Tải bản đầy đủ (.pdf) (156 trang)

Xử lí Anten Không gian Vô tuyến Di động.pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.84 MB, 156 trang )



BỘ GIÁO DỤC VÀ ĐÀO TẠO TẬP ĐOÀN BCVT VIỆT NAM

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
-------


NGUYỄN QUANG HƯNG




XỬ LÝ ANTEN MẢNG THEO KHÔNG GIAN-THỜI GIAN
TRONG THÔNG TIN VÔ TUYẾN DI ĐỘNG





LUẬN ÁN TIẾN SỸ KỸ THUẬT






HÀ NỘI - 2006
-i-

BỘ GIÁO DỤC VÀ ĐÀO TẠO TẬP ĐOÀN BCVT VIỆT NAM



HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
-------


NGUYỄN QUANG HƯNG



XỬ LÝ ANTEN MẢNG THEO KHÔNG GIAN-THỜI GIAN
TRONG THÔNG TIN VÔ TUYẾN DI ĐỘNG


Chuyên Ngành: Mạng và kênh thông tin liên lạc
Mã số:2.07.14

LUẬN ÁN TIẾN SỸ KỸ THUẬT


NGƯỜI HƯỚNG DẪN KHOA HỌC:
1. TS. Đặng Đình Lâm
2. TS. Chu Ngọc Anh



HÀ NỘI - 2006
-ii-

Lời Cam Đoan


Tôi xin cam đoan đây là công trình
nghiên cứu của riêng tôi. Các số liệu, kết
quả nêu trong bản luận án là trung thực và
chưa từng được ai công bố ở đâu và trong
bất kỳ công trình nào khác.
Tác giả



Nguyễn Quang Hưng

-iii-

Lời Cảm Ơn!
Tôi xin bày tỏ lời biết ơn sâu sắc tới TS. Đặng Đình Lâm và TS. Chu
Ngọc Anh đã tận tình hướng dẫn trong suốt quá trình làm luận án. Đặc biệt,
sự chỉ bảo tận tình và sự tạo điều kiện thuận lợi trong các hoạt động nghiên
cứu khoa học của TS. Đặng Đình Lâm có ý nghĩa vô cùng to lớn để tôi có thể
hoàn thành được luận án này. Tôi cũng xin cảm ơn PGS. TS. Nguyễn Minh
Dân vì những chỉ dẫn, định hướng quan trọng ngay từ khi xây dựng đề cương
nghiên cứu.
Các kết quả mang tính thực tiễn cao có được là nhờ sự giúp đỡ tạo điều
kiện nghiên cứu tại các phòng thí nghiệm ở Hàn Quốc của TS. Phùng Văn
Vận, TS. Nguyễn Kim Lan, TSKH. Nguyễn Ngọc San. Tôi cũng không thể
không cảm ơn TS. Seung Chan Bang, TS. Byung Han Ryu và các bạn đồng
nghiệp Won Ik Kim, Il Guy Kim tại Phòng thí nghiệm thông tin di động-Viện
nghiên cứu Điện tử Viễn thông Hàn Quốc (ETRI) vì những giúp đỡ quí báu
trong thời gian tôi thực tập tại đây. Xin cảm ơn Won ok Kwon- người bạn
luôn có cảm tình đặc biệt với Việt Nam và vẫn liên tục giữ liên lạc với tôi
trong mấy năm qua qua việc cung cấp tài liệu, trao đổi những thông tin về

những phát triển khoa học công nghệ mới nhất trong lĩnh vực liên quan tại
Viện ETRI.
Cảm ơn TS. Danie van Wyk-Đại học Tổng hợp Nam Phi đã hỗ trợ để tôi
có thể phát triển phần mềm mô phỏng hệ thống W-CDMA từ phiên bản tuân
theo tiêu chuẩn cũ của ông. Bên cạnh đó, sự sẵn sàng trao đổi, giúp đỡ của
GS.TS. Hak Lim Ho- Đại học Tổng hợp Chon-An, Hàn Quốc cũng đã giúp tôi
định hướng một cách rõ ràng hơn trong nghiên cứu.
Cuối cùng, tôi xin cảm ơn bố mẹ, tất cả gia đình, bạn bè, người thân đã
trực tiếp hay gián tiếp giúp đỡ, chia sẻ, động viên tôi rất nhiều để có thể hoàn
thành bản luận án này.

-iv-

Mục Lục
Chữ Viết Tắt..........................................................................................vii

Mục lục Hình vẽ.....................................................................................ix

Mục lục Bảng biểu................................................................................xii

Mở Đầu....................................................................................................1

Chương 1. Tổng quan vấn đề nghiên cứu .............................................4

1.1.

Sơ lược về quá trình phát triển kỹ thuật xử lý tín hiệu mảng ...... 4

1.1.1.


Sự phát triển của kỹ thuật anten: ...................................................................................4

1.1.2.

Tín hiệu trong miền thời gian, không gian ....................................................................6

1.2.

Xử lý không gian-thời gian trong thông tin di động ...................... 9

1.2.1.

Mô hình hệ thống không gian-thời gian ........................................................................9

1.2.2.

Môi trường thông tin di động ......................................................................................14

1.2.3.

Mô hình và đánh giá kênh không gian-thời gian.........................................................21

1.2.4.

Ưu, nhược điểm của kỹ thuật xử lý không gian-thời gian...........................................23

1.3.

Phân loại anten ................................................................................ 25


1.4.

Đặt vấn đề nghiên cứu.....................................................................27

Chương 2. Kỹ thuật xử lý đối với anten mảng.....................................31

2.1.

Kỹ thuật phân tập............................................................................ 31

2.1.1.

Kết hợp tỉ lệ cực đại ....................................................................................................36

2.1.2.

Tăng ích phân tập ........................................................................................................41

2.1.3.

Tăng ích anten .............................................................................................................42

2.1.4.

Ảnh hưởng của tương quan nhánh ..............................................................................43

2.2.

Kỹ thuật tạo búp sóng..................................................................... 47


2.2.1.

Chuyển búp sóng.........................................................................................................47

2.2.2.

Tạo búp sóng thích nghi ..............................................................................................50

2.2.3.

Các thuật toán thích nghi.............................................................................................55

-v-

2.3.

Thuật toán tạo búp thích nghi có hỗ trợ của kênh hoa tiêu cho
đường lên DS-CDMA ................................................................................ 59

2.3.1.

Anten thông minh cho DS-CDMA..............................................................................59

2.3.2.

Mô hình tín hiệu ..........................................................................................................61

2.3.3.

Kết hợp theo không gian ở máy thu trạm gốc .............................................................64


2.4.

Tổng kết chương.............................................................................. 67

Chương 3. Hiệu quả về dung lượng của anten thông minh đối với hệ
thống GSM ............................................................................................68

3.1.

Đánh giá hiệu quả về dung lượng khi sử dụng anten thông minh
chuyển búp sóng......................................................................................... 68

3.2.

Kết quả tính số.................................................................................72

3.2.1.

Hiệu quả về dung lượng với hệ thống AMPS ............................................................72

3.2.2.

Hiệu quả về dung lượng đối với hệ thống GSM ........................................................74

3.2.3.

Đề xuất mẫu tái sử dụng tần số cho mạng GSM ở Việt Nam khi sử dụng anten thông
minh .....................................................................................................................................76


3.3.

Ảnh hưởng của pha-đinh và che khuất tới việc tái sử dụng tần số
........................................................................................................... 77

3.3.1.

Ảnh hưởng của sự che khuất .......................................................................................82

3.3.2.

Các vùng nhiễu............................................................................................................83

3.3.3.

Đánh giá ảnh hưởng của các nguồn nhiễu đồng kênh trong thực tế............................85

3.4.

Hiệu quả về dung lượng của anten chuyển búp sóng với ảnh
hưởng của che khuất và pha-đinh............................................................ 90

3.5.

Tổng kết chương.............................................................................. 94

Chương 4. Phối hợp kỹ thuật tạo búp và phân tập cho hệ thống W-
CDMA....................................................................................................96

4.1.


Hệ thống W-CDMA......................................................................... 96

4.1.1.

Các đặc tính chủ yếu của W-CDMA...........................................................................97

-vi-

4.1.2.

Kênh vật lý đường lên .................................................................................................98

4.1.3.

Kênh vật lý đường xuống..........................................................................................100

4.1.4.

Môi trường mô phỏng W-CDMA .............................................................................102

4.2.

Phối hợp kỹ thuật tạo búp sóng và phân tập cho hệ thống W-
CDMA.......................................................................................................107

4.2.1.

Chỉ tiêu kỹ thuật tạo búp sóng...................................................................................107


4.2.2.

Chỉ tiêu kỹ thuật phân tập thu ...................................................................................112

4.2.3.

Đề xuất phối hợp kỹ thuật tạo búp và phân tập cho hệ thống W-CDMA .................115

4.3.

Kết quả mô phỏng ......................................................................... 117

4.4.

Đo kiểm hệ thống thử nghiệm anten thông minh cho W-CDMA
119

4.4.1.

Giới thiệu hệ thống thử nghiệm.................................................................................119

4.4.2.

Anten mảng thông minh............................................................................................120

4.4.3.

Cấu hình hệ thống và điều kiện đo............................................................................122

4.4.4.


Kết quả đo kiểm trên hệ thống thử nghiệm ...............................................................129

4.5.

Xử lý kết quả đo kiểm và so sánh với kết quả mô phỏng .......... 131

4.6.

Tổng kết chương............................................................................ 133

KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN...........................................134

Kết luận..................................................................................................... 134

Hướng phát triển tiếp theo: ....................................................................135

Bài báo, Công trình đã công bố..........................................................136

Tài liệu tham khảo..............................................................................138

Tiếng Việt..................................................................................................138

Tiếng Anh ................................................................................................. 139


-vii-

Chữ Viết Tắt
Tiếng Anh Tiếng Việt

ABF
AMPS
AWGN
BER
BLER
BPSK
cdf
CIR

CNR
DIV
DPCH
DPCCH
DPDCH
DS
FDD
GSM

LMS
LOS
MIMO
MRC
pdf
RF
rms

SIR
SIR
target
Adaptive beam-forming

Advanced Mobile Phone System
Additive White Gaussian Noise
Bit Error Rate
Block Error Rate
Binary Phase Shift Keying
Cumulative Distribution Function
Carrier-to-Interference Ratio

Carrier-to-Noise Ratio
Diversity
Dedicated Physical Channel
Dedicated Physical Control Channel
Dedicated Physical Data Channel
Direct Sequence
Frequency Division Duplex
Global System for Mobile
Communications
Least Mean Square
Line Of Sight
Multiple-Input Multiple-Output
Maximum Ratio Combiner
probability density function
Radio Frequency
Root Mean Square

Signal-to-Interference Ratio
Signal-to-Interference Ratio Target
Tạo búp sóng thích nghi
Hệ thống điện thoại di động AMPS
Tạp Gauss Trắng Cộng

Tỉ lệ Lỗi Bít
Tỉ lệ lỗi khối
Khoá Chuyển Pha Nhị phân
Hàm Phân bố Tích luỹ
Tỉ số công suất sóng mang trên
nhiễu
Tỉ số công suất sóng mang trên tạp
Phân tập
Kênh vật lý dành riêng
Kênh điều khiển vật lý dành riêng
Kênh dữ liệu vật lý dành riêng
Chuỗi trải phổ trực tiếp
Song công phân tần
Hệ thống thông tin di động toàn cầu
GSM
Trung bình Bình phương Nhỏ nhất
Nhìn thẳng
Nhiều đầu vào Nhiều đầu ra
Bộ kết hợp Tỉ lệ Cực đại
Hàm mật độ xác suất
Cao tần / Tần số vô tuyến
Căn Trung bình Bình phương (Căn
quân phương)
Tỉ số tín hiệu trên nhiễu
Tỉ số tín hiệu trên nhiễu đích (được
-viii-


SNR
TCP

TDD
TDMA
TDTD
UE
UMTS

W-CDMA

Signal-to-Noise Ratio
Trasmission Control Protocol
Time Division Duplex
Time Division Multiple Access
Time Division Transmit Diversity
User Equipment
Universal Mobile
Telecommunications System
Wideband Code Division Multiple
Access
đặt trước trong phép đo)
Tỉ số tín hiệu trên tạp
Giao thức điều khiển truyền
Song công phân thời
Đa truy nhập phân thời
Phân tập phát theo thời gian
Thiết bị đầu cuối
Hệ thống thông tin di động UMTS
3G sử dụng W-CDMA
CDMA băng rộng

-ix-


Mục lục Hình vẽ

Hình Trang
Hình 1.1. Tín hiệu trong không gian
Hình 1.2. Mô hình hệ thống thông tin với N phần tử phát và M phần tử
thu trong môi trường tán xạ.
Hình 1.3. Phân loại kỹ thuật xử lý không gian-thời gian và anten thông
minh
Hình 1.4. Phân loại anten thông minh
Hình 2.1. Anten mảng phân tập M phần tử
Hình 2.2. Hàm phân bố tích luỹ của γ
s
so với γ
s
/Г cho kỹ thuật kết hợp tỉ
lệ cực đại.
Hình 2.3. BER so với ‹γ› = MГ khi M thay đổi
Hình 2.4. Hai phần tử với các tín hiệu tương quan
Hình 2.5. Ảnh hưởng của tương quan nhánh lên phân bố công suất đầu ra
ở bộ kết hợp tỉ lệ cực đại phân tập kép.
Hình 2.6. BER so với ‹γ› (dB) của bộ kết hợp tỉ lệ cực đại 2 nhánh có pha-
đinh tương quan
Hình 2.7. Anten mảng thích nghi
Hình 3.1. Mẫu tái sử dụng tần số trong thông tin di động
Hình 3.2. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
AMPS có băng thông 12,5 MHz, hệ số tái sử dụng N=7.
Hình 3.3. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
AMPS có băng thông 12,5 MHz, hệ số tái sử dụng N=4.
Hình 3.4. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác

GSM có băng thông 8 MHz, hệ số tái sử dụng N=4.
Hình 3.5. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
GSM có băng thông 12,5 MHz, hệ số tái sử dụng N=4.
8
11
14
27
34
40
42
45
46
47
53
69
73
74
75
75
-x-

Hình 3.6. Thay đổi CIR khi hệ số tái sử dụng tần số giảm từ 4 xuống 1
(__: N=4, -x-: N=3, -o-: N=1)
Hình 3.7. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai
thác GSM có băng thông 8 MHz, hệ số tái sử dụng N=3.
Hình 3.8. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
GSM có băng thông 12,5 MHz, hệ số tái sử dụng N=3.
Hình 3.9. Vùng có nhiễu và không nhiễu (a) không có pha-đinh (b) có
pha-đinh và che khuất.
Hình 3.10. Xác suất mất liên lạc khi có pha-đinh và che khuất

Hình 3.11. Ranh giới vùng nhiễu với các xác suất nhiễu khác nhau khi có
pha-đinh và che khuất
Hình 3.12. Xác suất nhiễu đồng kênh, với i cho trước, theo Z
d
.
Hình 3.13. Chỉ ra một điểm của xác suất rớt cuội gọi với sáu ô đồng kênh
cho m=1,6 và 12 búp và
d
σ
=6 và 12 dB.
Hình 3.14. Đồ thị biểu diễn Z
d
(hình trái) và N
e
theo m (hình phải)
(với ζ=0,7, n=4,5, P
out
=1%, σ
d
=6dB, q
d
=22 dB)
Hình 3.15. Hàm hiệu suất phổ tương đối theo số búp sóng
(với ζ=0,7, n=4,5, P
out
=1%, σ
d
=6dB, q
d
=22 dB)

Hình 4.1. Cấu trúc khung của kênh DPDCH/DPCCH đường lên
Hình 4.2. Cấu trúc khung của kênh DPCH đường xuống
Hình 4.3. Sơ đồ khối tổng thể đường lên
Hình 4.4. Sơ đồ khối tổng thể đường xuống
Hình 4.5. Giao diện chính của phần mềm mô phỏng
Hình 4.6. Giao diện để thiết lập các tham số mô phỏng
Hình 4.7. Kết quả mô phỏng đối với phân tập M
D
= 4 anten, hệ thống tạo
búp M
B
= 4 anten và hệ thống phối hợp cả phân tập và tạo búp ở môi
trường không nhìn thẳng
Hình 4.8. Cấu hình hệ thống anten thông minh
Hình 4.9. Anten mảng
76
77
77
80
82
84
89
92
92
94
99
102
103
104
105

106
118
120
121
-xi-

Hình 4.10. Hệ thống anten thông minh thử nghiệm tại Viện Nghiên cứu
ETRI
Hình 4.11. Cấu hình hệ thống anten thông minh cho W-CDMA sử dụng
trong đo kiểm
Hình 4.12. Cạc kênh của bộ tạo búp sóng thích nghi (hỗ trợ 3 séc-tơ x 8
anten)
Hình 4.13. Mẫu búp sóng cố định đường xuống
Hình 4.14. Dạng búp sóng đường xuống (chuyển mạch búp sóng) và
đường lên (búp sóng thích nghi)
Hình 4.15. Kết quả đo kiểm SNR trên Testbed theo giá trị SIR
target
đặt
trước
Hình 4.16. Kết quả đo kiểm BLER cho ABF 8-anten và DIV 2-anten
Hình 4.17. Tỉ lệ lỗi bít BER đo được với ABF 8-anten và DIV 2-anten
123
124
125
128
129
130
130
132


-xii-

Mục lục Bảng biểu

Bảng Trang
Bảng 4.1. Các chỉ tiêu kỹ thuật chính của W-CDMA
Bảng 4.2. Các tham số đầu vào để đánh giá chỉ tiêu BER
97
117
-1-

Mở Đầu
Các hệ thống thông tin di động đang phát triển bùng nổ trên thế giới và
cả ở Việt Nam. Trước yêu cầu ngày càng cao của người sử dụng dịch vụ
thông tin di động về chất lượng, dung lượng và tính đa dạng của dịch vụ và
đặc biệt là các dịch vụ truyền dữ liệu tốc độ cao và đa phương tiện, việc
nghiên cứu, ứng dụng các công nghệ và kỹ thuật tiên tiến đáp ứng nhu cầu
này luôn là một đòi hỏi cấp thiết.
Một trong số các kỹ thuật để có thể giúp cải thiện đáng kể chỉ tiêu và
dụng lượng của hệ thống đang được tập trung nghiên cứu trên thế giới trong
thời gian gần đây là kỹ thuật xử lý không gian-thời gian. Kỹ thuật này cho
phép sử dụng tối đa hiệu quả phổ tần cho hệ thống thông tin vô tuyến nói
chung và hệ thống thông tin di động tổ ong nói riêng. Nhờ sử dụng nhiều
phần tử anten, kỹ thuật này cho phép tối ưu hoá quá trình thu hoặc phát tín
hiệu bằng cách xử lý theo cả hai miền không gian và miền thời gian tại máy
thu phát.[16,17,19, 28, 36]
Việc tiếp tục nghiên cứu phát triển kỹ thuật này để tiến tới có được các
sản phẩm hữu dụng có chỉ tiêu chất lượng cao, đồng thời phù hợp với khả
năng xử lý, tính toán của các thiết bị hiện có cũng như ứng dụng nó vào trong
các hệ thống thông tin di động hiện có một cách hiệu quả thực sự là vấn đề

cấp thiết. Việc thực hiện tốt những nghiên cứu này sẽ mang lại hiệu quả rất to
lớn về dung lượng cũng như hiện thực hoá khả năng truyền dữ liệu tốc độ cao
cho các hệ thống thông tin di động như GSM hay CDMA hiện tại cũng như
các hệ thống thông tin di động thế hệ mới.
Mục tiêu của luận án là nghiên cứu kỹ thuật xử lý không-gian thời gian
bằng anten thông minh cho thông tin di động với các trường hợp cụ thể anten
thông minh cho mạng GSM ở Việt Nam và các hệ thống CDMA.
-2-

Đối tượng và phạm vi nghiên cứu của luận án là tập trung giải quyết
những vấn đề sau:
- Nghiên cứu thuật toán tạo búp thích nghi có độ phức tạp tính toán thấp
nhưng tốc độ hội tụ cao để phù hợp với khả năng của thiết bị thực tế.
- Đánh giá hiệu quả của việc sử dụng anten thông minh trong hệ thống GSM
có tính đến các điều kiện cụ thể của hệ thống GSM ở Việt Nam để đề xuất
phương án ứng dụng, triển khai nhằm sử dụng tài nguyên một cách hiệu
quả, có xem xét, đánh giá ảnh hưởng của pha-đinh và che khuất.
- Nghiên cứu kỹ thuật nâng cao chỉ tiêu cho hệ thống anten thông minh cho
W-CDMA, hệ thống thông tin di động thế hệ 3 IMT-2000.
Phương pháp nghiên cứu được thực hiện là nghiên cứu lý thuyết kết hợp
với mô phỏng bằng chương trình máy tính để đánh giá kết quả: Với hệ thống
GSM, có tính đến các tham số và điều kiện đặc thù của mạng lưới hiện đang
triển khai ở Việt Nam; Với đề xuất cho hệ thống W-CDMA, kết quả đo kiểm
thực hiện trên hệ thống thử nghiệm được sử dụng để đánh giá độ tin cậy.
Nội dung luận án bao gồm 4 Chương. Sau phần Mở đầu, Chương 1 trình
bày tổng quan về kỹ thuật xử lý mảng theo không gian-thời gian và đặt vấn đề
nghiên cứu. Chương 2 đi sâu vào phân tích các anten mảng nhiều phần tử
được sử dụng trong thông tin di động với hai kỹ thuật phân tập và tạo búp.
Chương này cũng đã đề xuất sử dụng một thuật toán tạo búp thích nghi kết
hợp cả kênh hoa tiêu và lưu lượng cho hệ thống CDMA trải phổ trực tiếp.

Chương 3 đánh giá hiệu quả của việc sử dụng anten thông minh trong các hệ
thống thông tin di động tổ ong, đề xuất sử dụng cho hệ thống GSM ở Việt
Nam có xem xét đến ảnh hưởng của pha-đinh và che khuất. Trên cơ sở nhận
xét về những hạn chế của hệ thống anten thông minh thử nghiệm cho W-
CDMA, qua phân tích các đặc tính của kỹ thuật phân tập và tạo búp trong môi
trường pha-đinh và nhiễu đa truy nhập, Chương 4 đã đề xuất sử dụng kỹ
-3-

thuật phối hợp cho chép đạt được ưu điểm của cả hai kỹ thuật phân tập và tạo
búp cho hệ thống W-CDMA. Kết quả đo kiểm được thực hiện trên hệ thống
anten thông minh thử nghiệm cho W-CDMA tại Viện nghiên cứu Điện tử
Viễn thông Hàn Quốc (ETRI) để đánh giá độ tin cậy của phương án đề xuất.
Cuối cùng là phần kết luận và hướng phát triển tập trung vào những kết quả
mới đạt được của luận án.

-4-

Chương 1. Tổng quan vấn đề nghiên cứu
1.1. Sơ lược về quá trình phát triển kỹ thuật xử lý tín hiệu mảng
1.1.1. Sự phát triển của kỹ thuật anten:
Sóng vô tuyến được phát minh ra vào năm 1861 khi Maxell (Đại học
Hoàng Gia Luân đôn) đưa ra lý thuyết sóng điện từ. Hertz (Đại học
Karlsruhe) đã chứng minh sự tồn tại của sóng này bằng thực nghiệm vào năm
1887 bằng sóng đứng (tĩnh). Năm 1890 Branly (Paris) đã xây dựng một “bộ
nhất quán” có thể phát hiện sự có mặt của sóng điện từ bằng một cái chai thuỷ
tinh chứa kim loại. Bộ nhất quán này sau đó được tiếp tục phát triển bởi
Lodge (Anh). Mùa hè 1895, Marconi đã sử dụng máy phát của Hertz, bộ nhất
quán của Lodge và lắp thêm anten để tạo ra một máy phát vô tuyến đầu tiên...
Ứng dụng dân dụng đầu tiên của kỹ thuật vô tuyến là hệ thống điện thoại
vô tuyến 2MHz vào năm 1921 trong ngành Cảnh sát. Những hệ thông được

phát triển tiếp sau đó: FM (Armstrong-1933); Hệ thống thông tin của Bell ở
tần số 150MHz, hệ thống IMTS sử dụng FM của AT&T (1946); Khái niệm
celllular (mạng thông tin di động tổ ong) (Phòng thí nghiệm Bell-1947); Hệ
thống AMPS (1970); Vào những năm 1990s: các hệ thống thông tin đi tổ ong
GSM, IS-136 (TDMA), CDMA IS-95, 3G… ra đời và phát triển một cách
mạnh mẽ [34,36]. Kỹ thuật anten được sử dụng cho các hệ thống thông tin vô
tuyến cũng có sự phát triển như sau:
- 1880- tới những năm1890: Hertz, Marconi, Popov đã thiết kế được các
anten có tần số hoạt động và băng thông tốt hơn .
- Những năm 1900: anten định hướng được sử dụng đã cho phép liên lạc
qua biển Atlantic
- 1905: sử dụng nhiều anten cho phân tập thu.
-5-

- Thập kỷ 1920: Dàn anten Yagi-Uda được phát minh đã đem lại tăng ích và
băng thông tốt hơn.
- Chiến tranh thế giới thứ 2: Dàn anten được sử dụng cho rađa
- Thập kỷ 1970: Ứng dụng xử lý tín hiệu thích nghi ở máy thu vô tuyến để
cải thiện phân tập thu và triệt nhiễu bằng các bộ xử lý tín hiệu số trong
quân sự [29]. Việc sử dụng anten nhiều phần tử ở máy thu trong thông tin
vô tuyến mở ra một chiều mới trong xử lý tín hiệu (chiều không gian), cho
phép cải thiện chỉ tiêu hệ thống. Tuy nhiên, đến trước những năm 1990,
vấn đề được phát triển chủ yếu với anten mảng mới chỉ là kỹ thuật xử lý
riêng theo miền không gian (vd: xác định hướng tới) [16].
- Thập kỷ 1990: Kỹ thuật thu không gian-thời gian (kết hợp cả miền không
gian và thời gian) [29, 38]
+ 1996: Anten nhiều phần tử được sử dụng ở trạm gốc để hỗ trợ nhiều
người dùng trên cùng kênh
+ 1994: Đề xuất kỹ thuật tăng dung lượng kênh vô tuyến bằng cách sử
dụng anten nhiều phần tử ở cả máy phát và máy thu. Ý tưởng này tiếp

tục được phát triển 1995, 1996, 1998 -> bắt đầu một cuộc cách mạng về
lý thuyết truyền thông [25, 28].
- Từ những năm 2000: Kỹ thuật thu-phát không gian-thời gian được tập trung
nghiên cứu và phát triển [19, 20]
Có thể thấy rằng, kỹ thuật xử lý không gian-thời gian với mảng (dàn)
anten nhiều phần tử ở nhiều cấp độ phức tạp khác nhau đã được ứng dụng
trong quân sự từ khá lâu, nhưng do tính chất thay đổi liên tục của môi trường
truyền sóng thông tin di động trong khi khả năng xử lý theo thời gian thực của
máy thu phát còn nhiều hạn chế mà kỹ thuật này mới thực sự được nghiên cứu
ứng dụng trong các hệ thống thông tin di động trong thời gian gần đây [17,
29, 36, 38, 55]. Nhờ sử dụng nhiều phần tử anten kỹ thuật này cho phép tối ưu
-6-

hoá quá trình thu hoặc phát tín hiệu bằng cách dùng cả kỹ thuật xử lý tín hiệu
theo miền không gian và theo miền thời gian tại máy thu phát, nhờ đó cho
phép sử dụng tối đa hiệu quả phổ tần của mạng thông tin tổ ong [19].
1.1.2. Tín hiệu trong miền thời gian, không gian
1.1.2.1. Biểu diễn tín hiệu theo thời gian
Tín hiệu thực s(t) có biến đổi Fourier là S(f). Phép biến đổi Fourier này
thoả mãn biểu thức đối xứng sau:
S(f) = S
H
(-f) (1.1)
Nếu nói tín hiệu là thực, nghĩa là ta chỉ xét các tần số dương. Gọi z(t) là
đường bao phức của tín hiệu thực s(t), và Z(f) là biến đổi Fourier của z(t)[16].
Đường bao phức cho tần số f
c
nào đó (tần số sóng mang) được xác định trong
miền Fourier là:
Z(f-f

c
) = 2u(f)S(f) (1.2)
trong đó hàm bước đơn vị được định nghĩa là:



<

=
0
0
0
1
)(
f
f
fu

Tín hiệu s(t) là thực và có phổ bằng:
)(
2
1
)(
2
1
)(
c
H
c
ffZffZfS −−+−=

(1.3)
Tín hiệu thực s(t) có thể viết là:
{ }
tfj
c
etzts
π
2
)(Re)( =
(1.4)
Ký hiệu phần thực và phần ảo của z(t) tương ứng là x(t) và y(t),
z(t) = x(t) + jy(t) (1.5)
Kết hợp với phương trình (1.4) ta có:
s(t) = x(t)cos2πf
c
t - y(t)sin2πf
c
t (1.6)
1.1.2.2. Biểu diễn tín hiệu theo không gian-thời gian
Tín hiệu có thêm chiều không gian (không gian-thời gian) được biểu diễn
[27, 38]:
-7-

s(t,x,y,z) = s(t,r
) (1.7)
trong đó r
biểu diễn 3 biến không gian (x,y,z)
Trong hệ toạ độ cầu:
x = rsinφcosθ, y = rsinφsinθ, z = rcosθ,
r =

222
zyx ++
,
θ=cos
-1








+
22
yx
x
(1.8)
φ=cos
-1








++
222

zyx
z









Hình 1.1. Tín hiệu trong không gian
Với hệ có m phần tử anten: tín hiệu theo không gian-thời gian có thể
viết bằng tổng các tính hiệu thành phần như sau:
s(t,r
)=

=
m
k
k
rts
1
),(
(1.9)
1.1.2.3. Các kỹ thuật xử lý tín hiệu
Với những biểu diễn tín hiệu như trình bày ở trên rõ ràng là ngoài kỹ
thuật xử lý tín hiệu theo thời gian kinh điển, tín hiệu có thể được xử lý theo
chiều không gian, hoặc cả không gian và thời gian. [16]
Kỹ thuật xử lý chỉ theo miền không gian được dùng để đánh giá tín hiệu,

ví dụ như các đáp ứng máy thu và tần số theo không gian, hướng tới (phương
pháp hợp lý cực đại - ML (1964), phân loại nhiều tín hiệu - MUSIC (1980),
x
y
z
r
φ
θ
-8-

Đánh giá các tham số tín hiệu bằng kỹ thuật quay bất biến - ESPRIT (1985)),
séc-tơ hoá vùng phủ trạm gốc (chia thành nhiều vùng phủ có hướng tới khác
nhau) [49]. Các mô hình không gian được sử dụng do những nguyên nhân
chính sau:
- Không biết thông tin về tín hiệu phát. Mô hình không gian áp dụng cho rất
nhiều tín hiệu khác nhau và cho phép đánh giá vết không gian mà thậm chí
không cần biết tính chất thời gian của tín hiệu phát chẳng hạn như: chuỗi
huấn luyện đã biết, hằng số theo khối, chuỗi mã đã biết... Khi đánh giá
được vết không gian, có thể đánh giá được tín hiệu phát. Tức là, nhiều tín
hiệu có thể được đánh giá và phân biệt khi được bù tần số ở máy phát và
máy thu, mà không cần giải điều chế và đồng bộ. Nếu kết hợp được một
mô hình không gian với các đặc trưng thời gian thì ta có thể cải thiện được
việc đánh giá kênh và vết không gian nói trên.
- Bằng mô hình không gian, ta có thể tính toán được các tham số vật lý của
đường truyền. Những tham số xác định được qua đường lên (vd: vị trí
người sử dụng) có thể được sử dụng cho đường xuống và các phần khác
của hệ thống. Ví dụ: ở chế độ song công theo tần số - FDD (đường lên và
đường xuống sử dụng tần số khác nhau), vị trí của máy phát là tham số
không phụ thuộc vào tần số, nếu vị trí này được xác định nhờ quan sát ở
đường lên thì đường xuống có thể phát chỉ theo hướng vị trí đó để giảm

thiểu nhiễu.
- Phân tích đường truyền: Bằng cách sử dụng các mô hình không gian dựa
trên số liệu đo kiểm, ta có thể biết thêm về môi trường truyền sóng vô
tuyến để sử dụng cho việc thiết kế các hệ thống vô tuyến khác.
Hạn chế của mô hình không gian trong việc đánh giá tín hiệu là chỉ tiêu
của phương pháp sử dụng mô hình này phụ thuộc hoàn toàn vào độ chính xác
của mô hình, trong khi luôn có sự chênh lệch giữa mô hình và hệ thống thực
-9-

tế và anten mảng phải được định cỡ (điều chỉnh) để mô hình không gian này
đúng với hệ thống thực. Nếu kết hợp được một mô hình không gian với các
đặc trưng thời gian thì việc đánh giá kênh và vết không gian có thể được cải
thiện. Kỹ thuật xử lý tín hiệu được thực hiện theo cả miền không gian và thời
gian được gọi là xử lý không gian-thời gian.
1.2. Xử lý không gian-thời gian trong thông tin di động
1.2.1. Mô hình hệ thống không gian-thời gian
Kỹ thuật xử lý không gian-thời gian cho phép sử dụng tối đa hiệu quả
phổ tần của mạng thông tin tổ ong. Nhờ sử dụng nhiều phần tử anten kỹ thuật
này cho phép tối ưu hoá quá trình thu hoặc phát tín hiệu bằng cách dùng cả kỹ
thuật xử lý tín hiệu theo miền không gian và theo miền thời gian tại máy thu
phát. Các kỹ thuật phổ biến đã biết như anten dẻ quạt (séc-tơ hoá) (xử lý
không gian), phân tập (xử lý không gian-thời gian) và anten mảng tạo búp
sóng (xử lý không gian-thời gian) có thể được xem như những ví dụ điển hình
của kỹ thuật xử lý theo không gian-thời gian. Trong thực tế, tất cả các hệ
thống anten mảng có thể được xem như bộ xử lý không gian-thời gian. Các bộ
xử lý không gian-thời gian tiên tiến hơn bao gồm cả bộ tách đa người sử
dụng, mã hóa không gian-thời gian,… sẽ tạo thành một hệ đầy đủ về kỹ thuật
xử lý không gian-thời gian.
Để đơn giản hoá việc phân tích hệ thống xử lý không gian-thời gian, ta
cần có một mô hình cơ bản về hệ thống thông tin bao gồm việc xác định các

đầu vào, đầu ra và kênh của hệ thống. Hệ thống xử lý không gian-thời gian
tổng quát có nhiều phần tử anten được sử dụng tại cả máy phát và máy thu
(mô hình Nhiều đầu vào-Nhiều đầu ra: MIMO). Mô hình này có đặc điểm là
tín hiệu mong muốn có nhiều đầu vào kênh thông tin (các anten phát) cũng
như nhiều đầu ra (các anten thu). Một hệ thống MIMO có thể được xem như
-10-

hệ ghép nhiều kênh con một đầu vào / một đầu ra (SISO), dung lượng kênh
của hệ thống MIMO là tổng hợp dung lượng của các kênh con thành phần.
Dung lượng hệ thống MIMO bị ảnh hưởng bởi sự thay đổi phân bố tăng ích
đặc trưng của các kênh con SISO.
Xét Mô hình hệ thống thông tin với N anten phát và M anten thu hoạt
động tại một tần số không lựa chọn, môi trường pha-đinh Rayleigh, như trong
Hình 1.2.








Hình 1.2. Mô hình hệ thống thông tin với N phần tử phát và M phần tử thu
trong môi trường tán xạ.

Đường bao phức của véc-tơ tín hiệu phát là
T
N
tststst
)](),...,(),([)(

21
=s

của tín hiệu thu là
T
M
trtrtrt )](),...,(),([)(
21
=r
, trong đó chỉ số
T
là toán tử chuyển
vị; Biến thời gian t được giả thiết là rời rạc; Không phụ thuộc vào giá trị N,
tổng công suất máy phát là hằng số P
t
. Giả sử véc-tơ tín hiệu phát bao gồm N
thành phần công suất bằng nhau, độc lập thống kê sao cho
Nt
H
T
NPttE Iss )/()]()([ =
, trong đó I
N
là ma trận đơn vị
NN ×
và E
T
(.) là kỳ
vọng trên toàn bộ thời gian xét nhỏ hơn nhiều lần so với nghịch đảo của tốc
độ pha-đinh.

1

2

3



N
Tx
1
2
M
Rx

h
11
h
12
h
1M
h
N1
-11-

Giả thiết công suất của các phần tử phát là bằng nhau bởi vì máy phát
không bị ảnh hưởng bởi các tính năng biến đổi của kênh vô tuyến và các phần
tử anten được xem là giống hệt nhau; Công suất trung bình tại đầu ra của mỗi
phần tử là P
r

; Tín hiệu nhận được còn bao gồm véc-tơ tạp Gauss trắng cộng
AWGN, v(t), với các thành phần độc lập thống kê có công suất là
2
σ
.
Tỉ số công suất sóng mang trên tạp (CNR) tại mỗi nhánh là
2
/
σ
r
PΓ =
,
phụ thuộc vào M. Ma trận đáp ứng xung kênh g(t) có M hàng và N cột. Biến
đổi Fourier của g(t) là G(f). Với giả thiết băng hẹp, các phần tử của G(f) là
hằng số trên toàn băng đang xét, đại lượng f có thể được loại ra. Ngoại trừ
g(0), g(t) là ma trận '0'. Ma trận đáp ứng xung kênh chuẩn hoá là h(t) với biến
đổi Fourier là H, với sự chuẩn hoá theo
HG
tr
PP =
sao cho
)(/)( tPPt
tr
hg =
. Chú ý rằng tỉ số
tr
P/P
là hệ số suy hao trường do suy hao
đường trong không gian tự do. Ma trận hàm truyền của kênh được chuẩn hoá
sao cho

1>=H<
2
mn
, trong đó dấu ngoặc đơn là toán tử kỳ vọng theo thời
gian, tỉ lệ nghịch với tốc độ pha-đinh.
Ma trận H được giả thiết là được đo tại máy thu. Do đó, trong hầu hết
trường hợp, máy phát không thể biết trước được ma trận kênh, trừ khi kênh vô
tuyến có tính chất thuận nghịch - các đặc tính ở đường xuống và đường lên là
tương tự nhau như trong trường hợp hệ thống song công theo thời gian
(TDD), tần số đường lên và đường xuống là giống nhau.
Hệ thống MIMO tổng quát thường vẫn chưa được sử dụng trong thực tế,
mà người ta thường xét một số cấu hình khác sử dụng một anten tại máy di
động và nhiều anten tại trạm gốc. Các mô hình này có thể được sử dụng cho
trường hợp một người dùng hoặc nhiều người dùng. Trạm gốc có thể sử dụng
kỹ thuật tạo búp hoặc phân tập. Tại máy phát, dữ liệu người dùng có thể được
mã hoá sử dụng kỹ thuật mã hoá không gian-thời gian, trước khi điều chế và
-12-


được phát qua anten M
T
. Khi xem xét máy phát tại đầu cuối di động, số luồng
dữ liệu bằng 1, trong đó số luồng dữ liệu được mã hoá và được ghép vào
anten phát và K là số người sử dụng tại trạm gốc.
Máy thu của người sử dụng thứ k sẽ phải khôi phục được tín hiệu gốc từ
một hỗn hợp gồm: tín hiệu mong muốn, tạp AWGN và nhiễu đa truy nhập.
Giải pháp sử dụng anten nhiều phần tử tại cả máy thu và máy phát cho phép
khôi phục dữ liệu phát tốt hơn. Hiện tại, các vấn đề nghiên cứu về xử lý ở
máy thu hầu hết được tập trung vào các thuật toán tối ưu hoặc trong miền thời
gian hoặc trong miền mã.

Việc đưa thêm miền không gian vào mạng thông tin di động tổ ong
thông qua việc sử dụng hệ thống anten nhiều phân tử tạo ra nhiều khả năng
mới trong việc phát triển các thuật toán cho máy thu. Đặc biệt, việc dùng
anten nhiều phần tử tại cả máy phát và máy thu cho phép cải thiện quá trình
tách tín hiệu của người sử dụng. Nhờ kỹ thuật không gian-thời gian, mức
nhiễu đa truy nhập và pha-đinh tại máy thu sẽ được giảm xuống đáng kể, do
đó sẽ làm tăng dung lượng của toàn hệ thống.
Như vậy, hệ thống xử lý không gian - thời gian có thể cải thiện chất
lượng kênh truyền theo hai cách: cách thứ nhất là sử dụng phân tập trong hệ
thống để tối thiểu ảnh hưởng của pha-đinh đối với tín hiệu thu được; cách thứ
hai là làm thay đổi thích nghi giản đồ phương hướng của hệ thống anten để
giảm thiểu tổng mức nhiễu đa truy nhập tại máy thu. Năng lực xử lý không
gian - thời gian dựa trên kỹ thuật tạo búp sóng và phân tập được kết hợp trong
việc thiết kế toàn bộ hệ thống. Do vậy, khái niệm xử lý không gian - thời gian
được hiểu như sau:
• Xử lý không gian - thời gian là kỹ thuật giảm thiểu pha-đinh và nhiễu đa
truy nhập (MAI) thông qua việc sử dụng tích hợp anten nhiều phần tử, kỹ
thuật xử lý tín hiệu tiên tiến, cấu trúc máy thu tiên tiến và sửa lỗi trước.

×