao động này có phương trình
Thay đổi A1 cho đến khi A đạt giá trị cực tiểu thì
<b>A. </b>φ =-π/6 rad <b>B. </b>φ = π rad <b>C. </b>φ = π/3 rad <b>D. </b>φ = 0 rad
<b>Câu 7: </b>Một con lắc đơn có chiều dài 1 m, đầu trên cố định đầu dưới gắn với vật nặng có khối lượng m. Điểm
cố định cách mặt đất 2,5 m. Ở thời điểm ban đầu đưa con lắc lệch khỏi vị trí cân bằng một góc = 0,09 rad,
rồi thả nhẹ khi con lắc vừa qua vị trí cân bằng thì sợi dây bị đứt. Bỏ qua mọi sức cản, lấy g = 9,8 m/s2<sub>. Tốc </sub>
độ của vật nặng ở thời điểm t = 0,08 s có giá trị gần bằng:
<b>A.</b>0,35 m/s. <b>B.</b>0,83 m/s. <b>C.</b>0,57 m/s. <b>D.</b>0,069 m/s.
<b>Câu 8: </b>Con lắc lò xo gồm lị xo có độ cứng 200N/m , quảcầu m có khối lượng 1kg đang dao độngđiều hịa
theo phương thẳng đứng với biên độ 12,5cm. Khi quả cầu xuống đến vị trí thấp nhất thì có một vật nhỏ khối
lượng 500g bay theo phương trục lò xo, từ dưới lên với tốc độ 6m/s tới dính chặt vào M. Lấy g = 10m/s2
. Sau
va chạm, hai vật dao động điều hòa<b>.</b> Biên độ dao động của hệ hai vật sau và chạm là :
<b>A.</b>10 cm <b>B.</b>20cm <b>C.</b>10 3cm <b>D.</b>21cm
<b>Câu 9: </b>Hai chất điểm dao động điều hòa cùng tần số, trên hai đường thẳng song song với nhau và song song
với trục ox có phương trình lần lượt là x<sub>1</sub>A cos<sub>1</sub>
1 2
yx x . Biết rằng biên độ dao động của x gấp năm lần biên độ dao động của y. Độ lệch pha cực đại giữa
1
x và x <sub>2</sub> <b>gần với giá trịnào nhất</b> sau đây?
<b>A.</b>53,140. <b>B.</b>126,870. <b>C.</b>22,620. <b>D.</b>143,140.
<b>Câu 10: </b>Hai chất điểm dao động trên hai phương song song với nhau và cùng vng góc với trục Ox nằm
ngang. Vị trí cân bằng của chúng nằm trên Ox và cách nhau 15 cm, phương trình dao động của chúng lần
lượt là: y18cos 7 t
<b>A.</b>20cm <b>B.</b>15cm <b>C.</b>17cm <b>D.</b>18 cm
<b>Câu 11: </b>Một con lắc gồm lò xo nhẹ có độ cứng k = 50 N/m một đầu cố định, đầu kia gắn với một vật nhỏ
khối lượng m1 = m đặt trên mặt phẳng nằm ngang khơng ma sát. Ban đầu kéo lị xo dãn một đoạn 10cm rồi
buông nhẹ để m dao động điều hịa<b>. </b>Ở thời điểm lị xo có chiều dài cực tiểu,ta đặt nhẹ vật m2 = 3m lên
trên m1, sau đó cả hai cùng dao động điều hịa với vận tốc cực đại 50 2 cm/s. Giá trị của m là:
<b>A.</b>0,25kg. <b>B.</b>0,5kg. <b>C.</b>0,05kg. <b>D.</b>0,025kg.
<b>Câu 12: </b>Một lò xo độcứng k=50 N/m, một đầu cố định, đầu còn lại treo vật nặng khối lượng m=100g. Điểm
treo lò xo chịu được lực tối đa không quá 4N. Lấy g=10m/s2<sub>. Để hệ thống không bị rơi thì vật nặng dao động </sub>
theo phương thẳng đứng với biên độ không quá
<b>A. </b>10 cm. <b>B. </b>5 cm. <b>C. </b>8 cm. <b>D. </b>6 cm.
<b>Câu 13: </b>Một con lắc đơn gồm một vật nhỏ có khối lượng m=2 g và một dây treo mảnh, chiều dài l, được
kích thích cho dao động điều hòa<b>.</b> Trong khoảng thời gian Δt con lắc thực hiện được 40 dao động. Khi tăng
chiều dài con lắc thêm một đoạn bằng 7,9cm, thì cũng trong khoảng thời gian Δt con lắc thực hiện được 39
dao động. Lấy gia tốc trọng trường g=9,8 m/s2<sub>. Để con lắc với chiều dài tăng thêm có cùng chu kỳ dao động </sub>
với con lắc có chiều dài l, người ta truyền cho vật điện tích q=-10-8
C rồi cho nó dao động điều hịa trong một
điện trường đều có đường sức thẳng đứng. Véc tơ cường độ điện trường này có
<b>A.</b> chiều hướng lên và độ lớn bằng 2,04.105 V/m.
<b>B.</b> chiều hướng lên và độ lớn bằng 1,02.105 V/m.
<b>C.</b> chiều hướng xuống và độ lớn bằng 2,04.105 V/m.
<b>D.</b> chiều hướng xuống và độ lớn bằng 1,02.105 V/m.
<b>Câu 14: </b>Trong thang máy, tại trần người ta treo một con lắc lị xo có độ cứng k = 25 N/m, vật nặng có khối
lượng 400 g. Khi thang máy đứng yên ta cho con lắc dao động điều hòa, chiều dài con lắc thay đổi từ 32 cm
đến 48 cm. Tại th ời điểm mà vật ở vị trí thấp nhất thì cho thang máy đi xuống nhanh dần đều với gia tốc a =
g/10. Lấy g = π2
m/s2 = 10 m/s2. Biên độ dao động của vật trong trường hợp này là
<b>A. </b>19,2 cm. <b>B. </b>9,6 cm.<b> </b> <b>C. </b>8,5 cm. <b> D. </b>17 cm.
<b>Câu 15:</b> Một con lắc đơn gồm sợi dây mahr dài l=1m, vật có khối lượng m=100 g tích điện q=10-5 (C).
Treo con lắc đơn trong điện trường đều có phương vng góc với gia tốc trọng trường <i>g</i> và có độ lớn E=105
V/m. Kéo vật theo chiều của vec tơ điện trường sao cho góc tạo bởi dây treo và <i>g</i> bằng 600 rồi thả nhẹ để vật
dao động. Lực căng cực đại của dây treo là<b> </b>
<b>A. </b>3,54 N. <b>B. </b>2,14 N. <b>C. </b>2,54 N. <b>D. </b>1,54 N.
<b>A. </b>4,5 cm <b>B. </b>4 cm <b>C. </b>4 3 cm <b>D. </b>4 2 cm
<b>Câu 17: </b>Hai con lắc lò xo giống nhau treo vào hai điểm trên cùng giá đỡ nằm ngang. Chọn trục tọa độ Ox có
phương thẳng đứng, chiều từ trên xuống dưới. Phương trình dao động của hai con lắc là x<sub>1</sub>3cos 10 3t
2
<sub></sub> <sub></sub>
cm (t tính bằng s). Biết lị xo có độ cứng k = 50 N/m, gia tốc trọng trường g =
10 m/s2. Hợp lực do hai con lắc tác dụng lên giá đỡ trong quá trình dao động có độ lớn cực đại là
<b>A.</b>5,8 N. <b>B.</b>5,2 N. <b>C.</b>6,8 N. <b>D.</b>4,5 N.
<b>Câu 18: </b>Hai con lắc lò xo đặt trên mặt nẳm ngang không ma sát, hai đầu gắn hai vật nặng khối lượng m1 =
m2, hai đầu lò xo còn lại gắn cố định vào hai tường thẳng đứng đối diện sao cho trục chính của chúng trùng
nhau. Độ cứng tương ứng của mỗi lò xo lần lượt là k1 = 100 N/m, k2 = 400 N/m. Vật m1 đặt bên trái, m2 đặt
bên phải. Kéo m1 về bên trái và m2 về bên phải rồi buông nhẹ hai vật cùng thời điểm cho chúng dao động
điều hòa cùng cơ năng 0,125 J. Khi hai vật ở vị trí cân bằng chúng cách nhau 10 cm. Khoảng cách ngắn nhất
giữa hai vật trong quá trình dao động là
<b>A.</b>3,32 cm. <b>B.</b>6,25 cm. <b>C.</b>9,8 cm. <b>D.</b>2,5 cm.
<b>Câu 19: </b>Một con lắc lò xo treo thẳng gồm vật nhỏ khối lượng m = 1 kg, lò xo nhẹ có độ cứng k = 100N/m.
Đặt một giá nằm ngang đỡ vật m để lị xo có chiều dài tự nhiên rồi cho giá đỡ chuyển động thẳng đứng
xuống nhanh dần đều không vâ tốc đầu v ới gia tốc a = 2 m/s2<sub>. Lấy g = 10 m/s</sub>2<sub>. Sau khi rời giá đỡ thì vật m </sub>
dao đơng điều hịa với biên độ
<b>A. </b>6 cm. <b>B. </b>2 cm. <b>C. </b>4 cm. <b>D. </b>8 cm.
<b>Câu 20: </b>Một con lắc lị xo dao động điều hồ trên mặt phẳng ngang với chu kỳ T = 2π (s). Khi conlắc đến vị
trí biên dương thì một vật có khối lượng m chuyển động cùng phương ngược chiều đến va chạm đàn hồi
xuyên tâm với con lắc<b>.</b> Tốc độ chuyển động của m trước va chạm là 5cm/s và sau va chạm vật m bật ngược
trở lại với vận tốc là 3cm/s. Gia tốc của vật nặng của con lắc ngay trước va chạm là –2 cm/s2<sub>. Sau va chạm </sub>
con lắc đi được quãng đường bao nhiêu thi đổi chiều chuyển động ?
<b>A. </b> 5 cm <b>B. </b>2 3 cm <b>C.</b>2 5 cm <b>D. </b>2 2 cm
<b>Câu 1: Đáp án D </b>
<b>Phương pháp: </b>Sử dụng cơng thức tínhchu kìcủa con lắc đơn dao động điều hồ và sử dụng lí thuyết về bài
tốn con lắc đơn chịu tác dụng của lực điện trường.
1
1
1 1 1
1 2
2 2 1
2
2
' d 5
1 3 '
l t
T 2
g N
l t
T 2
g 40 <sub>T</sub> <sub>39</sub> <sub>l</sub> <sub>l</sub>
l 152l,1cm; l 160cm
T 40 l l 7, 9
l t
T 2
g 39
F
152,1 160 qE
T T 2 2 g g a 10, 31 a 0, 51 E 2, 01.10 (V / m)
g g m m
Để a; g cùng hướng, q > 0 thì E hướng xuống
<b>Câu 2 : Đáp án D </b>
<b>Phương pháp: </b>
Sử dụng lí thuyết về khoảng cách của hai vật dao động điều hoà
Khảo sát hàm số bậc hai
<b>Cách giải: </b>
Phương trình dao động của vật A là x<sub>1</sub>8cos 2 t
2 1
AI 32 x
AB 64 x x
BI 32 x
<sub></sub> <sub></sub>
Có:
2 1
2
2
d x x 8cos( t ) 8cos(2 t )
cos t a d 8(cos 2 t cos t) 8(2a a 1)
f (a) 2a a 1/ [ 1;1]
1
f ' 4a 1 f ' 0 a
4
Xét bảng biến thiên sau:
a <sub>-1 1</sub>
4 1
f’ - 0 +
f 2 0
Từ bảng biến thiên ta có:
9 9
f (a) 2 AB 64 8. AB 64 8.2 55 AB 80
8 8
<sub></sub> <sub></sub>
<b>Câu 3: Đáp án A </b>
<b>Phương pháp : </b> p dụng định luật II Niuton, lí thuyết về chuyển động th ẳng nhanh dần đều ,hê thức độc
lập theo thời gian của x vàv để tính biên độ. p dụng cơng thức tính vận tốc cực đại của con lắc lị xo dao
động điều hồ.
<b>Cách giải: </b>
Viết phương trình 2 Niuton cho vật nặng ta được: P – N – Fđh = ma
Khi vật bắt đầu rời tấm ván thì N = 0. Khi đó : <i>P</i> – <i>Fdh</i> <i>ma</i> <i>mg</i> <i>k</i> <i>l</i> <i>ma</i> <i>l</i> 0, 08<i>m</i> 8<i>cm </i>
Với chuyển động nhanh dần đều có vận tốc đầu bằng 0 ta áp dụng cơng thức:
Ta có ω = 10 rad/s , vị trí cân bằng của vật lị xo dãn: l mg 0,1m 10cm
k
Tại thời điểm vật rời ván ta có: x = -0,02m; v2 0, 08(m / s)
Biên độ dao động:
2
2 2
2
v
A x A 0, 06m 6cm
Vận tốc cực đại của vât: v<sub>0</sub> A60cm / s
<b>Câu 4: Đáp án B </b>
<b>Phương pháp: </b>Sử dụng giản đồ vecto
<b>Cách giải: </b>
-Từ dữ kiện đề bài
1 2
1 x x x
A 10cm; ; ;
2 3
ta vẽ được giản đồ vecto:
2
1
s l at t 0, 08(s)
2
- Xét OA A<sub>2</sub> ta có:
2 1
0 0 0
2
0
2 1 1 2
0 0 0 0 0
2 2 2
A A A 10cm
A OA 90 60 30
OAA A OA 60 (OA / A A)
OA A 180 A OA OAA 180 30 60 90
<sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub> </sub> <sub></sub>
-Sử dụng định lí hàm số sin trong ∆OA2A ta có:
2 2 2
2 2 2
2
A A OA OA 10 A A
sin 30 sin(60 ) sin(90 )
sin A OA sin OAA sin OA A
10.sin(90 )
A
sin 30
10.sin(60 )
A
sin 30
<sub></sub>
<sub></sub>
-Năng lượng dao động cực đại khi Amax
2
10.sin(60 0)
sin(90 ) 1 90 90 0 A 10 3cm
sin 30
<b>Câu 5: Đáp án B </b>
<b>Phương pháp: </b> p dụng cơng thức tính chu kì, lực đàn hồi,hê thức độc lập với thời gian của vận tốc và li độ
<b>Cách giải: </b>
Vật dao động điều hòa với chu kỳ T 2 m 0, 4s
k
Vật đang ở vị trí cân bằng thì tác dụng lực, vậy vị trí cân bằng mới là vị trí lị xo biến dạng một đoạn ∆l với:
F k l 2N l 4cm Biên độ dao động mới là A = 4cm
Giả sử lực tác dung hướng sang phải, vậy thời điểm ban đầu, vật ở biên bên trái.
PT dao động: x = 4cos(5πt + π)cm, sau 2/15s vật có x = 2cm.
AD cơng thức độc lập:
2
2 2
2
v
A x
ta tìm được tốc độ của vật là 54 cm/s
<b>Câu 6: Đáp án C </b>
p dụng định lí hàm số sin trong tam giác ta có:
1
A
A 6 6sin 60
A
sin 60sin(30)sin(90) sin(30)
Để Amin thì 0
sin(30) max 1 60
Vậy dao động tổng hợp có pha ban đầu là 600
<b>Câu 7: Đáp án D </b>
<b>Phương pháp: </b> p dụng cơng thức tính vận tốc của con lắc đơn
<b>Cách giải: </b>
Chu kỳ dao động của con lắc: T 2 l 2s (rad / s)
g
Thời điểm sợi dây treo con lắc bị đứt là t0 = T/4 = 0,5s
Vậy thời điểm t = 0,08s con lắc chưa bị đứt.
PT dao động của con lắc: <sub>0</sub>cos t
Khi t = 0,08s thì α = 0,087 rad
Tốc độ của vật nặng khi đó: v 2.9,8.(cos 0,, 0872 cos 0, 09) 0, 069m / s
<b>Câu 8: Đáp án B </b>
<b>Phương pháp: </b> p dụng định luật bảo toàn động lượng, hê thức độc lập với thời gian của vận tốc và li độ
<b>Cách giải: </b>
Ởvị trí cân bằng lị xo dãn một đoạn ∆l.
Ta có k mg 0,05m 5cm
Khi quả cầu đến vị trí thấp nhất thì lị xo đang dãn đoạn: A + ∆l = 12,5 + 5 = 17,5cm và vận tốc của vật bằng
0.
Sau khi va chạm vận tốc hai vật là: mv = (m+M)v’ => 0,5.6 = 1,5.v’ => v’ = 2m/s.
Sau đó hai vật dao động điều hịa, vị trí cân bằng lị xo dãn ∆l’ với : k ' (m M)g ' 0, 075m
7,5cm
Vậy khi x = 10cm, v’ = 2m/s, ' k 400rad / s
M m 3
p dụng công thức độc lập:
2
2 2
2
v
A x A 0, 2m 20cm
<b>Câu 9: Đáp án A </b>
15 cm
<b>Cách giải: </b>
Ta có:
2 2 2
x 1 2 1 2 1 2
2 2 2
y 1 2 1 2 1 2
2 2
x y 1 2 1 2 1 2
2 2
2 2
1 2 0
1 2
1 2
1 2 1 2
A A A 2A A cos( )
A A A 2A A cos( )
A 5A 12A A cos( ) 4A 4A
2 4A 4A
4A 4A 2
cos( ) 48,18
12A A 12A A 3
Vậy độ lệch pha cực đại của hai dao động là 48,180
<b>Câu 10: Đáp án C </b>
<b>Phương pháp: </b>Sử dụng lí thuyết về bài tốn khoảng cách giữa hai chất điểm dao động điều hòa
<b>Cách giải: </b>
<b> </b>A
<b> </b>
B
+ Khoảng cách giữa hai chất điểm theo phương thẳng đứng:
1 2 max
d y y 52 cos(7 t )cmd 52cm
+ Khoảng cách lớn nhất giữa hai chất điểm là: 2 2 2
1 2 max
O O d 52 15 16, 64cm
<b>Câu 11: Đáp án A </b>
<b>Phương pháp: </b>Sử dụng cơng thức tínhvận tốc cực đại của vật dao động điều hoà
Ngay trước khi đặt thêm vật m2 Ngay sau khi đặt thêm vật m2
O O1
O2
VTCB: O
Li độ: x = -A = -10 cm
Vận tốc: v = 0
Tần số góc k
m
VTCB: O
Li độ: x’ = -A = -10 cm
Vận tốc: v’ = v = 0
Tần số góc ' k
4m
=> Sau đó hệ sẽ dao động với biên độ A’ = A = 10cm
+ Vận tốc cực đại của con lắc sau đó là
2
2 max
max
v
k
v ' ' A ' ' A '
4m A
<sub> </sub> <sub></sub>
Do đó khối lượng m là:
2 2
2 2
max
kA 50.0,1
m 0, 25(kg)
4v 4.0,5 .2
=> Chọn A
<b>Câu 12: Đáp án D </b>
<b>Phương pháp: </b>Sửdụng lý thuyết về dao động điều hòa của CLLX
<b>Cách giải: </b>
+ Tần số góc: k 10 5(rad / s)
m
Độ giãn của lò xo ở VTCB: 0
mg
l 0, 02m
k
+ Điểm treo của con lắc chịu được lực tối đa không quá 4N => Fđhmax ≤ 4N
0
0
4 k l 4 50.0, 02
k( l A) 4 A 0, 06m 6cm
k 50
<b>Câu 13: Đáp án B </b>
<b>Phương pháp: </b>
<b>+ </b>Sử dụng cơng thức tính chu kì của con lắc đơn T 2 l
g
+ Sử dụng lithuyết về con lắc chịu tác dụng của lực điện trường.
<b>Cách giải: </b>
+ Chiều dài của con lắc là l.
Khi chiều dài là l → chu kì dao động T t
40
2 2
2 2
l T 39
l 152,1cm
l 7,9 T ' 40
+ Con lắc có chiều dài tăng thêm là l’ = l + 7,9 cm = 160 cm, tích thêm điện tích q = -108
C
Theo đề bài: l ' l l ' 160 2
T ' T g ' g. 9,8. 10,31m / s
g ' g g 152,1
NX: g’ > g mà g ' g F F g
m
mà q 0 E g hay E thẳng đứng hướng lên.
Và:
3
5
8
g E (g ' g).m (10,31 9,8).2.10
g ' g E g ' g E 102000V / m 1, 02.10 V / m
m q 10
<b>Câu 14: Đáp án B </b>
<b>Phương pháp: </b>Sửdụng lí thuyết vềcon lắc lò xo chịu tác dụng của ngoại lực
<b>Cách giải: </b>
-Khi thang máy chưa chuyển động
+ Tần số góc: k 25 2,5 (rad / s)
m 0, 4
+ Biên độ dao động: lmax lmin 48 32
A 8cm
2 2
- Khi thang máy chuyển động nhanh dần đều đi xuống thì con lắc chịu thêm tác dụng của lực quán tính F <sub>q</sub>
hướng lên, có độ lớn q
mg
F ma
10
=> VTCB mới là q
1
F mg
OO 0, 016m 1, 6cm
k 10k
=> Khi đó so với VTCB vật đang ở li độ x1 A 1, 69, 6cm, vận tốc v1 v 0
=> Biên độ dao động mới là
2
2 1
1 1 2 1
v
A x x 9, 6cm.
<b>Câu 15: Đáp án C </b>
<b>Phương pháp: </b>Sửdụng lí thuyết vềcon lắc đơn chịu tác dụng của ngoại lực
<b>Cách giải: </b>
VTCB mới của con lắc là VT mà dây treo hợp với phương thẳng đứng góc β sao cho:
5 5
0
3
q E 10 .10 1
tan 30 (rad)
mg 100 3.10 .10 3
<sub></sub>
Kéo con lắc đơn ra khỏi phương thẳng đứng góc 600
Gia tốc trọng trường hiệu dụng 2 2 2 2 2 2g
g ' g a g g tan
3
Lực căng dây cực đại của con lắc đơn: 3 0
max 0
2.10
T mg '(3 2 cos ) 100 3.10 . .(3 2 cos 30 ) 2,54N
3
=> Chọn C
<b>Câu 16: Đáp án C </b>
<b>Phương pháp: </b>Sửdụng lí thuyết về dao động điều hòa của con lắc lò xo kết hợp với định luật bảo toàn động
lượng
<b>Cách giải: </b>
+ Theo ĐL bảo toàn động lượng: 0
0
mv 0,1.2 2
mv (M m)v v 0, 2 2(m / s) 20 2cm / s
M m 0,9 0,1
+ Xét con lắc lò xo trước và sau khi va chạm :
Ngay trước va chạm Ngay sau khi va chạm
- VTCB: là VT lò xo nén đoạn
0
Mg
l 0,36m 36cm
k
- Vật đang ở li độ: x = 0
- Vận tốc v = 0
- Tần số góc k
M
- VTCB: là VT lò xo nén đoạn
'
0
(M m)g
l 0, 4m 40cm
k
- Vật đang ở li độ: x’ = 4 cm (so với VTCK O’)
- Vận tốc v ' v 20 2cm / s
- Tần số góc ' k 5(rad / s)
Biên độ dao động sau va chạm:
2
2 v '
A ' x 4 3(cm)
'
<sub></sub> <sub></sub>
<b>Câu 17. Đáp án A </b>
<b>Phương pháp:</b> Sử dụng lí thuyết về lực đàn hồi trong dao động của con lắc lò xo thẳng đứng.
<b>Cách giải: </b>
ADCT:
0 2 2
0
g g 10 1
l m
l <sub>10 3</sub> 30
nên: F'dh1F ; F'dh1 <sub>dh1</sub>F'dh 2Fdh 2
dh1 dh 2 0 1 0 2 0 1 2
max
F F F k( l x ) k( l x ) 2k l k(x x )
1
2.50. 50 0, 03.cos 10 3t 0, 04.cos 10 3t
30 2
1 1
F 2.50. 50 0, 05cos 10 3t 0, 094 F 2.50. 50.0, 05 5,833N
30 30
<sub></sub> <sub></sub> <sub></sub><sub></sub>
<sub></sub> <sub></sub>
<b>Câu 18: Đáp án B </b>
<b>Phương pháp: </b>Sửdụng lí thuyết về năng lượng dao động của CLLX và dùng tam thức bậc 2 để nhận xét giá
trịnhỏ nhất
<b>Cách giải: </b>
Biên độ dao động của các vật tính từ công thức
2 2
1 1 2 2
k A k A
W
2 2
1
1
2
2
2W
A 0, 05(m) 5(cm)
k
2W
A 0, 025(m) 2, 5(cm)
k
<sub></sub> <sub></sub> <sub></sub>
Khoảng cách lúc đầu giữa hai vật: O1O2 = 10 cm.
Chọn gốc thời gian là lúc bắt đầu dao động, chọn gốc tọa độ trùng với O1 thì phương trình dao động của các
vật lần lượt là: 2
1 2
x 5cos t cm, x 10 2,5cos 2 t 5cos t 7,5 cm, với ω là tần số góc của con lắc
thứ nhất.
Khoảng cách giữa hai vật: 2
2 1
yx x 5cos t 5cos t 7,5(cm)
Ta thấy y là tam thức bậc 2 đối với cosωt và ymin khicos t 0,5.
Thay cosωt = 0,5 và biểu thức y ta tính được ymin = 6,25 cm.=> Chọn B
<b>Câu 19: Đáp án A </b>
<b>Phương pháp: </b>Sửdụng lí thuyết về dao động điều hịa của con lắc lò xo thẳng đứng
<b>Cách giải: </b>
+Khi cho giá đỡ chuyển động thì các lực tác dụng vào vật nặng của con lắc
Trọng lực, lực đàn hồi, phản lực do giá đỡ tác dụng lên vật
Theo định luật II Niu-tơn ta có: P N Fdh ma
Chiếu lên chiều dương là chiều chuyển động đi xuống của vật ta có:
+ Giá đỡ rời vật khi dh dh
m(g a)
N 0 P F ma F P ma l 0, 08(m)
k
Hay giá đỡ rời vật khi lò xo giãn đoạn 8 cm, mà độ giãn của lò xo ở VTCB
=> Vật đang ở vị trí có li độ x = - 2 cm
dh dh
+ Vận tốc của vật tại vị trí đó là v 2as 2a l 40 2(cm / s)
+ Tần số góc k 10(rad / s)
M
=> Vật sẽ dao động với biên độ
2 2
2 2
2 2
v 40 .2
A x ( 2) 6(cm)
10
Chọn A
<b>Câu 20: Đáp án D </b>
<b>Phương pháp : </b>
- p dụng định luật bảo toàn động lượng và định luật bảo toàn động năng
- Sử dung hê thức đôc lâp với thời gian của li đô vàvâ tốc
Biên độ dao động ban đầu: 2
a A A 2cm
<b>Cách giải: </b>
Hai vật va chạm đàn hồi xuyên tâm nên áp dụng ĐL bảo toàn động lượng và động năng ta được:
2 2 2
5m 3m m ' v
5 m 3 m m ' v
Giải hệ ta được v = 2cm/s
p dụng hệ thức độ lập:
2
2 2
2
v
A ' 2 A 2 2cm
Website <b>HOC247</b> cung cấp một môi trường <b>học trực tuyến</b> sinh động, nhiều <b>tiện ích thơng minh</b>, nội
dung bài giảng được biên soạn công phu và giảng dạy bởi những <b>giáo viên nhiều năm kinh nghiệm, </b>
<b>giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm</b> đến từ các trường Đại học và các trường chuyên
danh tiếng.
- <b>Luyên thi ĐH, THPT QG:</b> Đội ngũ <b>GV Giỏi, Kinh nghiệm</b> từ các Trường ĐH và THPT danh tiếng xây dựng
các khóa <b>luyện thi THPTQG </b>các mơn: Tốn, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học.
- <b>Luyện thi vào lớp 10 chuyên Toán: </b>Ôn thi <b>HSG lớp 9</b> và <b>luyện thi vào lớp 10 chuyên Toán</b> các trường
<i>PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An</i> và các trường Chuyên khác cùng
<i>TS.Trần Nam Dũng, TS. Phạm Sỹ Nam, TS. Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn.</i>
- <b>Tốn Nâng Cao THCS:</b> Cung cấp chương trình Tốn Nâng Cao, Toán Chuyên dành cho các em HS THCS lớp 6,
7, 8, 9 u thích mơn Tốn phát triển tư duy, nâng cao thành tích học tập ở trường và đạt điểm tốt ở các kỳ
thi HSG.
- <b>Bồi dưỡng HSG Tốn:</b> Bồi dưỡng 5 phân mơn <b>Đại Số, Số Học, Giải Tích, Hình Học </b>và <b>Tổ Hợp</b> dành cho
học sinh các khối lớp 10, 11, 12. Đội ngũ Giảng Viên giàu kinh nghiệm: <i>TS. Lê Bá Khánh Trình, TS. Trần Nam </i>
<i>Dũng, TS. Pham Sỹ Nam, TS. Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn</i> cùng đôi HLV đạt thành
tích cao HSG Quốc Gia.
- <b>HOC247 NET:</b> Website hoc miễn phí các bài học theo <b>chương trình SGK</b> từ lớp 1 đến lớp 12 tất cả các môn
học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo
phong phú và cộng đồng hỏi đáp sôi động nhất.
- <b>HOC247 TV:</b> Kênh <b>Youtube</b> cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi miễn phí
từ lớp 1 đến lớp 12 tất cả các mơn Tốn- Lý - Hố, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh.
<i><b> Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90% </b></i>
<i><b>Học Toán Online cùng Chuyên Gia </b></i>